0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCP4589DSQ25T1G

NCP4589DSQ25T1G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT-353(SC-88A)

  • 描述:

    IC REG LINEAR 2.5V 300MA SC88A

  • 数据手册
  • 价格&库存
NCP4589DSQ25T1G 数据手册
NCP4589 300 mA, Tri-Mode, LDO Linear Voltage Regulator The NCP4589 is a CMOS 300 mA LDO which switches to a low power mode under light current loads. The device automatically switches back to a fast response mode as the output load increases above 3 mA (typ.). The device can be placed in permanent fast mode through a mode select pin. The family is available in a variety of packages: SC−70, SOT23 and a small, ultra thin 1.2 x 1.2 x 0.4 mm XDFN. http://onsemi.com MARKING DIAGRAMS Features • Operating Input Voltage Range: 1.4 V to 5.25 V • Output Voltage Range: 0.8 to 4.0 V (available in 0.1 V steps) • Supply Current: Low Power Mode – 1.0 mA at VOUT < 1.85 V • • • • • • • • Fast Mode – 55 mA Standby Mode – 0.1 mA Dropout Voltage: 230 mV Typ. at IOUT = 300 mA, VOUT = 2.8 V ±1% Output Voltage Accuracy (VOUT > 2 V, TJ = 25 °C) High PSRR: 70 dB at 1 kHz (Fast response mode) Line Regulation 0.02%/V Typ. Current Fold Back Protection Stable with Ceramic Capacitors Available in 1.2x1.2 XDFN, SC−70 and SOT23 Package These are Pb−free Devices Typical Applications VIN C1 1m XDFN6 CASE 711AA XXXMM SOT−23−5 CASE 1212 1 = Specific Device Code = Date Code See detailed ordering and shipping information in the package dimensions section on page 27 of this data sheet. VOUT VOUT C2 1m CE AE XX MM ORDERING INFORMATION NCP4589 VIN SC−70 CASE 419A XXXX MM • Battery Powered Equipments • Portable Communication Equipments • Cameras, Image Sensors and Camcorders XXX XMM GND Figure 1. Typical Application Schematic © Semiconductor Components Industries, LLC, 2012 February, 2012 − Rev. 1 1 Publication Order Number: NCP4589/D NCP4589 AE AE Vin Vout Vin Vref Vout Vref Current Limit CE Current Limit CE GND GND NCP4589Dxxxx NCP4589Hxxxx Figure 2. Simplified Schematic Block Diagram PIN FUNCTION DESCRIPTION Pin No. XDFN Pin No. SC−70 Pin No. SOT23 Pin Name 4 4 1 VIN Input pin 2 2 2 GND Ground 3 5 3 CE 6 3 5 VOUT 1 1 4 AE Auto Eco Pin 5 − − NC No connection Description Chip enable pin Output pin ABSOLUTE MAXIMUM RATINGS Rating Symbol Value Unit VIN 6.0 V Output Voltage VOUT −0.3 to VIN + 0.3 V Chip Enable Input VCE −0.3 to 6.0 V Auto Eco Input VAE −0.3 to 6.0 V Output Current IOUT 400 mA PD 400 mW Input Voltage (Note 1) Power Dissipation XDFN Power Dissipation SC70 380 Power Dissipation SOT23 420 Junction Temperature TJ −40 to 150 °C Storage Temperature TSTG −55 to 125 °C TA −40 to 85 °C ESD Capability, Human Body Model (Note 2) ESDHBM 2000 V ESD Capability, Machine Model (Note 2) ESDMM 200 V Operation Temperature Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area. 2. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114) ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115) Latchup Current Maximum Rating tested per JEDEC standard: JESD78. http://onsemi.com 2 NCP4589 THERMAL CHARACTERISTICS Symbol Value Unit Thermal Characteristics, XDFN Thermal Resistance, Junction−to−Air Rating RqJA 250 °C/W Thermal Characteristics, SOT23 Thermal Resistance, Junction−to−Air RqJA 238 °C/W Thermal Characteristics, SC−70 Thermal Resistance, Junction−to−Air RqJA 263 °C/W ELECTRICAL CHARACTERISTICS −40°C ≤ TA ≤ 85°C; VIN = VOUT(NOM) + 1 V; IOUT = 1 mA; CIN = COUT = 1 mF; unless otherwise noted. Typical values are at TA = +25°C. Parameter Operating Input Voltage Output Voltage (Fast Mode) Output Voltage Temp. Coefficient Line Regulation Load Regulation Test Conditions Symbol Min Max Unit (Note NO TAG) VIN 1.4 5.25 V VOUT x0.99 x1.01 V TA = +25°C, IOUT = 5 mA VOUT > 2 V VOUT ≤ 2 V −20 20 mV −40°C ≤ TA ≤ 85°C, IOUT = 5 mA VOUT > 2 