0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCP4626DSN033T1G

NCP4626DSN033T1G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT23-5

  • 描述:

    IC REG LINEAR 3.3V 300MA SOT23-5

  • 数据手册
  • 价格&库存
NCP4626DSN033T1G 数据手册
NCP4626 300 mA, Low Dropout Voltage Regulator with Reverse Current Protection The NCP4626 is a CMOS 300 mA low dropout linear regulator with a wide input voltage range of 3.5 V to 16 V, low supply current and high output voltage accuracy. Through an ECO mode selector pin the device can be operated in low power mode to reduce quiescent current or fast mode for better transient response and lower dropout. The NCP4626 is suitable for applications where the VOUT pin voltage may be higher than the VIN pin voltage as it is protected against reverse current. The device has a maximum input voltage tolerance of 18 V, comes with or without an auto−discharge feature on the output, and is available in a choice of XDFN, SOT89 and SOT23 packages. http://onsemi.com MARKING DIAGRAMS 6 1 XDFN6 CASE 711AC 1 XXX XMM Features • • • • • • • • • • • Operating Input Voltage Range: 3.5 V to 16.0 V Output Voltage Range: 2.0 to 15.0 V (available in 0.1 V steps) Low Quiescent current (6 uA typ.) in Low Power Mode Dropout Voltage: 550 mV typ. (IOUT = 300 mA, VOUT = 5 V, Fast Mode) 700 mV typ. (IOUT = 300 mA, VOUT = 5 V, Low Power Mode) Output Voltage Accuracy: ±1.5% (Fast Mode) ±2.5% (Low Power Mode) High PSRR: 60 dB at 1 kHz Current Fold Back Protection Thermal Shutdown Protection Stable with a CIN = 2.2 mF and COUT = 4.7 mF Ceramic Capacitors Available in 1.6x1.6 XDFN6, SOT89−5 and SOT23−5 Package These are Pb−Free Devices Typical Applications • Digital Home Appliances • Audio Visual Equipment • Battery backup circuits VIN C1 2 m2 SOT−89 5 CASE 528AB XXXMM SOT−23−5 CASE 1212 1 XXX, XXXX = Specific Device Code M, MM = Date Code A = Assembly Location Y = Year W = Work Week G = Pb−Free Package ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 25 of this data sheet. VOUT VOUT C2 4 m7 CE AE XXX XMM (*Note: Microdot may be in either location) NCP4626x VIN 1 GND Figure 1. Typical Application Schematic © Semiconductor Components Industries, LLC, 2013 August, 2013 − Rev. 4 1 Publication Order Number: NCP4626/D NCP4626 NCP4626Hxxxxxxxx NCP4626Dxxxxxxxx ECO ECO Thermal Shutdown Thermal Shutdown VIN VIN VOUT Vref Vref Short Protection Short Protection CE VOUT CE Reverse Detector Peak Current Protection Peak Current Protection Reverse Detector GND GND Figure 2. Simplified Schematic Block Diagram PIN FUNCTION DESCRIPTION Pin No. XDFN (Note 1) Pin No. SOT89 Pin No. SOT23 Pin Name 1 4 1 ECO Mode selector pin. H – fast mode, L – low power mode 3 5 5 VIN Input voltage pin 4 1 4 VOUT Output voltage pin 5 2 2 GND Ground pin 6 3 3 CE Chip enable pin ( “H” enabled) 2 − − NC No connection Description 1. Tab is connected to GND. Tab should be connected to GND, but leaving it unconnected is also acceptable http://onsemi.com 2 NCP4626 ABSOLUTE MAXIMUM RATINGS Rating Symbol Value Unit VIN −0.3 to 18.0 V Output Voltage VOUT −0.3 to 18.0 V Chip Enable Input VCE −0.3 to 18.0 V Mode Selector Input VECO −0.3 to VIN + 0.3 ≤ 18.0 V Output Current IOUT 400 mA PD 640 mW Input Voltage (Note 2) Power Dissipation XDFN Power Dissipation SOT89 900 Power Dissipation SOT23 420 Maximum Junction Temperature TJ(MAX) 150 °C TA −40 to 85 °C TSTG −55 to 125 °C ESD Capability, Human Body Model (Note 3) ESDHBM 2000 V ESD Capability, Machine Model (Note 3) ESDMM 200 V Operation Temperature Rnage Storage Temperature Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 2. