0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NC7WZ07FHX

NC7WZ07FHX

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    UDFN6_1.4X1.2MM

  • 描述:

    IC BUF NON-INVERT 5.5V 6MICROPK2

  • 数据手册
  • 价格&库存
NC7WZ07FHX 数据手册
NC7WZ07 TinyLogic UHS Dual Buffer (Open-Drain Outputs) Description The NC7WZ07 is a dual buffer with open−drain outputs from ON Semiconductor’s Ultra−High Speed (UHS) series of TinyLogic. The device is fabricated with advanced CMOS technology to achieve ultra−high speed with high output drive, while maintaining low static power dissipation over a broad VCC operating range. The device is specified to operate over a very broad VCC operating range. The device is specified to operate over the 1.65 V to 5.5 V VCC range. The inputs and outputs are high impedance when VCC is 0 V. Inputs tolerate voltages up to 5.5 V independent of VCC operating voltage. www.onsemi.com MARKING DIAGRAMS SIP6 CASE 127EB Pin 1 Features • • • • • • • • D3KK XYZ Ultra−High Speed: tPZL 2.3 ns (Typical) High IOL Output Drive: ±24 mA at 3 V VCC Broad VCC Operating Range: 1.65 V to 5.50 V Power Down High−Impedance Inputs / Outputs Over−Voltage Tolerance Inputs Facilitate 5 V to 3 V Translation Proprietary Noise / EMI Reduction Circuitry Ultra−Small MicroPak™ Packages These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS Compliant 1 A2 Y1 Y2 SC−88 CASE 419AD−01 T Figure 1. Logic Symbol D3KK XYZ Pin 1 D3, Z07 KK XY Z IEEC / IEC A1 UDFN6 CASE 517DP Z07T = Specific Device Code = 2−Digit Lot Run Traceability Code = 2−Digit Date Code Format = Assembly Plant Code = Year Coding Scheme = Plant Code Identifier = Die Run Code = Eight−Week Datacoding Scheme ORDERING INFORMATION See detailed ordering, marking and shipping information in the package dimensions section on page 5 of this data sheet. © Semiconductor Components Industries, LLC, 2000 July, 2019 − Rev. 2 1 Publication Order Number: NC7WZ07/D NC7WZ07 A1 1 6 Y1 GND 2 5 VCC A2 3 4 Y2 A1 1 GND 2 A2 3 Figure 2. SC−88 (Top View) 6 Y1 5 VCC 4 Y2 Figure 3. MicroPak (Top Through View) AAA (Top View) Pin One NOTES: 1. AAA represents product code top mark (see Ordering Information). 2. Orientation of top mark determines pin one location. 3. Read the top mark left to right, pin one is the lower left pin. Figure 4. Pin 1 Orientation PIN DEFINITIONS FUNCTION TABLE (Y = A) Pin # SC−88 Pin # MicroPak Name Description 1 1 A1 2 2 GND Ground LOW Logic Level LOW Logic Level 3 3 A2 Input HIGH Logic Level 4 4 Y2 Output HIGH Impedance Output State, Open Drain 5 5 VCC 6 6 Y1 Input Supply Voltage Output www.onsemi.com 2 Inputs Output A Y NC7WZ07 ABSOLUTE MAXIMUM RATINGS Symbol Min Max Unit VCC Supply Voltage −0.5 6.5 V VIN DC Input Voltage −0.5 6.5 V DC Output Voltage −0.5 6.5 V VOUT Parameter IIK DC Input Diode Current VIN < −0.5 V − −50 mA IOK DC Output Diode Current VOUT < −0.5 V − −50 mA IOUT DC Output Current − ±50 mA DC VCC or Ground Current − ±100 mA −65 +150 °C ICC or IGND TSTG Storage Temperature Range TJ Junction Temperature Under Bias − +150 °C TL Junction Lead Temperature (Soldering, 10 Seconds) − +260 °C PD Power Dissipation in Still Air SC−88−6 − 190 mW MicroPak−6 − 327 MicroPak2™−6 − 327 Human Body Model, JEDEC: JESD22−A114 − 4000 Charge Device Model, JEDEC: JESD22−C101 − 2000 ESD V Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. RECOMMENDED OPERATING CONDITIONS Symbol VCC VIN VOUT tr, tf Parameter Conditions Min Max Unit Supply Voltage Operating 1.65 5.50 V Supply Voltage Data Retention 1.5 5.5 0 5.5 Input Voltage Output Voltage Input Rise and Fall Times TA Operating Temperature qJA Thermal Resistance V 0 5.5 V VCC at 1.8 V ±0.15 V, 2.5 V ±0.2 V 0 20 ns/V VCC at 3.3 V ±0.3 V 0 10 VCC at 5.0 V ±0.5 V 0 5 −40 +85 °C SC−88−6 − 659 °C/W MicroPak−6 − 382 MicroPak2−6 − 382 Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 4. Unused