V x0.975 x1.015 V VOUT ≤ 2 V −50 30 mV TA = −40 to 85°C VIN = VOUT + 0.5 V to 5V VIN ≥ 1.4 V IOUT = 1 mA, (Low Power Mode) IOUT = 1 mA to 10 mA VOUT > 2.0 V LineReg 0.50 IOUT = 10 mA, (Fast Mode) 0.02 LineReg Quiescent Current % −20 20 mV 35 80 mV 0.62 0.85 V 0.9 V ≤ VOUT < 1.0 V 0.55 0.78 1.0 V ≤ VOUT < 1.5 V 0.48 0.70 1.5 V ≤ VOUT < 2.6 V 0.34 0.50 2.6 V ≤ VOUT < 4.0 V 0.23 0.35 0.8 V ≤ VOUT < 0.9 V Supply Current VDO IOUT VOUT = 0 V IOUT = 0 mA, Low Power Mode (Note 3) VOUT ≤ 1.85 V 300 mA ISC 50 IQ 1.0 4.0 1.5 4.0 VOUT > 1.85 V IOUT = 10 mA, Fast Mode IGND 55 VCE = 0 V, TA = 25°C ISTB 0.1 Fast Mode Switch−Over Current IOUT = light to heavy load IOUTH Low Power Switch−Over Current IOUT = heavy to light load IOUTL 1.0 CE Pin Threshold Voltage CE Input Voltage “H” VCEH 1.0 CE Input Voltage “L” VCEL Standby Current CE Pull Down Current AE Pin Threshold Voltage 0.20 1.0 Output Current Short Current Limit %/V −1.0 IOUT = 10 mA to 300 mA IOUT = 300 mA ppm/°C ±50 VOUT ≤ 2.0 V Dropout Voltage Typ VAEH AE Input Voltage “L” VAEL 3. The value of supply current is excluding the Pull−down constant current of CE and AE Pin http://onsemi.com 3 mA mA 1 mA 8.0 mA 2.0 mA V 0.4 ICEPD AE Input Voltage “H” mA 0.1 mA V 1.0 0.4 NCP4589 ELECTRICAL CHARACTERISTICS −40°C ≤ TA ≤ 85°C; VIN = VOUT(NOM) + 1 V; IOUT = 1 mA; CIN = COUT = 1 mF; unless otherwise noted. Typical values are at TA = +25°C. Parameter Test Conditions Symbol AE Pull Down Current Power Supply Rejection Ratio Output Noise Voltage Low Output N−channel Tr. On Resistance Min Typ Max Unit IAEPD 0.1 mA VIN = VOUT + 1 V or 2.2 V whichever is higher, DVIN = 0.2 Vpk−pk, IOUT = 30 mA, f = 1 kHz, Fast Mode PSRR 70 dB VOUT = 1.0 V, IOUT = 30 mA, f = 10 Hz to 100 kHz VN 90 mVrms VIN = 4 V, VCE = 0 V RLOW 50 W 3. The value of supply current is excluding the Pull−down constant current of CE and AE Pin http://onsemi.com 4 NCP4589 TYPICAL CHARACTERISTICS 1.4 1.2 1.0 5.25 V 3.8 V 1.4 V 0.6 VIN = 1.6 V 1.0 VOUT (V) 0.8 VOUT (V) 1.2 VIN = 1.8 V 2.8 V 0.4 0.8 3.8 V 0.6 0.2 0.0 0 100 200 300 400 500 IOUT, OUTPUT CURRENT (mA) 600 0.0 700 0 100 Figure 3. Output Voltage vs. Output Current 1.0 V Version (TJ = 255C) 600 700 3.5 1.8 3.0 1.6 VOUT (V) 1.2 5.25 V 1.0 4.3 V 2.5 3.8 V 1.4 VOUT (V) 200 300 400 500 IOUT, OUTPUT CURRENT (mA) Figure 4. Output Voltage vs. Output Current 1.2 V Version (TJ = 255C) 2.0 0.8 0.6 2.0 1.5 5.25 V 1.0 0.4 VIN = 2.8 V 0 100 200 300 400 500 VIN = 3.8 V 0.5 0.2 0.0 600 0 100 IOUT, OUTPUT CURRENT (mA) 0.6 0.5 0.5 TJ = 85_C VDO (V) −40_C 0.2 500 600 25_C 0.3 −40_C 0.2 0.1 0.0 400 TJ = 85_C 0.4 25_C 0.3 300 Figure 6. Output Voltage vs. Output Current 3.3 V Version (TJ = 255C) 0.6 0.4 200 IOUT, OUTPUT CURRENT (mA) Figure 5. Output Voltage vs. Output Current 1.8 V Version (TJ = 255C) VDO (V) 2.8 V 5.25 V 0.4 0.2 0.0 1.8 V 0.1 0 50 100 150 200 250 300 0.0 0 50 100 150 200 250 IOUT, OUTPUT CURRENT (mA) IOUT, OUTPUT CURRENT (mA) Figure 7. Dropout Voltage vs. Output Current 1.0 V Version Figure 8. Dropout Voltage vs. Output Current 1.2 V Version http://onsemi.com 5 300 NCP4589 TYPICAL CHARACTERISTICS 0.40 0.30 0.35 0.25 TJ = 85_C 0.25 0.20 VDO (V) VDO (V) 0.30 25_C 0.20 −40_C 0.15 TJ = 85_C 25_C 0.15 −40_C 0.10 0.10 0.05 0.05 0.00 0 50 100 150 200 250 0.00 0 300 250 300 1.4 1.2 30 mA 1.0 VOUT (V) 0.8 VOUT (V) 200 Figure 10. Dropout Voltage vs. Output Current 3.3 V Version 1 mA 0.6 0.4 30 mA 0.8 0.6 1 mA 0.4 IOUT = 50 mA 0.2 IOUT = 50 mA 0.2 0 1 2 3 4 5 0.0 6 0 1 VIN, INPUT VOLTAGE (V) 2 3 4 5 6 VIN, INPUT VOLTAGE (V) Figure 11. Output Voltage vs. Input Voltage, 1.0 V Version Figure 12. Output Voltage vs. Input Voltage, 1.2 V Version 2.0 3.5 1.8 3.0 1.6 1.4 2.5 30 mA 1.2 VOUT (V) VOUT (V) 150 Figure 9. Dropout Voltage vs. Output Current 1.8 V Version 1.0 1 mA 1.0 0.8 0.6 2.0 30 