0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCP4588DMX10TCG

NCP4588DMX10TCG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

  • 描述:

    NCP4588DMX10TCG - 200 mA, Output Capacitor Free, LDO Linear Voltage Regulator - ON Semiconductor

  • 数据手册
  • 价格&库存
NCP4588DMX10TCG 数据手册
NCP4588 200 mA, Output Capacitor Free, LDO Linear Voltage Regulator The NCP4588 is a CMOS 200mA LDO which is stable without an output capacitor. This results in a reduction in component count, cost and board area, as well as contributing to a more robust solution in hostile environments. With quiescent current < 9.5 m A and PSRR > 60 dB, the device is an excellent trade off between the two features. The family is available in a variety of packages: SC−70, SOT23 and a small, ultra thin 1.2 x 1.2 x 0.4 mm XDFN. Features http://onsemi.com MARKING DIAGRAMS • • • • • • • • • • • • Operating Input Voltage Range: 1.4 V to 5.25 V Output Voltage Range: 1.0 to 4.2 V (available in 0.1 V steps) Output Voltage Accuracy: 1% Quiescent Current: 9.5 mA Standby Current: 0.1 mA Very Low Dropout: 270 mV (IOUT = 200 mA, VIN = 3.0 V) High PSRR: 70 dB at 1 kHz, VOUT ≤ 1.2 V 65 dB at 1 kHz, 1.2 < VOUT < 2.2 V 60 dB at 1 kHz, VOUT ≥ 2.2 V Line Regulation 0.02%/V Typ. Current Fold Back Protection: 50 mA at short Stable with no Output Capacitor Available in SC−70, XDFN and SOT23 Package These are Pb−Free Devices SC−70 CASE 419A XXX MG G XDFN6 CASE 711AA XX MM XX M SOT−23−5 CASE 1212 XX, XXX= Specific Device Code M, MM = Date Code A = Assembly Location Y = Year W = Work Week G = Pb−Free Package (Note: Microdot may be in either location) Typical Applications • Battery Powered Equipments • Portable Communication Equipments • Cameras, VCRs and Camcorders VIN C1 100 n NCP4588x VIN CE GND VOUT VOUT C2 100n* ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 14 of this data sheet. * output capacitor may be omitted Figure 1. Typical Application Schematic © Semiconductor Components Industries, LLC, 2010 November, 2010 − Rev. 0 1 Publication Order Number: NCP4588/D NCP4588 VIN VOUT VIN VOUT Vref Vref CE Current Limit CE Current Limit GND NCP4588Dxxxxxxx GND NCP4588Hxxxxxxx Figure 2. Simplified Schematic Block Diagram PIN FUNCTION DESCRIPTION Pin No. XDFN 4 2 3 6 5 Pin No. SC−70 5 3 1 4 2 Pin No. SOT23 1 2 3 5 4 Pin Name VIN GND CE VOUT NC Input pin Ground Chip enable pin (Active “H”) Output pin No connection Description ABSOLUTE MAXIMUM RATINGS Rating Input Voltage (Note 1) Output Voltage Chip Enable Input Output Current Power Dissipation XDFN Power Dissipation SC70 Power Dissipation SOT23 Junction Temperature Storage Temperature ESD Capability, Human Body Model (Note 2) ESD Capability, Machine Model (Note 2) TJ TSTG ESDHBM ESDMM Symbol VIN VOUT VCE IOUT PD Value 6.0 −0.3 to VIN + 0.3 −0.3 to 6.0 400 400 380 420 −40 to 150 −55 to 125 2000 200 °C °C V V Unit V V V mA mW Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area. 2. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114) ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115) Latchup Current Maximum Rating tested per JEDEC standard: JESD78. http://onsemi.com 2 NCP4588 THERMAL CHARACTERISTICS Rating Thermal Characteristics, XDFN Thermal Resistance, Junction−to−Air Thermal Characteristics, SOT23 Thermal Resistance, Junction−to−Air Thermal Characteristics, SC−70 Thermal Resistance, Junction−to−Air Symbol RqJA RqJA RqJA Value 250 238 263 Unit °C/W °C/W °C/W ELECTRICAL CHARACTERISTICS −40°C ≤ TA ≤ 85°C; VIN = VOUT(NOM) + 1 V; IOUT = 1 mA; CIN = COUT = 1 mF; unless otherwise noted. Typical values are at TA = +25°C. Parameter Operating Input Voltage Output Voltage TA = +25 °C VOUT > 2.0 V VOUT ≤ 2.0 V −40°C ≤ TA ≤ 85°C VOUT > 2.0 V VOUT ≤ 2.0 V Output Voltage Temp. Coefficient Line Regulation Load Regulation Dropout Voltage −40°C ≤ TA ≤ 85°C VOUT(NOM) + 0.5 V ≤ VIN ≤ 5.0 V IOUT = 1 mA to 200 mA IOUT = 200 mA 1.0 V ≤ VOUT < 1.3 V 1.1 V ≤ VOUT < 1.5 V 1.2 V ≤ VOUT < 1.8 V 1.5 V ≤ VOUT < 2.3 V 2.0 V ≤ VOUT < 3.0 V 2.6 V ≤ VOUT < 4.0 V Output Current Short Current Limit Quiescent Current Standby Current CE Pin Threshold Voltage VCE = 0 V, TA = 25°C CE Input Voltage “H” CE Input Voltage “L” CE Pull Down Current Power Supply Rejection Ratio VIN = VOUT + 1 V or 2.2 V whichever is higher, DVIN = 0.2 Vpk−pk, IOUT = 30 mA, f = 1 kHz VOUT ≤ 1.2 V 1.2 V < VOUT ≤ 2.2 V 2.2 V ≤ VOUT Output Noise Voltage Low Output Nch Tr. On Resistance VOUT = 1 V, IOUT = 30 mA, f = 10 Hz to 100 kHz VIN = 4 V, VCE = 0 V, D version only VN RLOW VOUT = 0 V IOUT ISC IQ ISTB VCEH VCEL ICEPD PSRR 0.1 1.0 0.4 mA dB 200 50 9.5 0.1 25 3.0 LineReg LineReg VDO Test Conditions Symbol VIN VOUT Min 1.4 x0.99 −20 x0.980 −40 100 0.02 25 0.64 0.59 0.55 0.44 0.35 0.27 0.2 50 0.92 0.84 0.76 0.60 0.49 0.36 mA mA mA mA V Typ Max 5.25 x1.01 20 x1.015 30 Unit V V mV V mV ppm/°C %/V mV V 70 65 60 80 30 mVrms W http://onsemi.com 3 NCP4588 TYPICAL CHARACTERISTICS 1.2 1.0 0.8 VOUT (V) 0.6 0.4 0.2 0.0 VIN = 1.4 V 1.8 V 2.0 V 3.0 V VOUT (V) 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 100 200 300 IOUT (mA) 400 500 0.0 0 100 200 300 IOUT (mA) 400 500 VIN = 3.0 V 3.5 V 4.5 V Figure 3. Output Voltage vs. Output Current 1.0 V Version (TA = 255C) Figure 4. Output Voltage vs. Output Current 1.5 V Version (TA = 255C) 3.0 2.5 2.0 VOUT (V) 1.5 1.0 0.5 0.0 4.5 V 1.2 1.0 0.8 VDO (V) 0.6 0.4 0.2 0.0 85°C −40°C 25°C 3.5 V VIN = 3.0 V 0 100 200 300 IOUT (mA) 400 500 0 50 100 150 IOUT (mA) 200 250 300 Figure 5. Output Voltage vs. Output