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area. 3. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114) ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115) Latchup Current Maximum Rating tested per JEDEC standard: JESD78. THERMAL CHARACTERISTICS Rating Symbol Value Unit Thermal Characteristics, XDFN6 Thermal Resistance, Junction−to−Air RqJA 156 °C/W Thermal Characteristics, SOT23−5 Thermal Resistance, Junction−to−Air RqJA 238 °C/W Thermal Characteristics, SOT89−5 Thermal Resistance, Junction−to−Air RqJA 111 °C/W ELECTRICAL CHARACTERISTICS −40°C ≤ TA ≤ 85°C; VIN = VCE = VOUT(NOM) + 3.0 V; IOUT = 1 mA, CIN = 2.2 mF, COUT = 4.7 mF, unless otherwise noted. Typical values are at TA = +25°C Parameter Operating Input Voltage Test Conditions Symbol Min 2.0 V ≤ VOUT < 3.0 V VIN 3.5 Typ 3.0 V ≤ VOUT Output Voltage Fast Mode, VECO = VIN Low Power Mode, VECO = GND Output Voltage Deviation Output Voltage Temp. Coefficient Line Regulation Max Unit 14.0 V 16.0 TA = +25 °C VOUT x0.985 x1.015 TA = −40 to 85°C x0.970 x1.030 TA = +25 °C x0.975 x1.025 TA = −40 to 85°C x0.960 x1.040 Fast mode to Low Power mode and back DVOUT TA = −40 to 85°C −1.5 0 1.5 http://onsemi.com 3 LineReg 0.02 % ppm/°C ±80 VIN = VOUT + 0.5 V to 16 V (If VOUT 0.6 V, 0 V ≤ VIN ≤ 16 V IREV 0 D Version only, VIN = 5 V, VCE = 0 V, VOUT = 0.3 V RLOW 150 Reverse Current Low Output Nch Tr. On Resistance VIN = 6.0 V, VOUT = 3.0 V, IOUT = 30 mA, f = 10 Hz to 100 kHz mA http://onsemi.com 4 0.1 mA W NCP4626 3.5 3.5 3.0 3.0 2.5 2.5 VOUT (V) VOUT (V) TYPICAL CHARACTERISTICS 2.0 5.0 V 1.5 5.5 V 1.0 VIN = 4.5 V 6.0 V 2.0 5.5 V 1.5 5.0 V 1.0 4.8 V 0.5 0.0 6.0 V 4.8 V 0.5 0 100 200 300 400 500 600 0.0 700 0 100 200 IOUT (mA) 3.0 3.0 2.5 2.5 VOUT (V) VOUT (V) 3.5 6.5 V VIN = 4.8 V 6.0 V 1.5 5.0 V 5.5 V 1.0 600 700 VIN = 4.8 V 6.0 V 1.5 5.0 V 5.5 V 0.5 0 100 200 300 400 500 600 0.0 700 0 100 200 IOUT (mA) 6.0 5.0 5.0 4.0 8.0 V VOUT (V) 4.0 VIN = 5.7 V 7.0 V 5.5 V 6.0 V 2.0 400 500 600 700 Figure 6. Output Voltage vs. Output Current 3.3 V, ECO = H 6.0 3.0 300 IOUT (mA) Figure 5. Output Voltage vs. Output Current 3.3 V, ECO = L VOUT (V) 500 6.5 V 2.0 1.0 0.5 5.5 V VIN = 5.7 V 3.0 6.0 V 7.0 V 2.0 8.0 V 1.0 1.0 0.0 400 Figure 4. Output Voltage vs. Output Current 3.0 V, ECO = H 3.5 2.0 300 IOUT (mA) Figure 3. Output Voltage vs. Output Current 3.0 V, ECO = L 0.0 VIN = 4.5 V 0 100 200 300 400 500 600 700 0.0 0 IOUT (mA) 100 200 300 400 500 600 IOUT (mA) Figure 7. Output Voltage vs. Output Current 5.0 V, ECO = L Figure 8. Output Voltage vs. Output Current 5.0 V, ECO = H http://onsemi.com 5 700 NCP4626 TYPICAL CHARACTERISTICS 1.5 1.5 TJ = 85°C 1.2 25°C 0.9 VDO (V) VDO (V) 1.2 −40°C 0.6 50 100 150 200 250 0.0 300 0 50 100 150 1.2 TJ = 85°C 0.9 25°C 0.6 −40°C 300 0.9 0.6 TJ = 85°C 25°C 0.3 50 100 150 200 250 0.0 300 −40°C 0 50 100 150 200 250 300 IOUT (mA) IOUT (mA) Figure 11. Dropout Voltage vs. Output Current 3.3 V Version, ECO = L Figure 12. Dropout Voltage vs. Output Current 3.3 V Version, ECO = H 1.0 1.0 0.8 0.8 0.6 VDO (V) TJ = 85°C 25°C 0.4 −40°C 0.2 0 250 Figure 10. Dropout Voltage vs. Output Current 3.0 V Version, ECO = H 1.2 0 200 Figure 9. Dropout Voltage vs. Output Current 3.0 V Version, ECO = L 1.5 0.0 −40°C IOUT (mA) 1.5 0.0 TJ = 85°C 25°C IOUT (mA) VDO (V) VDO (V) 0 0.3 VDO (V) 0.6 0.3 0.3 0.0 0.9 50 100 150 200 0.6 TJ = 85°C 0.4 25°C −40°C 0.2 250 0.0 300 