0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCP4671DSN15T1G

NCP4671DSN15T1G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT23-5

  • 描述:

    IC REG LDO 1.5V 0.4A SOT23-5

  • 详情介绍
  • 数据手册
  • 价格&库存
NCP4671DSN15T1G 数据手册
ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and       and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others. NCP4671 400 mA, Dual Rail Ultra Low Dropout Linear Regulator The NCP4671 is a CMOS Dual Supply Rail Linear Regulator designed to provide very low output voltages. The Dual Rail architecture which separates the power for the LDO control circuitry (provided via the Vbias pin) from the main power path (Vin) offers ultra−low dropout performance, allowing the device to operate from input voltages down to 0.9 V and to generate a fixed high accuracy output voltage as low as 0.6 V. The NCP4671 offers excellent transient response with very low quiescent currents. The family is available in a variety of packages: SC−70, SOT23 and a small, ultra thin 1.2 x 1.2 x 0.4mm XDFN. http://onsemi.com MARKING DIAGRAMS SC−70 CASE 419A (In Development) Features • Bias Supply Voltage Range : 2.4 V to 5.25 V (VOUT < 0.8 V) XXX XMM 1 Set VOUT + 1.6 V to 5.25 V (VOUT ≥ 0.8 V) • Power Input Voltage Range : 0.9 V to VBIAS (VOUT < 0.8 V) • • • • • • • • • Set VOUT + 0.1 V to VBIAS (VOUT ≥ 0.8 V) Output Voltage Range: 0.6 to 1.5 V (available at 0.1 steps) Very Low Dropout: 180 mV Typ. at 400 mA Quiescent Current: 28 mA Standby Current: 0.1 mA ±15 mV Output Voltage Accuracy (TA = 25°C) High PSRR: 80 dB at 1 kHz (Ripple at VIN) 50 dB at 1 kHz (Ripple at VBIAS) Current Fold Back Protection Typ. 120 mA Available in XDFN, SC−70, SOT23 Package These are Pb−Free Devices XX MM XDFN6 CASE 711AA 1 XXXMM SOT−23−5 CASE 1212 1 XX, XXX= Specific Device Code M, MM = Date Code A = Assembly Location Y = Year W = Work Week G = Pb−Free Package Typical Applications • Battery Powered Equipments • Portable Communication Equipments • Cameras, VCRs and Camcorders (*Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering, marking and shipping information in the package dimensions section on page 20 of this data sheet. NCP4671x VIN VIN DC/DC converter VOUT VBIAS C1 1m C2 1m CE VOUT C3 2m 2 GND Figure 1. Typical Application Schematic © Semiconductor Components Industries, LLC, 2012 February, 2012 − Rev. 2 1 Publication Order Number: NCP4671/D NCP4671 NCP4671Hxxxxxxxx NCP4671Dxxxxxxxx VBIAS VBIAS VIN VIN VOUT VOUT Vref Vref UVLO UVLO Current Limit CE Current Limit CE GND GND Figure 2. Simplified Schematic Block Diagram PIN FUNCTION DESCRIPTION Pin No. XDFN Pin No. SC−70 Pin No. SOT23 Pin Name 1 1 4 VBIAS Input Pin 1 2 2 2 GND Ground Pin 3 5 3 CE Chip Enable Pin (“H” Active) 4 4 1 VIN Input Pin 2 5 − − NC Not connected 6 3 5 VOUT Description Output Pin ABSOLUTE MAXIMUM