inputs must be held HIGH or LOW. They may not float. www.onsemi.com 3 NC7WZ07 DC ELECTICAL CHARACTERISTICS TA = +25°C Symbol VIH VIL Parameter HIGH Level Input Voltage LOW Level Input Voltage TA = −40 to +85°C Min Typ Max Min Max Unit 1.65 to 1.95 0.65 VCC − − 0.65 VCC − V 2.30 to 5.50 0.70 VCC − − 0.70 VCC − 1.65 to 1.95 − − 0.35 VCC − 0.35 VCC 2.30 to 5.50 − − 0.30 VCC − 0.30 VCC VCC (V) Conditions V ILKG HIGH Level Output Leakage 1.65 to 1.95 Current VIN = VIH, VOUT = VCC or GND − − ±5 − ±10 mA VOL LOW Level Output Voltage VIN = VIL, IOL = 100 mA − 0.00 0.10 − 0.00 V 1.65 1.80 IIN Input Leakage Current IOFF Power Off Leakage Current ICC Quiescent Supply Current − 0.00 0.10 − 0.10 2.30 − 0.00 0.10 − 0.10 3.00 − 0.00 0.10 − 0.10 4.50 − 0.00 0.10 − 0.10 1.65 IOL = 4 mA − 0.80 0.24 − 0.24 2.30 IOL = 8 mA − 0.10 0.30 − 0.30 3.00 IOL = 16 mA − 0.16 0.40 − 0.40 3.00 IOL = 24 mA − 0.24 0.55 − 0.55 4.50 IOL = 32 mA − 0.25 0.55 − 0.55 0 ≤ VIN ≤ 5.5 V − − ±0.1 − ±10 mA VIN or VOUT = 5.5 V − − 1 − 10 mA VIN = 5.5 V, GND − − 1 − 10 mA 1.65 to 5.5 0 1.65 to 5.50 AC ELECTRICAL CHARACTERISTICS TA = +25°C Symbol tPZL, tPLZ Parameter Propagation Delay (Figure 5, 6) TA = −40 to +85°C VCC (V) Conditions Min Typ Max Min Max Unit 1.65 CL = 50 pF, RU = 500 W, RD = 500 W, VI = 2 x VCC − 6.6 11.5 − 12.6 ns − 5.5 9.5 − 10.5 1.80 2.50 ±0.20 − 3.7 5.8 − 6.4 3.30 ±0.30 − 2.9 4.4 − 4.8 5.00 ±0.50 − 2.3 3.5 − 3.9 − 5.5 11.5 − 12.6 − 4.3 9.5 − 10.5 − 2.8 5.8 − 6.4 3.30 ±0.30 − 2.1 4.4 − 4.8 5.00 ±0.50 − 1.4 3.5 − 3.9 Input Capacitance 0 − 2.5 − − − pF COUT Output Capacitance 0 − 4.0 − − − pF CPD Power Dissipation Capacitance (Note 5) (Figure 7) 3.30 − 3 − − − pF 5.00 − 4 − − − 1.65 1.80 2.50 ±0.20 CIN CL = 50 pF, RU = 500 W, RD = 500 W, VI = 2 x VCC 5. CPD is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (ICCD) at no output loading and operating at 50% duty cycle. CPD is related to ICCD dynamic operating current by the expression: ICCD = (CPD) (VCC) (fIN) + (ICCstatic). www.onsemi.com 4 NC7WZ07 VI VCC RU INPUT OUTPUT CL RD NOTE: 6. CL includes load and stray capacitance. 7. Input PRR = 1.0 MHz, tW = 500 ns. Figure 5. AC Test Circuit Figure 6. AC Waveforms VCC A INPUT NOTE: 8. Input = AC Waveform; tr = tf = 1.8 ns; PRR = Variable; Duty Cycle = 50%. Figure 7. ICCD Test Circuit ORDERING INFORMATION Top Mark Package Shipping† NC7WZ07P6X Z07 SC−88 3000 / Tape & Reel NC7WZ07L6X D3 MicroPak 5000 / Tape & Reel NC7WZ07FHX D3 MicroPak2 5000 / Tape & Reel Part Number †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. MicroPak and MicroPak2 are trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. www.onsemi.com 5 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SIP6 1.45X1.0 CASE 127EB ISSUE O DOCUMENT NUMBER: DESCRIPTION: 98AON13590G SIP6 1.45X1.0 DATE 31 AUG 2016 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SC−88 (SC−70 6 Lead), 1.25x2 CASE 419AD−01 ISSUE A SYMBOL D e e E1 E DATE 07 JUL 2010 MIN MAX A 0.80 1.10 A1 0.00 0.10 A2 0.80 1.00 b 0.15 0.30 c 0.10 0.18 D 1.80 2.00 2.20 E 1.80 2.10 2.40 E1 1.15 1.25 1.35 0.65 BSC e L TOP VIEW NOM 0.26 0.36 L1 0.42 REF L2 0.15 BSC 0.46 θ 0º 8º θ1 4º 10º q1 A2 A q b q1 L L1 A1 SIDE VIEW c L2 END VIEW Notes: (1) All dimensions are in millimeters. Angles in degrees. (2) Complies with JEDEC MO-203. DOCUMENT NUMBER: DESCRIPTION: 98AON34266E Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. SC−88 (SC−70 6 LEAD), 1.25X2 PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS UDFN6 1.0X1.0, 0.35P CASE 517DP ISSUE O DOCUMENT NUMBER: DESCRIPTION: 98AON13593G UDFN6 1.0X1.0, 0.35P DATE 31 AUG 2016 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com ON Semiconductor Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 www.onsemi.com 1 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
NC7WZ07FHX 价格&库存

很抱歉,暂时无法提供与“NC7WZ07FHX”相匹配的价格&库存,您可以联系我们找货

免费人工找货