IOUT (mA) 0 50 100 150 IOUT (mA) Figure 13. Dropout Voltage vs. Output Current 5.0 V Version, ECO = L 200 250 300 Figure 14. Dropout Voltage vs. Output Current 5.0 V Version, ECO = H http://onsemi.com 6 NCP4626 TYPICAL CHARACTERISTICS 3.05 3.02 3.01 3.01 2.99 3.00 2.99 2.98 2.98 2.97 2.97 2.96 2.96 2.95 −40 −20 0 20 40 60 2.95 −40 80 3.35 VIN = 6.3 V IOUT = 1 mA 3.31 3.31 VOUT (V) 3.32 3.30 3.29 80 3.30 3.29 3.28 3.28 3.27 3.27 3.26 3.26 −20 0 20 40 60 3.25 −40 80 −20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 17. Output Voltage vs. Temperature, 3.3 V Version, ECO = L Figure 18. Output Voltage vs. Temperature, 3.3 V Version, ECO = H 5.05 VIN = 8.0 V IOUT = 1 mA 5.04 5.03 5.02 5.01 5.01 VOUT (V) 5.02 5.00 4.99 4.99 4.98 4.97 4.97 4.96 4.96 −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) 4.95 −40 80 VIN = 8.0 V IOUT = 1 mA 5.00 4.98 4.95 −40 60 VIN = 6.3 V IOUT = 1 mA 3.34 3.32 5.03 40 TJ, JUNCTION TEMPERATURE (°C) 3.33 5.04 20 Figure 16. Output Voltage vs. Temperature, 3.0 V Version, ECO = H 3.33 5.05 0 TJ, JUNCTION TEMPERATURE (°C) 3.34 3.25 −40 −20 Figure 15. Output Voltage vs. Temperature, 3.0 V Version, ECO = L 3.35 VOUT (V) 3.03 3.02 3.00 VIN = 6.0 V IOUT = 1 mA 3.04 VOUT (V) VOUT (V) 3.03 VOUT (V) 3.05 VIN = 6.0 V IOUT = 1 mA 3.04 Figure 19. Output Voltage vs. Temperature, 5.0 V Version, ECO = L −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) 80 Figure 20. Output Voltage vs. Temperature, 5.0 V Version, ECO = H http://onsemi.com 7 NCP4626 TYPICAL CHARACTERISTICS 70 10 9 60 8 50 6 IGND (mA) IGND (mA) 7 5 4 3 10 1 0 2 4 6 8 10 12 14 0 16 0 4 6 8 10 12 14 VIN, INPUT VOLTAGE (V) Figure 21. Supply Current vs. Input Voltage, 3.0 V Version, ECO = L Figure 22. Supply Current vs. Input Voltage, 3.0 V Version, ECO = H 16 70 9 60 8 50 7 IGND (mA) 6 5 4 3 40 30 20 2 10 1 0 0 0 2 4 6 8 10 12 VIN, INPUT VOLTAGE (V) 14 16 0 Figure 23. Supply Current vs. Input Voltage, 3.3 V Version, ECO = L 2 4 6 8 10 12 VIN, INPUT VOLTAGE (V) 14 16 Figure 24. Supply Current vs. Input Voltage, 3.3 V Version, ECO = H 10 70 9 60 8 50 7 6 IGND (mA) IGND (mA) 2 VIN, INPUT VOLTAGE (V) 10 IGND (mA) 30 20 2 0 40 5 4 3 40 30 20 2 10 1 0 0 0 2 4 6 8 10 12 VIN, INPUT VOLTAGE (V) 14 16 0 Figure 25. Supply Current vs. Input Voltage, 5.0 V Version, ECO = L 2 4 6 8 10 12 VIN, INPUT VOLTAGE (V) 14 Figure 26. Supply Current vs. Input Voltage, 5.0 V Version, ECO = H http://onsemi.com 8 16 NCP4626 TYPICAL CHARACTERISTICS 70 10 VIN = 6.0 V 9 8 50 6 IGND (mA) IGND (mA) 7 5 4 3 40 20 0 20 40 60 0 −40 80 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) Figure 28. Supply Current vs. Temperature, 3.0 V Version, ECO = H 70 VIN = 6.3 V VIN = 6.3 V 60 8 50 7 6 IGND (mA) IGND (mA) 0 TJ, JUNCTION TEMPERATURE (°C) 9 5 4 3 40 30 20 2 10 1 40 20 0 20 40 60 0 80 40 20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 29. Supply Current vs. Temperature, 3.3 V Version, ECO = L Figure 30. Supply Current vs. Temperature, 3.3 V Version, ECO = H 10 70 VIN = 8.0 V 9 VIN = 8.0 V 60 8 50 7 6 IGND (mA) IGND (mA) −20 Figure 27. Supply Current vs. Temperature, 3.0 V Version, ECO = L 10 5 4 3 40 30 20 2 10 1 0 30 10 1 0 40 20 2 0 VIN = 6.0 V 60 40 20 0 20 40 60 0 80 40 20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 31. Supply Current vs. Temperature, 5.0 V Version, ECO = L Figure 32. Supply Current vs. Temperature, 5.0 V Version, ECO = H http://onsemi.com 9 NCP4626 3.5 3.5 3.0 3.0 2.5 2.5 VOUT (V) VOUT (V) TYPICAL CHARACTERISTICS 2.0 IOUT = 50 mA 1.5 30 