Current 2.5 V Version (TA = 255C) 0.8 0.7 0.6 VDO (V) VDO (V) 0.5 0.4 0.3 0.2 0.1 0.0 0 50 100 150 IOUT (mA) 200 250 300 0.1 0.0 0 85°C −40°C 25°C 0.4 0.6 0.5 Figure 6. Dropout Voltage vs. Output Current 1.0 V Version 25°C 0.3 85°C 0.2 −40°C 50 100 150 IOUT (mA) 200 250 300 Figure 7. Dropout Voltage vs. Output Current 1.5 V Version Figure 8. Dropout Voltage vs. Output Current 2.5 V Version http://onsemi.com 4 NCP4588 TYPICAL CHARACTERISTICS 1.05 1.03 1.01 0.99 0.97 0.95 −40 1.55 1.53 1.51 1.49 1.47 1.45 −40 VIN = 2.0 V VIN = 2.5 V VOUT (V) −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) 80 VOUT (V) −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) 80 Figure 9. Output Voltage vs. Temperature, 1.0 V Version Figure 10. Output Voltage vs. Temperature, 1.5 V Version 2.55 2.54 2.53 2.52 2.5 2.49 2.48 2.47 2.46 2.45 −40 2.51 VIN = 3.5 V 12 10 8 IGND (mA) 6 4 2 0 VOUT (V) −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) 80 0 1 2 3 VIN (V) 4 5 6 Figure 11. Output Voltage vs. Temperature, 2.5 V Version 12 10 8 IGND (mA) IGND (mA) 6 4 2 0 16 14 12 10 8 6 4 2 0 1 2 3 VIN (V) 4 5 6 0 0 Figure 12. Supply Current vs. Input Voltage, 1.0 V Version 1 2 3 VIN (V) 4 5 6 Figure 13. Supply Current vs. Input Voltage, 1.5 V Version http://onsemi.com 5 Figure 14. Supply Current vs. Input Voltage, 2.5 V Version NCP4588 TYPICAL CHARACTERISTICS 12 10 8 IGND (mA) 6 4 2 0 −40 IGND (mA) −20 0 20 40 60 80 12 10 8 6 4 2 0 −40 −20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 15. Supply Current vs. Temperature, 1.0 V Version 12 10 8 PSRR (dB) IGND (mA) 6 4 2 0 −40 100 90 80 70 60 50 40 30 20 10 −20 0 20 40 60 80 0 0.01 Figure 16. Supply Current vs. Temperature, 1.5 V Version 30 mA 10 mA IOUT = 1 mA 0.1 1 10 100 1000 TJ, JUNCTION TEMPERATURE (°C) FREQUENCY (kHz) Figure 17. Supply Current vs. Temperature, 2.5 V Version 100 90 80 70 PSRR (dB) 60 50 40 30 20 10 0 0.01 0.1 1 10 FREQUENCY (kHz) 100 1000 10 mA IOUT = 1 mA PSRR (dB) 30 mA 100 90 80 70 60 50 40 30 20 10 0 Figure 18. PSRR, 1.0 V Version, COUT = 100 nF 30 mA 10 mA IOUT = 1 mA 0.01 0.1 1 10 FREQUENCY (kHz) 100 1000 Figure 19. PSRR, 1.5 V Version, COUT = 100 nF Figure 20. PSRR, 2.5 V Version, COUT = 100 nF http://onsemi.com 6 NCP4588 TYPICAL CHARACTERISTICS 100 90 80 70 PSRR (dB) 60 50 40 30 20 10 0 0.01 0.1 1 10 100 1000 IOUT = 1 mA 30 mA 10 mA PSRR (dB) 100 90 80 70 60 50 40 30 20 10 0 0.01 0.1 1 10 100 1000 IOUT = 1 mA 10 mA 30 mA FREQUENCY (kHz) FREQUENCY (kHz) Figure 21. PSRR, 1.0 V Version, COUT = 0 mF 100 90 80 70 PSRR (dB) 60 50 40 30 20 10 0 0.01 0.1 1 10 10 mA 30 mA IOUT = 1 mA Figure 22. PSRR, 1.5 V Version, COUT = 0 mF 100 1000 FREQUENCY (kHz) Figure 23. PSRR, 2.5 V Version, COUT = 0 mF 4.0 3.5 3.0 VN (mVrms/√Hz) 2.5 2.0 1.5 1.0 0.5 0 