mA 1.5 1.0 0.4 0 1 2 1 mA 0.5 IOUT = 50 mA 0.2 0.0 100 IOUT, OUTPUT CURRENT (mA) 1.2 0.0 50 IOUT, OUTPUT CURRENT (mA) 3 4 5 0.0 6 0 VIN, INPUT VOLTAGE (V) IOUT = 50 mA 1 2 3 4 5 VIN, INPUT VOLTAGE (V) Figure 13. Output Voltage vs. Input Voltage, 1.8 V Version Figure 14. Output Voltage vs. Input Voltage, 3.3 V Version http://onsemi.com 6 6 NCP4589 TYPICAL CHARACTERISTICS 1.24 1.04 VIN = 2.2 V 1.02 1.22 1.00 1.20 VOUT (V) VOUT (V) VIN = 2.0 V 0.98 1.18 1.16 0.96 0.94 −40 −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) 1.14 −40 80 −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) Figure 15. Output Voltage vs. Temperature, 1.0 V Version 1.84 80 Figure 16. Output Voltage vs. Temperature, 1.2 V Version 3.34 VIN = 2.8 V VIN = 4.3 V 3.33 1.82 3.32 1.80 VOUT (V) VOUT (V) 3.31 1.78 3.30 3.29 3.28 3.27 1.76 3.26 3.25 1.74 −40 −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) 3.24 −40 80 Figure 17. Output Voltage vs. Temperature, 1.8 V Version 70 70 60 IOUT = 10 mA 60 IOUT = 10 mA 50 50 IGND (mA) IGND (mA) 80 Figure 18. Supply Current vs. Input Voltage, 3.3 V Version 80 40 30 40 30 20 20 10 10 0 −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) IOUT = 0 mA 0 1 2 3 VIN, INPUT VOLTAGE (V) 4 0 5 IOUT = 0 mA 0 1 2 3 4 VIN, INPUT VOLTAGE (V) 5 Figure 20. Supply Current vs. Input Voltage, 1.2 V Version Figure 19. Supply Current vs. Input Voltage, 1.0 V Version http://onsemi.com 7 NCP4589 TYPICAL CHARACTERISTICS 70 70 IOUT = 10 mA 60 50 50 40 40 IGND (mA) IGND (mA) 60 30 30 20 20 10 10 0 IOUT = 0 mA 0 1 2 3 4 VIN, INPUT VOLTAGE (V) 0 5 IOUT = 10 mA IOUT = 0 mA 0 1 Figure 21. Supply Current vs. Input Voltage, 1.8 V Version 120 100 120 VIN = 2.0 V AE = 0 V 80 IGND (mA) IGND (mA) VIN = 2.2 V AE = 0 V 100 60 40 Heavy to Light Load 20 0.1 Light to Heavy Load 1 10 100 IOUT, OUTPUT CURRENT (mA) 60 40 Heavy to Light Load 20 0 1000 0.1 Figure 23. Supply Current vs. Output Current, 1.0 V Version 120 120 VIN = 2.8 V AE = 0 V 80 60 60 Heavy to Light Load 20 0 0.1 1 Light to Heavy Load 10 100 IOUT, OUTPUT CURRENT (mA) 1 10 100 IOUT, OUTPUT CURRENT (mA) 1000 VIN = 4.3 V AE = 0 V 100 80 40 Light to Heavy Load Figure 24. Supply Current vs. Output Current, 1.2 V Version IGND (mA) IGND (mA) 100 5 Figure 22. Supply Current vs. Input Voltage, 3.3 V Version 80 0 2 3 4 VIN, INPUT VOLTAGE (V) 40 Heavy to Light Load 20 1000 0 0.1 Light to Heavy Load 1 10 100 IOUT, OUTPUT CURRENT (mA) 1000 Figure 26. Supply Current vs. Output Current, 3.3 V Version Figure 25. Supply Current vs. Output Current, 1.8 V Version http://onsemi.com 8 NCP4589 TYPICAL CHARACTERISTICS 3.0 2.5 3.0 VIN = 2.0 V AE = 0 V 2.5 2.0 IIN (mA) IIN (mA) 2.0 1.5 1.0 0.5 0.5 3.0 2.5 −20 0 20 40 60 0.0 −40 80 3.0 VIN = 2.8 V AE = 0 V 2.5 IIN (mA) IIN (mA) 60 80 VIN = 4.3 V AE = 0 V 2.0 1.5 0.5 0.5 −20 0 20 40 60 0.0 −40 80 −20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 29. Supply Current vs. Temperature, 1.8 V Version Figure 30. Supply Current vs. Temperature, 3.3 V Version 55 VIN = 2.0 V AE = 2.0 V 50 VIN = 2.2 V AE = 2.2 V 45 IIN (mA) 45 40 40 35 35 30 30 25 −40 40 Figure 28. Supply Current vs. Temperature, 1.2 V Version 1.0 50 20 Figure 27. Supply Current vs. Temperature, 1.0 V Version 1.0 55 0 TJ, JUNCTION TEMPERATURE (°C) 1.5 0.0 −40 −20 TJ, JUNCTION TEMPERATURE (°C) 2.0 IIN (mA) 1.5 1.0 0.0 −40 VIN = 2.2 V AE = 0 V −20 0 20 40 60 25 −40 80 −20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 31. Supply Current vs. Temperature, 1.0 V Version Figure 32. Supply Current vs. Temperature, 1.2 V Version http://onsemi.com 9 NCP4589 TYPICAL CHARACTERISTICS 55 50 55 VIN = 2.8 V AE = 2.8 V 50 45 IIN (mA) IIN (mA) 45 40 35 30 30 −20 0 20 40 60 25 −40 80 90 IOUT = 1 mA AE = High 70 PSRR (dB) 30 mA 50 mA 50 20 10 10 10 FREQUENCY (kHz) 100 100 mA 0 0.1 1000 Figure 