mA 1.0 1 mA 0.5 IOUT = 50 mA 1.0 30 mA 2 4 6 8 10 12 14 0 mA 0 16 8 10 12 14 VIN, INPUT VOLTAGE (V) 2.5 2.5 VOUT (V) 3.0 2.0 1.5 IOUT = 50 mA 30 mA 1.0 0.5 4 2.0 1.5 IOUT = 50 mA 1.0 30 mA 0.5 0 mA 2 6 8 10 12 14 0.0 16 0 mA 0 2 4 6 8 10 12 14 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 35. Output Voltage vs. Input Voltage, 3.3 V Version, ECO = L Figure 36. Output Voltage vs. Input Voltage, 3.3 V Version, ECO = H 6.0 5.0 5.0 4.0 4.0 VOUT (V) 6.0 3.0 IOUT = 50 mA 2.0 1 mA IOUT = 50 mA 30 mA 1 mA 0 mA 1.0 0 mA 0.0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 37. Output Voltage vs. Input Voltage, 5.0 V Version, ECO = L Figure 38. Output Voltage vs. Input Voltage, 5.0 V Version, ECO = H http://onsemi.com 10 16 3.0 2.0 30 mA 1.0 16 1 mA 1 mA 0 6 Figure 34. Output Voltage vs. Input Voltage, 3.0 V Version, ECO = H 3.0 0.0 4 VIN, INPUT VOLTAGE (V) 3.5 0 2 Figure 33. Output Voltage vs. Input Voltage, 3.0 V Version, ECO = L 3.5 0.0 1 mA 0.0 0 VOUT (V) 1.5 0.5 0 mA 0.0 VOUT (V) 2.0 16 NCP4626 TYPICAL CHARACTERISTICS 100 100 90 90 80 80 70 IOUT = 1 mA 60 PSRR (dB) PSRR (dB) 70 50 40 30 mA 150 mA 300 mA 300 mA 150 mA 10 0 0 0.1 1 10 100 1000 0.1 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 39. PSRR, 3.0 V Version, VIN = 6.0 V, ECO = L Figure 40. PSRR, 3.0 V Version, VIN = 6.0 V, ECO = H 100 100 90 90 80 80 70 70 IOUT = 1 mA 60 PSRR (dB) PSRR (dB) 40 20 10 50 40 30 mA 30 IOUT = 1 mA 60 50 40 30 mA 300 mA 30 20 300 mA 20 150 mA 10 150 mA 10 0 0 0.1 1 10 100 0.1 1000 1 10 FREQUENCY (kHz) FREQUENCY (kHz) Figure 42. PSRR, 3.3 V Version, VIN = 6.3 V, ECO = H 100 100 90 90 80 80 70 70 IOUT = 1 mA 60 50 40 30 mA 30 30 mA 20 40 300 mA 0 0.1 1 10 150 mA 10 150 mA 100 1000 IOUT = 1 mA 50 20 300 mA 0 0.1 1 10 100 FREQUENCY (kHz) FREQUENCY (kHz) Figure 43. PSRR, 5.0 V Version, VIN = 8.0 V, ECO = L Figure 44. PSRR, 5.0 V Version, VIN = 8.0 V, ECO = H http://onsemi.com 11 1000 60 30 10 100 Figure 41. PSRR, 3.3 V Version, VIN = 6.3 V, ECO = L PSRR (dB) PSRR (dB) 30 mA 50 30 30 20 IOUT = 1 mA 60 1000 NCP4626 7.0 14 6.0 12 5.0 10 VN (mVrms/√Hz) VN (mVrms/√Hz) TYPICAL CHARACTERISTICS 4.0 3.0 2.0 0 0.01 4.0 0 0.1 1 10 100 0.01 1000 0.1 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 45. Output Voltage Noise, 3.0 V Version, VIN = 6.0 V, IOUT = 30 mA, ECO = L Figure 46. Output Voltage Noise, 3.0 V Version, VIN = 6.0 V, IOUT = 30 mA, ECO = H 7.0 14 6.0 12 5.0 10 VN (mVrms/√Hz) VN (mVrms/√Hz) 6.0 2.0 1.0 4.0 3.0 2.0 8.0 6.0 4.0 2.0 1.0 0 0.01 0 0.1 1 10 100 0.01 1000 0.1 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 47. Output Voltage Noise, 3.3 V version, VIN = 6.3 V, IOUT = 30 mA, ECO = L Figure 48. Output Voltage Noise, 3.3 V Version, VIN = 6.3 V, IOUT = 30 mA, ECO = H 14 14 12 12 10 10 VN (mVrms/√Hz) VN (mVrms/√Hz) 8.0 8.0 6.0 4.0 2.0 8.0 6.0 4.0 2.0 0 0.01 0.1 1 10 100 0 1000 0.01 0.1 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 49. Output Voltage Noise, 5.0 V Version, VIN = 8.0 V, IOUT = 30 mA, ECO = L Figure 50. Output Voltage Noise, 5.0 V Version, VIN = 8.0 V, IOUT = 30 mA, ECO = H http://onsemi.com 12 NCP4626 TYPICAL CHARACTERISTICS 6.5 6.0 5.5 3.15 VIN (V) VOUT (V) 5.0 3.10 3.05 3.00 2.95 2.90 2.85 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 4.0 Figure 51. Line Transients, 3.0 V Version, tR = tF = 5 ms, IOUT = 30 mA, ECO = L 6.5 6.0 5.5 VIN (V) VOUT (V) 5.0 3.010 3.005 3.000 2.995 2.990 2.985 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 52. Line Transients, 3.0 V Version, tR = tF = 