0.01 0.1 1 10 FREQUENCY (kHz) 100 1000 2 0 0.01 VN (mVrms/√Hz) 8 6 4 12 10 0.1 1 10 FREQUENCY (kHz) 100 1000 Figure 24. Output Voltage Noise, 1.0 V Version Figure 25. Output Voltage Noise, 1.5 V Version http://onsemi.com 7 NCP4588 TYPICAL CHARACTERISTICS 10 9 8 VN (mVrms/√Hz) 7 VOUT (V) 6 5 4 3 2 1 0 0.01 0.1 1 10 100 1000 1.03 1.02 1.01 1.00 0.99 0.98 0.97 0 20 40 60 80 100 120 140 160 180 200 t (ms) 4 3 2 1 VIN (V) 0 FREQUENCY (kHz) Figure 26. Output Voltage Noise, 2.5 V Version Figure 27. Line Transients, 1.0 V Version, tR = tF = 5 ms, IOUT = 30 mA, COUT = 0 nF 4 3 2 1.04 VOUT (V) 1.03 1.02 1.01 1.00 0.99 0.98 0.97 0 20 40 60 80 1 VIN (V) VIN (V) 0 100 120 140 160 180 200 t (ms) Figure 28. Line Transients, 1.0 V Version, tR = tF = 5 ms, IOUT = 30 mA, COUT = 100 nF 5 4 3 2 VOUT (V) 1.53 1.52 1.51 1.50 1.49 1.48 1.47 0 20 40 60 80 100 120 140 160 180 200 t (ms) 1 0 Figure 29. Line Transients, 1.5 V Version, tR = tF = 5 ms, IOUT = 30 mA, COUT = 0 nF http://onsemi.com 8 NCP4588 TYPICAL CHARACTERISTICS 5 4 3 2 VOUT (V) 1.52 1.51 1.50 1.49 1.48 1.47 0 20 40 60 80 100 120 140 160 180 200 t (ms) 0 VIN (V) VIN (V) VIN (V) 1.53 1 Figure 30. Line Transients, 2.5 V Version, tR = tF = 5 ms, IOUT = 30 mA, COUT = 100 nF 6 5 4 3 VOUT (V) 2.54 2.53 2.52 2.51 2.50 2.49 2.48 0 20 40 60 80 100 120 140 160 180 200 t (ms) 2 1 Figure 31. Line Transients, 2.5 V Version, tR = tF = 5 ms, IOUT = 30 mA, COUT = 0 nF 6 5 4 3 VOUT (V) 2.54 2.53 2.52 2.51 2.50 2.49 2.48 0 20 40 60 80 100 120 140 160 180 200 t (ms) 2 1 Figure 32. Line Transients, 2.5 V Version, tR = tF = 5 ms, IOUT = 30 mA, COUT = 100 nF http://onsemi.com 9 NCP4588 TYPICAL CHARACTERISTICS 200 150 100 50 1.10 1.05 1.00 0.95 0.90 0.85 0 20 40 60 80 100 120 140 160 180 200 t (ms) IOUT (mA) IOUT (mA) IOUT (mA) VOUT (V) 0 Figure 33. Load Transients, 1.0 V Version, tR = tF = 0.5 ms, VIN = 2.0 V 200 150 100 50 VOUT (V) 0 1.60 1.55 1.50 1.45 1.40 1.35 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 34 - Load Transients, 1.5 V Version, tR = tF = 0.5 ms, VIN = 1.5 V 200 150 100 50 VOUT (V) 0 2.60 2.55 2.50 2.45 2.40 2.35 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 35. Load Transients, 2.5 V Version, tR = tF = 0.5 ms, VIN = 3.5 V http://onsemi.com 10 NCP4588 TYPICAL CHARACTERISTICS 200 150 100 50 1.90 1.60 1.30 1.00 0.70 0.40 0 50 100 150 200 250 300 350 400 450 500 t (ms) IOUT (mA) IOUT (mA) IOUT (mA) VOUT (V) 0 Figure 36. Load Transients, 1.0 V Version, tR = tF = 0.5 ms, VIN = 2.0 V 200 150 100 50 VOUT (V) 0 2.40 2.10 1.80 1.50 1.20 0.90 0 50 100 150 200 250 300 350 400 450 500 t (ms) Figure 37. Load Transients, 1.5 V Version, tR = tF = 0.5 ms, VIN = 2.5 V 200 150 100 50 VOUT (V) 0 3.40 3.10 2.80 2.50 2.20 1.90 0 50 100 150 200 250 300 350 400 450 500 