RATINGS Rating Symbol Value Unit VBIAS 6.0 V VIN −0.3 to VBIAS + 0.3 V Output Voltage VOUT −0.3 to VIN + 0.3 V Chip Enable Input VCE 6.0 V Output Current IOUT 500 mA PD 400 mW Bias Supply Input Voltage (Note 1) Power Supply Input Voltage (for Driver) (Note 1) Power Dissipation XDFN Power Dissipation SC−70 380 Power Dissipation SOT23 420 Maximum Junction Temperature TJ(MAX) 150 °C TSTG −55 to 125 °C ESD Capability, Human Body Model (Note 2) ESDHBM 2000 V ESD Capability, Machine Model (Note 2) ESDMM 200 V Storage Temperature Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area. 2. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114) ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115) Latchup Current Maximum Rating tested per JEDEC standard: JESD78. http://onsemi.com 2 NCP4671 THERMAL CHARACTERISTICS Symbol Value Unit Thermal Characteristics, XDFN Thermal Resistance, Junction−to−Air Rating RqJA 250 °C/W Thermal Characteristics, SOT23 Thermal Resistance, Junction−to−Air RqJA 238 °C/W Thermal Characteristics, SC−70 Thermal Resistance, Junction−to−Air RqJA 263 °C/W ELECTRICAL CHARACTERISTICS −40°C ≤ TA ≤ 85°C, VBIAS = VCE = 3.6 V, VIN = VOUT(NOM) + 0.5 V, IOUT = 1 mA, CBIAS = CIN = 1.0 mF, COUT = 2.2 mF, unless otherwise noted. Typical values are at TA = +25°C. Test Conditions Symbol Min Operating Supply Input Voltage (Note 3) VOUT < 0.8 V VBIAS Operating Power Input Voltage (Note 3) VOUT < 0.8 V Output Voltage TA = +25 °C Parameter VOUT ≥ 0.8 V VIN VOUT ≥ 0.8 V VOUT TA = −40°C to +85°C Output Voltage Temp. Coefficient TA = −40°C to +85°C Line Regulation VBIAS = 2.4V to 5.0V Max Unit 2.4 5.25 V VOUT + 1.6 5.25 0.9 VBIAS VOUT + 0.1 VBIAS −15 +15 −20 +20 IOUT = 1 mA to 400 mA Dropout Voltage Quiescent Current mV 0.02 0.10 0.02 0.10 30 50 %/V mV Please refer to following detailed table. Output Current Short Current Limit LoadReg V ppm/°C ±50 LineReg VIN = VOUT + 0.3 V to 2.4 V Load Regulation Typ IOUT VOUT = 0 V 400 ISC mA 120 mA IOUT = 0 mA IQ 28 40 mA Standby Current VCE = 0 V, TA = 25°C ISTB 0.1 3 mA CE Pin Threshold Voltage CE Input Voltage “H” VCEH CE Input Voltage “L” VCEL CE Pull Down Current VIN Under Voltage Lock Out Power Supply Rejection Ratio V 0.8 0.3 IPD 1 IOUT = 1 mA VIN_UVLO VOUT + 0.05 IOUT = 30 mA, f = 1 kHz, VIN Ripple 0.2 VP−P PSRR 80 IOUT = 30 mA, f = 1 kHz, VBIAS Ripple 0.2 VP−P mA VOUT + 0.1 V dB 50 Output Noise Voltage VOUT = 0.6 V, IOUT = 30 mA, f = 10 Hz to 100 kHz VN 70 mVrms Low Output Nch Tr. On Resistance D Version only, VBIAS = 3.6 V, VCE = “L“ RLOW 50 W 3. If Input Voltage range is between 5.25 V and 5.50 V, the total operational time must be within 500 hrs. http://onsemi.com 3 NCP4671 DROPOUT VOLTAGE (VDO [V]) VDO [V] @ IOUT = 300 mA VDO [V] @ IOUT = 200 mA (TA = 255C) VDO [V] @ IOUT = 400 mA TA = 255C TA = −405C to +855C TA = 255C TA = −405C