5 ms, IOUT = 30 mA, ECO = H 6.8 6.3 5.8 3.45 VIN (V) VOUT (V) 5.3 3.40 3.35 3.30 3.25 3.20 3.15 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 Figure 53. Line Transients, 3.3 V Version, tR = tF = 5 ms, IOUT = 30 mA, ECO = L http://onsemi.com 13 4.0 NCP4626 TYPICAL CHARACTERISTICS 6.8 6.3 5.8 VIN (V) VOUT (V) 5.3 3.310 3.305 3.300 3.295 3.290 3.285 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 54. Line Transients, 3.3 V Version, tR = tF = 5 ms, IOUT = 30 mA, ECO = H 8.5 8.0 7.5 5.15 VIN (V) VOUT (V) 7.0 5.10 5.05 5.00 4.95 4.90 4.85 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 t (ms) Figure 55. Line Transients, 5.0 V Version, tR = tF = 5 ms, IOUT = 30 mA, ECO = L 8.5 8.0 7.5 VIN (V) VOUT (V) 7.0 5.010 5.005 5.000 4.995 4.990 4.985 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 56. Line Transients, 5.0 V Version, tR = tF = 5 ms, IOUT = 30 mA, ECO = H http://onsemi.com 14 NCP4626 TYPICAL CHARACTERISTICS 45 30 15 IOUT (mA) VOUT (V) 0 3.2 3.1 3.0 2.9 2.8 2.7 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 t (ms) Figure 57. Load Transients, 3.0 V Version, IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.0 V, ECO = L 45 30 15 IOUT (mA) VOUT (V) 0 3.02 3.01 3.00 2.99 2.98 2.97 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 58. Load Transients, 3.0 V Version, IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.0 V, ECO = H 45 30 15 IOUT (mA) VOUT (V) 0 3.5 3.4 3.3 3.2 3.1 3.0 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 Figure 59. Load transients, 3.3 V version, IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.3 V, ECO = L http://onsemi.com 15 4.0 NCP4626 TYPICAL CHARACTERISTICS 45 30 15 IOUT (mA) VOUT (V) 0 3.32 3.31 3.30 3.29 3.28 3.27 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 60. Load Transients, 3.3 V Version, IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.3 V, ECO = H 45 30 15 IOUT (mA) VOUT (V) 0 5.2 5.1 5.0 4.9 4.8 4.7 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 4.0 Figure 61. Load Transients, 5.0 V Version, IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 8.0 V, ECO = L 45 30 15 IOUT (mA) VOUT (V) 0 5.02 5.01 5.00 4.99 4.98 4.97 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 62. Load Transients, 5.0 V Version, IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 8.0 V, ECO = H http://onsemi.com 16 NCP4626 TYPICAL CHARACTERISTICS 150 100 50 IOUT (mA) VOUT (V) 0 3.2 3.1 3.0 2.9 2.8 2.7 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 4.0 Figure 63. Load Transients, 3.0 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.0 V, ECO = L 150 100 50 IOUT (mA) VOUT (V) 0 3.02 3.01 3.00 2.99 2.98 2.97 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 64. Load Transients, 3.0 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.0 V, ECO = H 150 100 50 IOUT (mA) VOUT (V) 0 3.5 3.4 3.3 3.2 3.1 3.0 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 Figure 65. Load Transients, 3.3 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.3 V, ECO = L http://onsemi.com 17 4.0 NCP4626 TYPICAL CHARACTERISTICS 150 100 50 IOUT (mA) VOUT (V) 0 3.32 3.31 3.30 3.29 3.28 3.28 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 66. Load Transients, 3.3 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.3 V, ECO = H 150 100 50 IOUT (mA) VOUT (V) 0 5.2 5.1 5.0 4.9 4.8 4.7 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 4.0 Figure 67. Load Transients, 5.0 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 8.0 V, ECO = L 150 100 50 IOUT (mA) VOUT (V) 0 5.02 5.01 5.00 4.99 4.98 4.97 0 40 80 120 160 200 240 280 320 360 400 t (ms) Figure 68. Load Transients, 5.0 V Version, IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 8.0 V, ECO = H http://onsemi.com 18 NCP4626 TYPICAL CHARACTERISTICS 450 300 150 4.5 IOUT (mA) VOUT (V) 0 4.0 3.5 3.0 2.5 2.0 1.5 0 1 2 3 4 5 t (ms) 6 7 8 9 10 Figure 69. Load Transients, 3.0 V Version, IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.0 V, ECO = L 450 300 150 IOUT (mA) VOUT (V) 0 3.1 3.1 3.0 3.0 2.9 2.9 0 0.1 0.2 0.3 0.4 0.5 0.6 t (ms) 0.7 0.8 0.9 1.0 Figure 70. Load Transients, 3.0 V Version, IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.0 V, ECO = H 450 300 150 4.8 IOUT (mA) VOUT (V) 0 4.3 3.8 3.3 2.8 2.3 1.8 0 1 2 3 4 5 t (ms) 6 7 8 9 Figure 71. Load Transients, 3.3 V Version, IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.3 V, ECO = L http://onsemi.com 19 10 NCP4626 TYPICAL CHARACTERISTICS 450 300 150 IOUT (mA) VOUT (V) 0 3.40 3.35 3.30 3.25 3.20 3.15 0 0.1 0.2 0.3 0.4 0.5 0.6 t (ms) 0.7 0.8 0.9 1.0 Figure 72. Load Transients, 3.3 V Version, IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.3 V, ECO = H 450 300 150 0 6.5 IOUT (mA) VOUT (V) 7.0 6.0 5.5 5.0 4.5 4.0 3.5 0 1 2 3 4 5 6 7 8 9 10 t (ms) Figure 73. Load Transients, 5.0 V Version, IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 8.0 V, ECO = L 450 300 150 IOUT (mA) VOUT (V) 0 5.10 5.05 5.00 4.95 4.90 4.85 0 0.1 0.2 0.3 0.4 0.5 0.6 t (ms) 0.7 0.8 0.9 Figure 74. Load Transients, 5.0 V Version, IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 8.0 V, ECO = H http://onsemi.com 20 1.0 NCP4626 TYPICAL CHARACTERISTICS 9 Chip Enable 6 3 VCE (V) VOUT (V) 0 IOUT = 1 mA 4 3 2 IOUT = 150 mA 1 IOUT = 30 mA 0 −1 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 4.0 Figure 75. Start−up, 3.0 V Version, VIN = 6.0 V, ECO = L 9 Chip Enable 6 3 VCE (V) VOUT (V) 0 4 3 IOUT = 1 mA 2 IOUT = 30 mA 1 IOUT = 150 mA 0 −1 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 76. Start−up, 3.0 V Version, VIN = 6.0 V, ECO = H 9.45 Chip Enable 6.30 3.15 IOUT = 1 mA 4 3 IOUT = 30 mA 2 1 IOUT = 150 mA 0 −1 VCE (V) VOUT (V) 0.00 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 t (ms) Figure 77. Start−up, 3.3 V Version, VIN = 6.3 V, ECO = L http://onsemi.com 21 4.0 NCP4626 TYPICAL CHARACTERISTICS 9.45 Chip Enable 6.30 3.15 VCE (V) VOUT (V) 0.00 4 3 IOUT = 1 mA 2 IOUT = 30 mA 1 IOUT = 150 mA 0 −1 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 78. Start−up, 3.3 V Version, VIN = 6.3 V, ECO = H 12 Chip Enable 8 0 IOUT = 1 mA 5 4 VCE (V) VOUT (V) 4 IOUT = 30 mA 3 2 IOUT = 150 mA 1 0 −1 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 4.0 Figure 79. Start-up, 5.0 V Version, VIN = 8.0 V, ECO = L Chip Enable 12 8 4 5 VCE (V) VOUT (V) 0 IOUT = 1 mA 4 3 2 IOUT = 30 mA 1 0 −1 IOUT = 150 mA 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 80. Start-up, 5.0 V Version, VIN = 8.0 V, ECO = H http://onsemi.com 22 NCP4626 TYPICAL CHARACTERISTICS 9 6 3 0 VCE (V) VOUT (V) Chip Enable 4 3 IOUT = 1 mA 2 IOUT = 30 mA IOUT = 150 mA 1 0 −1 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 4.0 Figure 81. Shutdown, 3.0 V Version D, VIN = 6.0 V 9.45 6.30 3.15 0.00 VCE (V) VOUT (V) Chip Enable 4 IOUT = 1 mA 3 2 IOUT = 30 mA IOUT = 150 mA 1 0 −1 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 4.0 Figure 82. Shutdown, 3.3 V Version D, VIN = 6.3 V 12 8 4 0 5 VCE (V) VOUT (V) Chip Enable IOUT = 1 mA 4 IOUT = 30 mA 3 2 IOUT = 150 