t (ms) Figure 38. Load Transients, 2.5 V Version, tR = tF = 0.5 ms, VIN = 3.5 V http://onsemi.com 11 NCP4588 TYPICAL CHARACTERISTICS 4 Chip Enable 3 2 1 VOUT (V) VCE (V) VCE (V) VCE (V) 0 2.0 1.5 1.0 0.5 0.0 −0.5 0 20 40 IOUT = 1 mA IOUT = 200 mA 60 80 100 120 140 160 180 200 t (ms) Figure 39. Start−up, 1.0 V Version, VIN = 2.0 V 5 4 Chip Enable 3 2 VOUT (V) 1 2.0 1.0 1.0 0.5 0.0 −0.5 0 20 40 60 80 100 120 140 160 180 200 t (ms) IOUT = 1 mA IOUT = 200 mA 0 Figure 40. Start−up, 1.5 V Version, VIN = 2.5 V 5 Chip Enable 4 3 2 VOUT (V) 1 4 3 2 1 0 −1 0 20 40 60 80 100 120 140 160 180 200 t (ms) IOUT = 1 mA 0 IOUT = 200 mA Figure 41. Start−up, 2.5 V Version, VIN = 3.5 V http://onsemi.com 12 NCP4588 TYPICAL CHARACTERISTICS 4 3 2 Chip Enable VOUT (V) 2.0 1.5 1.0 0.5 0.0 −0.5 0 5 10 15 20 25 30 t (ms) 35 40 45 50 IOUT = 200 mA IOUT = 30 mA IOUT = 1 mA 1 VCE (V) VCE (V) VCE (V) 0 Figure 42. Shutdown, 1.0 V Version D, VIN = 2.0 V 5 4 3 2 VOUT (V) 2.0 1.5 1.0 0.5 0.0 −0.5 0 5 10 15 20 25 30 t (ms) 35 40 45 50 Chip Enable IOUT = 200 mA IOUT = 30 mA IOUT = 1 mA 1 Figure 43. Shutdown, 1.5 V Version D, VIN = 2.5 V 5 4 3 2 VOUT (V) 4 3 2 1 0 −1 0 5 10 15 20 25 t (ms) 30 35 40 45 50 Chip Enable IOUT = 200 mA IOUT = 30 mA IOUT = 1 mA 1 Figure 44. Shutdown, 2.5 V Version D, VIN = 3.5 V http://onsemi.com 13 NCP4588 APPLICATION INFORMATION A typical application circuit for NCP4588 series is shown in Figure 45. VIN C1 100 n NCP4588x VIN CE GND VOUT C2 100n* VOUT voltage is above logic high level. The enable pin has internal pull down current source. If enable function is not needed connect CE pin to VIN. Output Discharger The D version includes a transistor between VOUT and GND that is used for faster discharging of the output capacitor. This function is activated when the IC goes into disable mode. Thermal * output capacitor may be omitted Figure 45. Typical Application Schematic Input Decoupling Capacitor (C1) A 100 nF ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the NCP4588. Higher values and lower ESR improves line transient response. Output Decoupling Capacitor (C2) As power across the IC increases, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the ambient temperature affect the rate of temperature rise for the part. That is to say, when the device has good thermal conductivity through the PCB, the junction temperature will be relatively low with high power dissipation applications. PCB layout The output capacitor may be not used even if the load current is varied, but if load variation is very large it is better to use an output capacitor in the range of 0.1 mF to 10 mF. It is recommended to use ceramic capacitor; tantalum capacitor with higher ESR may cause unstable output. Enable Operation Make