to +855C VOUT / VBIAS 2.5 V 3.0 V 3.3 V 3.6 V 4.2 V 5.0 V 3.6 V 3.6 V 3.6 V 3.6 V 0.6 V 0.094 0.093 0.093 0.092 0.092 0.091 0.115 0.180 0.180 0.320 0.7 V 0.094 0.093 0.093 0.092 0.092 0.092 0.120 0.190 0.180 0.320 0.8 V 0.098 0.093 0.093 0.092 0.092 0.092 0.120 0.190 0.180 0.300 0.9 V 0.098 0.094 0.093 0.092 0.092 0.092 0.120 0.190 0.180 0.300 1.0 V 0.094 0.093 0.092 0.092 0.092 0.120 0.190 0.180 0.280 1.2 V 0.098 0.096 0.095 0.095 0.094 0.130 0.200 0.180 0.280 0.098 0.096 0.095 0.095 0.095 0.130 0.200 0.180 0.260 1.4 V 0.098 0.096 0.095 0.095 0.095 0.130 0.200 0.180 0.260 1.5 V * 0.096 0.095 0.095 0.095 0.130 0.200 0.180 0.260 1.3 V * *VBIAS voltage must be equal or more than VOUT(NOM) + 1.6 V http://onsemi.com 4 NCP4671 TYPICAL CHARACTERISTICS 0.7 VBIAS = 2.40 V 0.6 0.5 VIN = 0.79 V 0.4 2.40 V 0.3 0.2 1.10 V 0.1 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 0.7 0.5 0 100 200 300 400 500 600 0.4 0.3 0.2 1.10 V 0.1 700 800 0 900 100 200 300 400 500 600 700 800 IOUT, OUTPUT CURRENT (mA) IOUT, OUTPUT CURRENT (mA) Figure 3. Output Voltage vs. Output Current 0.6 V Version (TA = 255C) Figure 4. Output Voltage vs. Output Current 0.6 V Version (TA = 255C) 0.7 0.5 VIN = 0.79 V 0.4 0.3 0.2 1.10 V 5.25 V VBIAS = 2.60 V VOUT, OUTPUT VOLTAGE (V) 0.6 0.1 900 1.2 VBIAS = 5.25 V 0.0 1.0 VIN = 1.22 V 0.8 1.50 V 0.6 2.60 V 0.4 0.2 0.0 0 100 200 300 400 500 600 700 IOUT, OUTPUT CURRENT (mA) 800 0 900 Figure 5. Output Voltage vs. Output Current 0.6 V Version (TA = 255C) 1.2 VIN = 1.22 V 0.8 1.50 V 0.6 0.4 3.60 V 0.2 100 200 300 400 500 600 700 800 800 900 VBIAS = 5.25 V 0.0 0 200 300 400 500 600 700 IOUT, OUTPUT CURRENT (mA) 1.2 VBIAS = 3.60 V 1.0 100 Figure 6. Output Voltage vs. Output Current 1.0 V Version (TA = 255C) VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 3.60 V VIN = 0.79 V 0.0 0.0 VOUT, OUTPUT VOLTAGE (V) VBIAS = 3.60 V 0.6 900 1.0 VIN = 1.22 V 0.8 1.50 V 0.6 0.4 5.25 V 0.2 0.0 0 100 200 300 400 500 600 700 800 IOUT, OUTPUT CURRENT (mA) IOUT, OUTPUT CURRENT (mA) Figure 7. Output Voltage vs. Output Current 1.0 V Version (TA = 255C) Figure 8. Output Voltage vs. Output Current 1.0 V Version (TA = 255C) http://onsemi.com 5 900 NCP4671 TYPICAL CHARACTERISTICS 1.6 1.4 VIN = 1.76 V 1.2 2.00 V 1.0 0.8 0.6 3.10 V 0.4 0.2 0.0 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 1.6 VBIAS = 3.10 V 0 100 200 300 400 500 600 700 800 900 1000 2.00 V 1.0 0.8 0.6 3.60 V 0.4 0.2 0.0 VBIAS = 3.60 V 0 100 200 300 400 500 600 700 800 900 1000 IOUT, OUTPUT CURRENT (mA) Figure 9. Output Voltage vs. Output Current 1.5 V Version (TA = 255C) Figure 10. Output Voltage vs. Output Current 1.5 V Version (TA = 255C) 0.7 1.4 VIN = 1.76 V 1.2 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) VIN = 1.72 V 1.2 IOUT, OUTPUT CURRENT (mA) 1.6 2.00 V 1.0 0.8 0.6 5.25 V 0.4 0.2 0.0 1.4 VBIAS = 