mA 1 0 −1 0 0.4 0.8 1.2 1.6 2.0 2.4 t (ms) 2.8 3.2 3.6 Figure 83. Shutdown, 5.0 V Version D, VIN = 8.0 V http://onsemi.com 23 4.0 NCP4626 APPLICATION INFORMATION current capability in normal operation, but when over current occurs, output voltage and current decrease until over current condition ends. Typical characteristics of this protection type can be observed in the Output Voltage versus Output Current graphs shown in the typical characteristics chapter of this datasheet. A typical application circuit for NCP4626 series is shown in Figure 84. NCP4626x VIN VIN C1 2m2 C2 4m7 CE AE VOUT VOUT ECO Function The IC can be switched between two modes by ECO pin. One mode is low power mode, where IC’s self current consumption is low, but IC has slower dynamic behavior or in to fast mode, where current consumption is higher, but the IC has better dynamic response and lower dropout voltage. Do not leave the ECO pin unconnected or between VCEH and VCEL voltage levels as this may cause indefinite and unexpected currents flows internally. GND Figure 84. Typical Application Schematic Thermal Considerations Input Decoupling Capacitor (C1) As power across the IC increases, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and the ambient temperature effect the rate of temperature rise for the part. That is to say, when the device has good thermal conductivity through the PCB, the junction temperature will be relatively low with high power dissipation applications. The IC includes internal thermal shutdown circuit that stops the regulator operating if the junction temperature is higher than 150°C. After shutdown, when the junction temperature decreases below 130°C, the voltage regulator would restarts. As long as the high power dissipation condition exists, the regulator will start and stop repeatedly to protect itself against overheating. Care should be taken in the PCB layout to try to avoid this temperature cycling condition. A 2.2 mF (or larger) ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the NCP4626. Higher capacitor values and lower ESR improves line transient response. Output Decoupling Capacitor (C2) A 4.7 mF (or larger) ceramic output decoupling capacitor is sufficient to achieve stable operation of the IC. It is necessary to use a capacitor with good frequency characteristics and low ESR. The capacitor should be connected as close as possible to the output and ground pins. Larger capacitor values and lower ESR improves dynamic parameters. Enable Operation The enable pin CE may be used to turn the regulator on and off. The IC is switched on when a high level voltage is applied to the CE pin. The enable pin has an internal pull down resistor. If the enable function is not needed, connect the CE pin to VIN. PCB Layout Make the VIN and GND lines as large as possible. If their impedance is high, noise pickup or unstable operation may result. Connect capacitors C1 and C2 as close as possible to the IC, and make wiring as short as possible. The tab under the XDFN package is internally connected to GND: it is best practice to connect it to GND on the PCB, but leaving it unconnected is also acceptable. Output Discharger The D version of the NCP4626 includes a transistor between VOUT and GND that is used for faster discharging of the output capacitor. This function is activated when the IC goes into disable mode. Current Limit This regulator includes fold-back type current limit circuit. This type of protection doesn’t limit