VIN and GND line sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect capacitors C1 and C2 (if it is used) as close as possible to the IC, and make wiring as short as possible. The enable pin CE may be used for turning the regulator on and off. The regulator is switched on when the CE pin ORDERING INFORMATION Device NCP4588DSQ10T1G NCP4588DSQ15T1G NCP4588DSQ25T1G NCP4588DMX10TCG NCP4588DMX15TCG NCP4588DMX25TCG Nominal Output Voltage 1.0 V 1.5 V 2.5 V 1.0 V 1.5 V 2.5 V Description Auto discharge Auto discharge Auto discharge Auto discharge Auto discharge Auto discharge Marking P010 P015 P025 LA LF LR Package SC−70 (Pb−Free) SC−70 (Pb−Free) SC−70 (Pb−Free) XDFN (Pb−Free) XDFN (Pb−Free) XDFN (Pb−Free) Shipping† 3000 / Tape & Reel 3000 / Tape & Reel 3000 / Tape & Reel 5000 / Tape & Reel 5000 / Tape & Reel 5000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. NOTE: To order other package and voltage variants, please contact your ON Semiconductor sales representative. http://onsemi.com 14 NCP4588 PACKAGE DIMENSIONS SC−88A (SC−70−5/SOT−353) CASE 419A−02 ISSUE K A G NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A−01 OBSOLETE. NEW STANDARD 419A−02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. INCHES MIN MAX 0.071 0.087 0.045 0.053 0.031 0.043 0.004 0.012 0.026 BSC --0.004 0.004 0.010 0.004 0.012 0.008 REF 0.079 0.087 MILLIMETERS MIN MAX 1.80 2.20 1.15 1.35 0.80 1.10 0.10 0.30 0.65 BSC --0.10 0.10 0.25 0.10 0.30 0.20 REF 2.00 2.20 5 4 S 1 2 3 −B− D 5 PL 0.2 (0.008) M B M N J C DIM A B C D G H J K N S H K http://onsemi.com 15 NCP4588 PACKAGE DIMENSIONS XDFN6 1.2x1.2, 0.4P CASE 711AA−01 ISSUE O D A B NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25mm FROM TERMINAL TIPS. 4. COPLANARITY APPLIES TO ALL OF THE TERMINALS. DIM A A1 b C D E e L MILLIMETERS MIN MAX --0.40 0.00 0.05 0.13 0.23 0.20 0.30 1.20 BSC 1.20 BSC 0.40 BSC 0.37 0.48 PIN ONE REFERENCE 2X 2X 0.05 C 0.05 C 0.05 C 0.05 C NOTE 4 6X L 6 4 ÍÍÍ ÍÍÍ ÍÍÍ e 1 E TOP VIEW A A1 SIDE VIEW C SEATING PLANE 6X RECOMMENDED MOUNTING FOOTPRINT* 0.22 0.66 6X PACKAGE OUTLINE 3 1.50 C 0.40 PITCH DIMENSIONS: MILLIMETERS 6X b 0.05 M CAB BOTTOM VIEW NOTE 3 *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 16 NCP4588 PACKAGE DIMENSIONS SOT−23 CASE 1212−01 ISSUE O A2 0.05 S NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DATUM C IS A SEATING PLANE. MILLIMETERS MIN MAX 0.00 0.10 1.00 1.30 0.30 0.50 0.10 0.25 2.80 3.00 2.50 3.10 1.50 1.80 0.95 BSC 1.90 BSC 0.20 --0.45 0.75 A D B A1 L E 5 1 2 4 3 E1 L1 e e1 B 5X C M 0.10 CB S A S C DIM A1 A2 B C D E E1 e e1 L L1 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative http://onsemi.com 17 NCP4588/D
NCP4588DMX10TCG 价格&库存

很抱歉,暂时无法提供与“NCP4588DMX10TCG”相匹配的价格&库存,您可以联系我们找货

免费人工找货