35. PSRR, 1.0 V Version, VIN = 2.2 V 1 10 FREQUENCY (kHz) 100 1000 Figure 36. PSRR, 1.2 V Version, VIN = 2.2 V 100 100 90 80 30 mA 90 IOUT = 1 mA AE = High 80 100 mA IOUT = 1 mA AE = High 70 PSRR (dB) 70 PSRR (dB) 30 mA 50 mA 40 30 100 mA 1 IOUT = 1 mA AE = Low 60 20 IOUT = 1 mA AE = Low 40 50 mA 30 60 50 mA 50 IOUT = 1 mA AE = Low 40 30 100 mA 20 30 mA 20 10 0 0.1 80 IOUT = 1 mA AE = High 80 IOUT = 1 mA AE = Low 30 50 60 100 40 60 40 Figure 34. Supply Current vs. Temperature, 3.3 V Version 70 0 0.1 20 Figure 33. Supply Current vs. Temperature, 1.8 V Version 80 50 0 TJ, JUNCTION TEMPERATURE (°C) 90 60 −20 TJ, JUNCTION TEMPERATURE (°C) 100 PSRR (dB) 40 35 25 −40 VIN = 4.3 V AE = 4.3 V 10 1 10 FREQUENCY (kHz) 100 1000 0 0.1 Figure 37. PSRR, 1.8 V Version, VIN = 3.8 V 1 10 FREQUENCY (kHz) 100 1000 Figure 38. PSRR, 3.3 V Version, VIN = 4.3 V http://onsemi.com 10 NCP4589 TYPICAL CHARACTERISTICS 60 5.0 4.5 50 3.5 VN (mVrms/√Hz) VN (mVrms/√Hz) 4.0 3.0 2.5 2.0 1.5 1.0 40 30 20 10 0.5 0 0.01 0.1 1 10 FREQUENCY (kHz) 100 0 0.01 1000 Figure 39. Output Voltage Noise, 1.0 V Version, VIN = 2.0 V, IOUT = 30 mA 1 10 FREQUENCY (kHz) 100 1000 Figure 40. Output Voltage Noise, 1.2 V Version, VIN = 2.2 V, IOUT = 30 mA 60 5.0 4.5 50 4.0 VN (mVrms/√Hz) 3.5 3.0 2.5 2.0 1.5 1.0 40 30 20 10 0.5 0 0.01 0.1 1 10 FREQUENCY (kHz) 100 0 0.01 1000 Figure 41. Output Voltage Noise, 1.8 V Version, VIN = 2.8 V, IOUT = 30 mA 0.1 1 10 FREQUENCY (kHz) 3.0 2.5 1.08 2.0 VIN (V) 1.06 1.04 1.02 1.00 0.98 0.96 0.94 0 0.2 0.4 0.6 100 1000 Figure 42. Output Voltage Noise, 3.3 V Version, VIN = 4.3 V, IOUT = 30 mA 3.5 VOUT (V) VN (mVrms/√Hz) 0.1 0.8 1.0 1.2 t, TIME (ms) 1.4 1.6 1.8 Figure 43. Line Transients, 1.0 V Version, tR = tF = 5 ms, IOUT = 1 mA, AE = 0 V http://onsemi.com 11 2.0 NCP4589 TYPICAL CHARACTERISTICS 3.7 3.2 2.7 VIN (V) VOUT (V) 2.2 1.24 1.22 1.20 1.18 1.16 1.14 0 0.2 0.4 0.6 0.8 1.0 1.2 t, TIME (ms) 1.4 1.6 1.8 2.0 Figure 44. Line Transients, 1.2 V Version, tR = tF = 5 ms, IOUT = 1 mA, AE = 0 V 4.3 3.8 3.3 VIN (V) VOUT (V) 2.8 1.84 1.82 1.80 1.78 1.76 1.74 0 0.2 0.4 0.6 0.8 1.0 1.2 t, TIME (ms) 1.4 1.6 1.8 2.0 Figure 45. Line Transients, 1.8 V Version, tR = tF = 5 ms, IOUT = 1 mA, AE = 0 V 5.3 4.8 4.3 VIN (V) VOUT (V) 3.8 3.36 3.34 3.32 3.30 3.28 3.26 3.24 0 0.2 0.4 0.6 0.8 1.0 1.2 t, TIME (ms) 1.4 1.6 1.8 Figure 46. Line Transients, 3.3 V Version, tR = tF = 5 ms, IOUT = 1 mA, AE = 0 V http://onsemi.com 12 2.0 NCP4589 TYPICAL CHARACTERISTICS 3.5 3.0 2.5 VIN (V) VOUT (V) 2.0 1.004 1.002 1.000 0.998 0.996 0.994 0 0.2 0.4 0.6 0.8 1.0 1.2 t, TIME (ms) 1.4 1.6 1.8 2.0 Figure 47. Line Transients, 1.0 V Version, tR = tF = 5 ms, IOUT = 30 mA, AE = VIN V 3.7 3.2 2.7 VIN (V) VOUT (V) 2.2 1.204 1.202 1.200 1.198 1.196 1.194 0 0.2 0.4 0.6 0.8 1.0 1.2 t, TIME (ms) 1.4 1.6 1.8 2.0 Figure 48. Line Transients, 1.2 V Version, tR = tF = 5 ms, IOUT = 30 mA, AE = VIN V 4.3 3.8 3.3 VIN (V) VOUT (V) 2.8 1.804 1.802 1.800 1.798 1.796 1.794 0 0.2 0.4 0.6 0.8 1.0 1.2 t, TIME (ms) 1.4 1.6 1.8 Figure 49. Line Transients, 1.8 V Version, tR = tF = 5 ms, IOUT = 30 mA, AE = VIN V http://onsemi.com 13 2.0 NCP4589 TYPICAL CHARACTERISTICS 5.3 4.8 4.3 VIN (V) VOUT (V) 3.8 3.304 3.302 3.300 3.298 3.296 3.294 0 0.2 0.4 0.6 0.8 1.0 1.2 t, TIME (ms) 1.4 1.6 1.8 2.0 Figure 50. Line Transients, 3.3 V Version, tR = tF = 5 ms, IOUT = 30 mA, AE = VIN V 75 50 25 IOUT (mA) VOUT (V) 0 1.10 1.05 1.00 0.95 0.90 0.85 0.80 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 51. Load Transients, 1.0 V Version, IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 2.0 V, AE = 0 V 75 50 25 IOUT (mA) VOUT (V) 0 1.10 1.05 1.00 0.95 0.90 0.85 0.80 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 52. Load Transients, 1.0 V Version, IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 2.0 V, AE = VIN V http://onsemi.com 14 NCP4589 TYPICAL CHARACTERISTICS 75 50 25 1.30 IOUT (mA) VOUT (V) 0 1.25 1.20 1.15 1.10 1.05 1.00 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 53. Load Transients, 1.2 V Version, IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 2.2 V, AE = 0 V 75 50 25 IOUT (mA) VOUT (V) 0 1.30 1.25 1.20 1.15 1.10 1.05 1.00 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 54. Load Transients, 1.2 V Version, IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 2.2 V, AE = VIN V 75 50 25 IOUT (mA) VOUT (V) 0 1.90 1.85 1.80 1.75 1.70 1.65 1.60 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 55. Load Transients, 1.8 V Version, IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 2.8 V, AE = 0 V http://onsemi.com 15 NCP4589 TYPICAL CHARACTERISTICS 75 50 25 1.90 IOUT (mA) VOUT (V) 0 1.85 1.80 1.75 1.70 1.65 1.60 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 56. Load Transients, 1.8 V Version, IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 2.8 V, AE = VIN V 75 50 25 IOUT (mA) VOUT (V) 0 3.40 3.35 3.30 3.25 3.20 3.15 3.10 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 57. Load Transients, 3.3 V Version, IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 4.3 V, AE = 0 V 75 50 25 3.40 IOUT (mA) VOUT (V) 0 3.35 3.30 3.25 3.20 3.15 3.10 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 58. Load Transients, 3.3 V Version, IOUT = 1 − 50 mA, tR = tF = 0.5 ms, VIN = 4.3 V, AE = VIN V http://onsemi.com 16 NCP4589 TYPICAL CHARACTERISTICS 225 150 75 1.10 IOUT (mA) VOUT (V) 0 1.05 1.00 0.95 0.90 0.85 0.80 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 59. Load Transients, 1.0 V Version, IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 2.0 V, AE = 0 V 225 150 75 IOUT (mA) VOUT (V) 0 1.10 1.05 1.00 0.95 0.90 0.85 0.80 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 60. Load Transients, 1.0 V Version, IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 2.0 V, AE = VIN V 225 150 75 1.30 IOUT (mA) VOUT (V) 0 1.25 1.20 1.15 1.10 1.05 1.00 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 61. Load Transients, 1.2 V Version, IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 2.2 V, AE = 0 V http://onsemi.com 17 NCP4589 TYPICAL CHARACTERISTICS 225 150 75 1.30 IOUT (mA) VOUT (V) 0 1.25 1.20 1.15 1.10 1.05 1.00 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 62. Load Transients, 1.2 V Version, IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 2.2 V, AE = VIN V 225 150 75 IOUT (mA) VOUT (V) 0 1.90 1.85 1.80 1.75 1.70 1.65 1.60 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 63. Load Transients, 1.8 V Version, IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 2.8 V, AE = 0 V 225 150 75 1.90 IOUT (mA) VOUT (V) 0 1.85 1.80 1.75 1.70 1.65 1.60 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 64. Load Transients, 1.8 V Version, IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 2.8 V, AE = VIN V http://onsemi.com 18 NCP4589 TYPICAL CHARACTERISTICS 225 150 75 3.40 IOUT (mA) VOUT (V) 0 3.35 3.30 3.25 3.20 3.15 3.10 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 65. Load Transients, 3.3 V Version, IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 4.3 V, AE = 0 V 225 150 75 3.40 IOUT (mA) VOUT (V) 0 3.35 3.30 3.25 3.20 3.15 3.10 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 66. Load Transients, 3.3 V Version, IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 4.3 V, AE = VIN V 150 100 50 1.02 IOUT (mA) VOUT (V) 0 1.01 1.00 0.99 0.98 0.97 0.96 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 67. Load Transients, 1.0 V Version, IOUT = 50 − 100 mA, tR = tF = 0.5 ms, VIN = 2.0 V, AE = 0 V http://onsemi.com 19 NCP4589 TYPICAL CHARACTERISTICS 150 100 50 1.22 IOUT (mA) VOUT (V) 0 1.21 1.20 1.19 1.18 1.17 