current up to http://onsemi.com 24 NCP4626 ORDERING INFORMATION Device Nominal Output Voltage Description Marking Package Shipping† NCP4626DSN030T1G 3.0 V Auto discharge 630 SOT23 (Pb−Free) 3000 / Tape & Reel NCP4626DSN033T1G 3.3 V Auto discharge 633 SOT23 (Pb−Free) 3000 / Tape & Reel NCP4626DSN045T1G 4.5 V Auto discharge 645 SOT23 (Pb−Free) 3000 / Tape & Reel NCP4626DSN050T1G 5.0 V Auto discharge 650 SOT23 (Pb−Free) 3000 / Tape & Reel NCP4626HSN030T1G 3.0 V Standard 430 SOT23 (Pb−Free) 3000 / Tape & Reel NCP4626HSN033T1G 3.3 V Standard 433 SOT23 (Pb−Free) 3000 / Tape & Reel NCP4626HSN045T1G 4.5 V Standard 445 SOT23 (Pb−Free) 3000 / Tape & Reel NCP4626HSN050T1G 5.0 V Standard 450 SOT23 (Pb−Free) 3000 / Tape & Reel NCP4626DMX030TCG 3.0 V Auto discharge CH11 XDFN (Pb−Free) 5000 / Tape & Reel NCP4626DMX033TCG 3.3 V Auto discharge CH14 XDFN (Pb−Free) 5000 / Tape & Reel NCP4626DMX045TCG 4.5 V Auto discharge CH26 XDFN (Pb−Free) 5000 / Tape & Reel NCP4626DMX050TCG 5.0 V Auto discharge CH31 XDFN (Pb−Free) 5000 / Tape & Reel NCP4626HMX030TCG 3.0 V Standard CF11 XDFN (Pb−Free) 5000 / Tape & Reel NCP4626HMX033TCG 3.3 V Standard CF14 XDFN (Pb−Free) 5000 / Tape & Reel NCP4626HMX045TCG 4.5 V Standard CF26 XDFN (Pb−Free) 5000 / Tape & Reel NCP4626HMX050TCG 5.0 V Standard CF31 XDFN (Pb−Free) 5000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *To order other package and voltage variants, please contact your ON Semiconductor sales representative. http://onsemi.com 25 NCP4626 PACKAGE DIMENSIONS XDFN6 1.6x1.6, 0.5P CASE 711AC−01 ISSUE O NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. A B D 2X ÉÉÉ ÉÉÉ ÉÉÉ 0.05 C PIN ONE REFERENCE 2X E DIM A A1 b D D2 E E2 E3 e L L1 0.05 C TOP VIEW A 0.05 C A1 0.05 C NOTE 3 0.05 M D2 1 2X 3X RECOMMENDED MOUNTING FOOTPRINT* C A B 1.70 L 3 L1 SEATING PLANE C SIDE VIEW E2 6X 0.05 E3 6 MILLIMETERS MIN MAX −−− 0.40 0.00 0.05 0.15 0.25 1.60 BSC 1.25 1.35 1.60 BSC 0.65 0.75 0.15 REF 0.50 BSC 0.15 0.25 0.05 BSC 4 e 6X M PACKAGE OUTLINE b 0.05 M 0.77 1.79 0.38 C A B C A B 1 0.50 PITCH BOTTOM VIEW 6X 0.36 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 26 NCP4626 PACKAGE DIMENSIONS SOT−89, 5 LEAD CASE 528AB−01 ISSUE O D E NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. LEAD THICKNESS INCLUDES LEAD FINISH. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. 5. DIMENSIONS L, L2, L3, L4, L5, AND H ARE MEASURED AT DATUM PLANE C. H DIM A b b1 c D D2 E e H L L2 L3 L4 L5 1 TOP VIEW c A 0.10 C C SIDE VIEW e b1 L 1 e b 2 L3 L4 RECOMMENDED MOUNTING FOOTPRINT* L2 4X 3 4 0.57 1.75 L5 5 MILLIMETERS MIN MAX 1.40 1.60 0.32 0.52 0.37 0.57 0.30 0.50 4.40 4.60 1.40 1.80 2.40 2.60 1.40 1.60 4.25 4.45 1.10 1.50 0.80 1.20 0.95 1.35 0.65 1.05 0.20 0.60 2.79 1.50 0.45 4.65 D2 BOTTOM VIEW 1.30 1 1.65 2X 2X 1.50 0.62 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 27 NCP4626 PACKAGE DIMENSIONS SOT−23 5−LEAD CASE 1212−01 ISSUE A A 5 E 1 L1 A1 4 2 DIM A A1 A2 b c D E E1 e L L1 L 3 5X e A2 0.05 S B D NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSIONS: MILLIMETERS. 3. DATUM C IS THE SEATING PLANE. A E1 b 0.10 C M C B A S S C RECOMMENDED SOLDERING FOOTPRINT* 3.30 MILLIMETERS MIN MAX --1.45 0.00 0.10 1.00 1.30 0.30 0.50 0.10 0.25 2.70 3.10 2.50 3.10 1.50 1.80 0.95 BSC 0.20 --0.45 0.75 5X 0.85 5X 0.95 PITCH 0.56 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 28 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NCP4626/D
NCP4626DSN033T1G 价格&库存

很抱歉,暂时无法提供与“NCP4626DSN033T1G”相匹配的价格&库存,您可以联系我们找货

免费人工找货