5.25 V 0 100 200 300 400 500 600 700 800 900 1000 0.6 0.5 IOUT = 1 mA 0.4 30 mA 0.3 50 mA 0.2 0.1 0 VBIAS = 2.4 V 0 1 IOUT, OUTPUT CURRENT (mA) 0.7 0.7 0.6 0.6 IOUT = 1 mA 0.4 0.3 30 mA 0.2 50 mA 0.1 0 VBIAS = 3.6 V 0 1 2 3 4 3 4 5 Figure 12. Output Voltage vs. Input Voltage 0.6 V Version (TA = 255C) VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) Figure 11. Output Voltage vs. Output Current 1.5 V Version (TA = 255C) 0.5 2 VIN, INPUT VOLTAGE (V) 0.5 0.4 30 mA 0.3 50 mA 0.2 0.1 0 5 IOUT = 1 mA VBIAS = 5.25 V 0 1 2 3 4 5 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 13. Output Voltage vs. Input Voltage 0.6 V Version (TA = 255C) Figure 14. Output Voltage vs. Input Voltage 0.6 V Version (TA = 255C) http://onsemi.com 6 NCP4671 TYPICAL CHARACTERISTICS 1.2 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 1.2 1 0.8 IOUT = 1 mA 0.6 30 mA 0.4 50 mA 0.2 1 0.8 IOUT = 1 mA 0.6 30 mA 0.4 50 mA 0.2 VBIAS = 2.6 V 0 0 1 2 3 4 VBIAS = 3.2 V 0 5 4 5 1.6 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 3 Figure 16. Output Voltage vs. Input Voltage 1.0 V Version (TA = 255C) 0.8 IOUT = 1 mA 0.6 30 mA 0.4 50 mA 0.2 VBIAS = 5.25 V 0 1 2 3 4 VIN, INPUT VOLTAGE (V) 1.4 1.2 1 30 mA 0.6 0.4 50 mA 0.2 0 5 IOUT = 1 mA 0.8 VBIAS = 3.1 V 0 Figure 17. Output Voltage vs. Input Voltage 1.0 V Version (TA = 255C) 1.6 1.6 1.4 1.4 1.2 1 0.8 IOUT = 1 mA 0.6 30 mA 0.4 50 mA 0.2 VBIAS = 3.6 V 0 1 2 3 4 VIN, INPUT VOLTAGE (V) 1 2 3 4 VIN, INPUT VOLTAGE (V) 5 Figure 18. Output Voltage vs. Input Voltage 1.5 V Version (TA = 255C) VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 2 Figure 15. Output Voltage vs. Input Voltage 1.0 V Version (TA = 255C) 1 0 1 VIN, INPUT VOLTAGE (V) 1.2 0 0 VIN, INPUT VOLTAGE (V) 1.2 1 30 mA 0.6 0.4 50 mA 0.2 0 5 IOUT = 1 mA 0.8 VBIAS = 5.25 V 0 1 2 3 4 5 VIN, INPUT VOLTAGE (V) Figure 19. Output Voltage vs. Input Voltage 1.5 V Version (TA = 255C) Figure 20. Output Voltage vs. Input Voltage 1.5 V Version (TA = 255C) http://onsemi.com 7 NCP4671 TYPICAL CHARACTERISTICS 1.2 0.7 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 0.8 IOUT = 1 mA 0.6 0.5 30 mA 0.4 0.3 50 mA 0.2 0.1 0 0 1 2 3 4 VBIAS, BIAS VOLTAGE (V) 1 IOUT = 1 mA 0.6 0.4 Figure 21. Output Voltage vs. Bias Voltage 0.6 V Version (TA = 255C) 1.4 IOUT = 1 mA 1.2 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 1 2 3 4 VBIAS, BIAS VOLTAGE (V) 5 0.61 30 mA 1 0.8 0.6 50 mA 0.4 0.2 0 1 2 3 4 0.605 0.6 0.595 0.59 0.585 0.58 −50 5 −25 0 25 50 75 100 VBIAS, BIAS VOLTAGE (V) TJ, JUNCTION TEMPERATURE (°C) Figure 23. Output Voltage vs. Bias Voltage 1.5 V Version (TA = 255C) Figure 24. Output Voltage vs. Temperature 0.6 V Version 1.505 VOUT, OUTPUT VOLTAGE (V) 1.015 VOUT, OUTPUT VOLTAGE (V) 0 Figure 22. Output Voltage vs. Bias Voltage 1.0 V Version (TA = 255C) 1.6 0 50 mA 0.2 0 5 30 mA 0.8 1.01 1.005 1 0.995 