1.16 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 68. Load Transients, 1.2 V Version, IOUT = 50 − 100 mA, tR = tF = 0.5 ms, VIN = 2.2 V, AE = VIN V 150 100 50 IOUT (mA) VOUT (V) 0 1.82 1.81 1.80 1.79 1.78 1.77 1.76 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 69. Load Transients, 1.8 V Version, IOUT = 50 − 100 mA, tR = tF = 0.5 ms, VIN = 2.8 V, AE = VIN V 150 100 50 3.32 IOUT (mA) VOUT (V) 0 3.31 3.30 3.29 3.28 3.27 3.26 0 20 40 60 80 100 120 140 160 180 200 t, TIME (ms) Figure 70. Load Transients, 3.3 V Version, IOUT = 50 − 100 mA, tR = tF = 0.5 ms, VIN = 4.3 V, AE = VIN V http://onsemi.com 20 NCP4589 TYPICAL CHARACTERISTICS 3 2 1 VAE (V) VOUT (V) 0 1.02 1.01 1.00 0.99 0.98 0.97 0.96 0 1 2 3 4 5 6 t, TIME (ms) 7 8 9 10 Figure 71. AE Switch Transients, 1.0 V Version, VIN = 2.0 V, IOUT = 1 mA 3 2 1 1.02 VAE (V) VOUT (V) 0 1.01 1.00 0.99 0.98 0.97 0.96 0 0.2 0.4 0.6 0.8 1.0 1.2 t, TIME (ms) 1.4 1.6 1.8 2.0 Figure 72. AE Switch Transients, 1.0 V Version, VIN = 2.0 V, IOUT = 1 mA 3.3 2.2 1.1 VAE (V) VOUT (V) 0.0 1.22 1.21 1.20 1.19 1.18 1.17 1.16 0 1 2 3 4 5 6 t, TIME (ms) 7 8 9 10 Figure 73. AE Switch Transients, 1.2 V Version, VIN = 2.2 V, IOUT = 1 mA http://onsemi.com 21 NCP4589 TYPICAL CHARACTERISTICS 3.3 2.2 1.1 1.22 VAE (V) VOUT (V) 0.0 1.21 1.20 1.19 1.18 1.17 1.16 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 t, TIME (ms) Figure 74. AE Switch Transients, 1.2 V Version, VIN = 2.2 V, IOUT = 1 mA 4.2 2.8 1.4 VAE (V) VOUT (V) 0.0 1.81 1.80 1.79 1.78 1.77 1.76 0 1 2 3 4 5 6 7 8 9 10 t, TIME (ms) Figure 75. AE Switch Transients, 1.8 V Version, VIN = 2.8 V, IOUT = 1 mA 4.2 2.8 1.4 VAE (V) VOUT (V) 0.0 1.81 1.80 1.79 1.78 1.77 1.76 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 t, TIME (ms) Figure 76. AE Switch Transients, 1.8 V Version, VIN = 2.8 V, IOUT = 1 mA http://onsemi.com 22 NCP4589 TYPICAL CHARACTERISTICS 6.45 4.30 2.15 VAE (V) VOUT (V) 0.00 3.32 3.30 3.28 3.26 3.24 3.22 0 1 2 3 4 5 6 t, TIME (ms) 7 8 9 10 Figure 77. AE Switch Transients, 3.3 V Version, VIN = 4.3 V, IOUT = 1 mA 6.45 4.30 2.15 VAE (V) VOUT (V) 0.00 3.32 3.30 3.28 3.26 3.24 3.22 0 0.2 0.4 0.6 0.8 1.0 1.2 t, TIME (ms) 1.4 1.6 1.8 2.0 Figure 78. AE Switch Transients, 3.3 V Version, VIN = 4.3 V, IOUT = 1 mA Chip Enable 3 2 1.0 IOUT = 50 mA IOUT = 1 mA 0 VCE (V) VOUT (V) 1 IOUT = 300 mA 0.8 0.6 0.4 0.2 0.0 *0.2 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 79. Start−up, 1.0 V Version, VIN = 2.0 V http://onsemi.com 23 NCP4589 TYPICAL CHARACTERISTICS Chip Enable 3.3 2.2 1.1 VCE (V) VOUT (V) 0.0 2.0 1.5 0.5 IOUT = 300 mA 0.0 *0.5 IOUT = 50 mA IOUT = 1 mA 1.0 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 80. Start−up, 1.2 V Version, VIN = 2.2 V Chip Enable 4.2 2.8 1.4 2.0 IOUT = 50 mA IOUT = 1 mA 1.5 VCE (V) VOUT (V) 0.0 1.0 0.5 IOUT = 300 mA 0.0 *0.5 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 81. Start−up, 1.8 V Version, VIN = 2.8 V Chip Enable 6.45 4.30 2.15 4.0 IOUT = 50 mA IOUT = 1 mA 3.0 2.0 1.0 IOUT = 300 mA 0.0 *1.0 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 82. Start−up, 3.3 V Version, VIN = 4.3 V http://onsemi.com 24 VCE (V) VOUT (V) 0.00 NCP4589 TYPICAL CHARACTERISTICS 3 2 1 1.0 0 IOUT = 1 mA 0.8 VCE (V) VOUT (V) Chip Enable IOUT = 50 mA 0.6 IOUT = 300 mA 0.4 0.2 0.0 *0.2 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 83. Shutdown, 1.0 V Version D, VIN = 2.0 V 3.3 2.2 1.1 0.0 VCE (V) VOUT (V) Chip Enable 2.0 IOUT = 50 mA 1.5 IOUT = 300 mA 1.0 0.5 IOUT = 1 mA 0.0 *0.5 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 84. Shutdown, 1.2 V Version D, VIN = 2.2 V 4.2 2.8 1.4 0.0 2.0 IOUT = 50 mA 1.5 IOUT = 300 mA 1.0 IOUT = 1 mA 0.5 0.0 *0.5 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 85. Shutdown, 1.8 V Version D, VIN = 2.8 V http://onsemi.com 25 VCE (V) VOUT (V) Chip Enable NCP4589 TYPICAL CHARACTERISTICS 6.45 4.30 4.0 2.15 0.00 IOUT = 50 mA 3.0 VCE (V) VOUT (V) Chip Enable IOUT = 300 mA 2.0 1.0 IOUT = 1 mA 0.0 *1.0 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 86. Shutdown, 3.3 V Version D, VIN = 4.3 V APPLICATION INFORMATION down current source. If enable function is not needed connect CE pin to VIN. A typical application circuit for NCP4589 series is shown in Figure 87. NCP4589 VIN VIN C1 1m Current Limit This regulator includes fold-back type current limit circuit. This type of protection doesn’t limit current up to current capability in normal operation, but when over current occurs, the output voltage and current decrease until the over current condition ends. Typical characteristics of this protection type can be observed in the Output Voltage versus Output Current graphs shown in the typical characteristics chapter of this datasheet. C2 1m CE AE VOUT VOUT GND Figure 87. Typical Application Schematic Output Discharger The D version includes a transistor between VOUT and GND that is used for faster discharging of the output capacitor. This function is activated when the IC goes into disable mode. Input Decoupling Capacitor (C1) A 1 mF ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the NCP4589. Higher values and lower ESR improves line transient response. Auto ECO and Fast Mode The NCP4589 has two operation modes that have impact on supply current and transient response at low output current. These two modes can be selected by AE pin. If AE pin is at low level Auto ECO mode is available. Please, see supply current vs. output current charts. Output Decoupling Capacitor (C2) A 1 mF ceramic output decoupling capacitor is sufficient to achieve stable operation of the IC. If tantalum capacitor is used, and its ESR is high, the loop oscillation may result. If output capacitor is composed from few ceramic capacitors in parallel, the operation can be unstable. The capacitor should be connected as close as possible to the output and ground pin. Larger values and lower ESR improves dynamic parameters. Thermal As power across the IC increases, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the ambient temperature affect the rate of temperature rise for the part. That is to say, when the device has good thermal Enable Operation The enable pin CE may be used for turning the regulator on and off. The regulator is switched on when CE pin voltage is above logic high level. The enable pin has internal pull http://onsemi.com 26 NCP4589 conductivity through the PCB, the junction temperature will be relatively low with high power dissipation applications. capacitors C1 and C2 as close as possible to the IC, and make wiring as short as possible. PCB layout Make VIN and GND line sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect ORDERING INFORMATION Nominal Output Voltage Description Marking Package Shipping† NCP4589DSQ12T1G 1.2 V Auto discharge D012 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4589DSQ18T1G 1.8 V Auto discharge D018 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4589DSQ25T1G 2.5 V Auto discharge D025 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4589DSQ30T1G 3.0 V Auto discharge D030 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4589DSQ33T1G 3.3 V Auto discharge D033 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4589DSN12T1G 1.2 V Auto discharge P1E SOT−23−5 (Pb−Free) 3000 / Tape & Reel NCP4589DSN18T1G 1.8 V Auto discharge P1L SOT−23−5 (Pb−Free) 3000 / Tape & Reel NCP4589DSN25T1G 2.5 V Auto discharge P1T SOT−23−5 (Pb−Free) 3000 / Tape & Reel NCP4589DSN30T1G 3.0 V Auto discharge P1Y SOT−23−5 (Pb−Free) 3000 / Tape & Reel NCP4589DSN33T1G 3.3 V Auto discharge Q1B SOT−23−5 (Pb−Free) 3000 / Tape & Reel NCP4589DMX12TCG 1.2 V Auto discharge 7E XDFN (Pb−Free) 5000 / Tape & Reel NCP4589DMX18TCG 1.8 V Auto discharge 7L XDFN (Pb−Free) 5000 / Tape & Reel NCP4589DMX28TCG 2.8 V Auto discharge 7W XDFN (Pb−Free) 5000 / Tape & Reel NCP4589DMX30TCG 3.0 V Auto discharge 7Y XDFN (Pb−Free) 5000 / Tape & Reel NCP4589DMX33TCG 3.3 V Auto discharge 8B XDFN (Pb−Free) 5000 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. NOTE: To order other package and voltage variants, please contact your ON Semiconductor sales representative. http://onsemi.com 27 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOT−23 5−LEAD CASE 1212−01 ISSUE A DATE 28 JAN 2011 SCALE 2:1 A 5 E 1 A2 0.05 S B D A1 4 2 L 3 L1 5X e E1 b 0.10 C M C B A S S C RECOMMENDED SOLDERING FOOTPRINT* 3.30 XXX = Specific Device Code M = Date Code G = Pb−Free Package (Note: Microdot may be in either location) 0.95 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DESCRIPTION: 98ASH70518A SOT−23 5−LEAD MILLIMETERS MIN MAX --1.45 0.00 0.10 1.00 1.30 0.30 0.50 0.10 0.25 2.70 3.10 2.50 3.10 1.50 1.80 0.95 BSC 0.20 --0.45 0.75 XXX MG G 0.85 0.56 DIM A A1 A2 b c D E E1 e L L1 GENERIC MARKING DIAGRAM* 5X 5X DOCUMENT NUMBER: NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSIONS: MILLIMETERS. 3. DATUM C IS THE SEATING PLANE. A *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SC−88A (SC−70−5/SOT−353) CASE 419A−02 ISSUE L SCALE 2:1 A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A−01 OBSOLETE. NEW STANDARD 419A−02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. G 5 4 −B− S 1 2 DATE 17 JAN 2013 DIM A B C D G H J K N S 3 D 5 PL 0.2 (0.008) B M M N INCHES MIN MAX 0.071 0.087 0.045 0.053 0.031 0.043 0.004 0.012 0.026 BSC --0.004 0.004 0.010 0.004 0.012 0.008 REF 0.079 0.087 MILLIMETERS MIN MAX 1.80 2.20 1.15 1.35 0.80 1.10 0.10 0.30 0.65 BSC --0.10 0.10 0.25 0.10 0.30 0.20 REF 2.00 2.20 J GENERIC MARKING DIAGRAM* C K H XXXMG G SOLDER FOOTPRINT 0.50 0.0197 XXX = Specific Device Code M = Date Code G = Pb−Free Package 0.65 0.025 0.65 0.025 0.40 0.0157 1.9 0.0748 SCALE 20:1 (Note: Microdot may be in either location) *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. mm Ǔ ǒinches STYLE 1: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR STYLE 2: PIN 1. ANODE 2. EMITTER 3. BASE 4. COLLECTOR 5. CATHODE STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1 STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1 5. GATE 2 STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 5. COLLECTOR 2/BASE 1 STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE DOCUMENT NUMBER: DESCRIPTION: 98ASB42984B STYLE 5: PIN 1. CATHODE 2. COMMON ANODE 3. CATHODE 2 4. CATHODE 3 5. CATHODE 4 Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. SC−88A (SC−70−5/SOT−353) PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2018 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS XDFN6 1.2x1.2, 0.4P CASE 711AA−01 ISSUE O DATE 12 OCT 2010 SCALE 4:1 PIN ONE REFERENCE NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25mm FROM TERMINAL TIPS. 4. COPLANARITY APPLIES TO ALL OF THE TERMINALS. A B D ÍÍÍ ÍÍÍ ÍÍÍ E DIM A A1 b C D E e L 0.05 C 2X 2X 0.05 C TOP VIEW A 0.05 C 0.05 C GENERIC MARKING DIAGRAM* A1 SIDE VIEW NOTE 4 C SEATING PLANE XX MM e XX = Specific Device Code MM = Date Code 3 1 C 6X MILLIMETERS MIN MAX --0.40 0.00 0.05 0.13 0.23 0.20 0.30 1.20 BSC 1.20 BSC 0.40 BSC 0.37 0.48 *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. L 6 4 6X b 0.05 BOTTOM VIEW M RECOMMENDED MOUNTING FOOTPRINT* C A B NOTE 3 6X 6X 0.22 0.66 PACKAGE OUTLINE 1.50 0.40 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: DESCRIPTION: 98AON53185E XDFN6, 1.2 X 1.2, 0.4 P Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
NCP4589DSQ25T1G 价格&库存

很抱歉,暂时无法提供与“NCP4589DSQ25T1G”相匹配的价格&库存,您可以联系我们找货

免费人工找货