0.99 0.985 −50 −25 0 25 50 75 TJ, JUNCTION TEMPERATURE (°C) 100 1.5 1.495 1.49 1.485 1.48 −50 −25 0 25 50 75 TJ, JUNCTION TEMPERATURE (°C) 100 Figure 26. Output Voltage vs. Temperature 1.5 V Version Figure 25. Output Voltage vs. Temperature 1.0 V Version http://onsemi.com 8 NCP4671 TYPICAL CHARACTERISTICS 10 12 Iq, QUIECENT CURRENT (mA) Iq, QUIECENT CURRENT (mA) 14 5.25 V 10 8 3.6 V 6 4 2 VBIAS = 2.4 V 0 0 1 2 3 4 3.6 V 4 2 VBIAS = 2.4 V 0 1 3 4 5 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 28. Quiescent Current vs. Input Voltage 1.0 V Version 40 VBIAS = 3.6 V VIN = 1.1 V 9 8 5.25 V 7 6 3.6 V 5 4 3 2 36 32 28 24 VBIAS = 2.4 V 1 0 0 40 2 Figure 27. Quiescent Current vs. Input Voltage 0.6 V Version SUPPLY CURRENT (mA) Iq, QUIECENT CURRENT (mA) 5.25 V 6 0 5 10 1 2 3 4 20 −50 5 −25 0 25 50 75 100 VIN, INPUT VOLTAGE (V) TJ, JUNCTION TEMPERATURE (°C) Figure 29. Quiescent Current vs. Input Voltage 1.5 V Version Figure 30. Supply Current vs. Temperature 0.6 V Version 40 VBIAS = 3.6 V VIN = 1.5 V 36 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 8 32 28 24 20 −50 −25 0 25 50 75 TJ, JUNCTION TEMPERATURE (°C) VBIAS = 3.6 V VIN = 2.0 V 36 32 28 24 20 −50 100 −25 0 25 50 75 100 TJ, JUNCTION TEMPERATURE (°C) Figure 31. Supply Current vs. Temperature 1.0 V Version Figure 32. Supply Current vs. Temperature 1.5 V Version http://onsemi.com 9 NCP4671 TYPICAL CHARACTERISTICS 200 VDO, DROPOUT VOLTAGE (mV) VDO, DROPOUT VOLTAGE (mV) 200 160 TJ = 85°C 120 80 25°C −40°C 40 0 50 100 150 200 250 300 350 120 25°C 80 −40°C 40 100 150 200 250 300 350 400 IOUT, OUTPUT CURRENT (mA) IOUT, OUTPUT CURRENT (mA) Figure 33. Dropout Voltage vs. Output Current 0.6 V Version Figure 34. Dropout Voltage vs. Output Current 1.0 V Version 100 IOUT = 1 mA TJ = 85°C 200 80 PSRR (dB) VDO, DROPOUT VOLTAGE (mV) TJ = 85°C 0 50 400 250 150 100 25°C −40°C 60 30 mA 50 mA 40 20 50 0 160 50 100 150 200 250 300 350 0 100 400 VIN = 1.1 V + 200 mVPP modulation, VBIAS = 3.6 V, CBIAS = 1 mF 1k 10k 100k 1M 10M IOUT, OUTPUT CURRENT (mA) FREQUENCY (Hz) Figure 35. Dropout Voltage vs. Output Current 1.5 V Version Figure 36. PSRR vs. Frequency 0.6 V Version 100 100 90 IOUT = 1 mA 80 IOUT = 1 mA 80 PSRR (dB) PSRR (dB) 70 60 40 30 mA 20 0 100 10k 100k 50 40 30 30 mA 20 VIN = 1.5 V + 200 mVPP modulation, VBIAS = 3.6 V, CBIAS = 1 mF 1k 60 10 1M 10M 0 100 VIN = 2.0 V + 200 mVPP modulation, VBIAS = 3.6 V, CBIAS = 1 mF 1k 10k 100k 1M 10M FREQUENCY (Hz) FREQUENCY (Hz) Figure 37. PSRR vs. Frequency 1.0 V Version Figure 38. PSRR vs. Frequency 1.5 V Version http://onsemi.com 10 NCP4671 TYPICAL CHARACTERISTICS 100 80 PSRR (dB) 30 mA 60 IOUT = 1 mA 40 20 0 100 VIN = 1.1 V, CIN = 2.2 mF, VBIAS = 3.6 V + 200 mVPP modulation 1k 10k 100k 150 mA 1M 10M FREQUENCY (Hz) Figure 39. PSRR vs. Frequency 0.6 V Version 100 PSRR (dB) 80 30 mA 60 IOUT = 1 mA 40 20 VIN = 1.5 V, CIN = 2.2 mF, VBIAS = 3.6 V + 200 mVPP modulation 0 100 1k 10k 100k 150 mA 1M 10M FREQUENCY (Hz) Figure 40. PSRR vs. Frequency 1.0 V Version 100 90 30 mA 80 PSRR (dB) 70 60 IOUT = 1 mA 50 40 30 150 mA 20 10 VIN = 2.0 V, CIN = 2.2 mF, VBIAS = 3.6 V + 200 mVPP modulation 0 100 1k 10k 100k 1M 10M FREQUENCY (Hz) Figure 41. PSRR vs. Frequency 1.5 V Version http://onsemi.com 11 NCP4671 TYPICAL CHARACTERISTICS 4.2 3.6 3.0 VBIAS (V) VOUT (V) 2.4 0.66 0.64 0.62 0.60 0.58 VIN = 1.1 V, CIN = 2.2 mF, VBIAS = Step 2.4 V to 3.6 V 0.56 0.54 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 42. Line Transients Response, 0.6 V Version 4.2 3.6 3.0 VBIAS (V) VOUT (V) 2.4 1.04 1.02 1.00 0.98 VIN = 1.5 V, CIN = 2.2 mF, VBIAS = Step 2.4 V to 3.6 V 0.96 0.94 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 43. Line Transients Response, 1.0 V Version 4.2 3.6 3.0 1.56 VBIAS (V) VOUT (V) 2.4 1.54 1.52 1.50 1.48 VIN = 2.0 V, CIN = 2.2 mF, VBIAS = Step 2.4 V to 3.6 V 1.46 1.44 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 44. Line Transients Response, 1.5 V Version http://onsemi.com 12 NCP4671 TYPICAL CHARACTERISTICS 2.6 2.1 1.6 VIN (V) VOUT (V) 1.1 0.604 0.602 0.600 0.598 VIN = Step 1.1 V to 2.1 V, VBIAS = 3.6 V, CBIAS = 1 mF 0.596 0.594 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 45. Line Transients Response, 0.6 V Version 3.0 2.5 2.0 VIN (V) VOUT (V) 1.5 1.004 1.002 1.000 0.998 VIN = Step 1.5 V to 2.5 V, VBIAS = 3.6 V, CBIAS = 1 mF 0.996 0.994 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 46. Line Transients Response, 1.0 V Version 3.5 3.0 2.5 VIN (V) VOUT (V) 2.0 1.504 1.502 1.500 1.498 VIN = Step 2.0 V to 3.0 V, VBIAS = 3.6 V, CBIAS = 1 mF 1.496 1.494 0 20 40 60 80 100 120 140 160 180 200 t (ms) Figure 47. Line Transients Response, 1.5 V Version http://onsemi.com 13 NCP4671 TYPICAL CHARACTERISTICS 600 400 200 IOUT (mA) VOUT (V) 0 0.64 0.62 0.60 0.58 VIN = 1.1 V, VBIAS = 3.6 V, CIN = 2.2 mF, CBIAS = 1 mF 0.56 0.54 0.0 0.1 0.2 0.3 0.4 0.5 0.6 t (ms) 0.7 0.8 0.9 1.0 Figure 48. Load Transients Response, 0.6 V Version, IOUT Step 1 mA to 400 mA 600 400 200 1.06 IOUT (mA) VOUT (V) 0 1.04 1.02 1.00 0.98 VIN = 1.5 V, VBIAS = 3.6 V, CIN = 2.2 mF, CBIAS = 1 mF 0.96 0.94 0.0 0.1 0.2 0.3 0.4 0.5 0.6 t (ms) 0.7 0.8 0.9 1.0 Figure 49. Load Transients Response, 1.0 V Version, IOUT Step 1 mA to 400 mA 600 400 200 IOUT (mA) VOUT (V) 0 1.56 1.54 1.52 1.50 1.48 VIN = 2.0 V, VBIAS = 3.6 V, CIN = 2.2 mF, CBIAS = 1 mF 1.46 1.44 0.0 0.1 0.2 0.3 0.4 0.5 0.6 t (ms) 0.7 0.8 0.9 Figure 50. Load Transients Response, 1.5 V Version, IOUT Step 1 mA to 400 mA http://onsemi.com 14 1.0 NCP4671 TYPICAL CHARACTERISTICS 150 100 50 IOUT (mA) VOUT (V) 0 0.610 0.605 0.600 0.595 VIN = 1.1 V, VBIAS = 3.6 V, CIN = 2.2 mF, CBIAS = 1 mF 0.590 0.585 0.0 0.1 0.2 0.3 0.4 0.5 0.6 t (ms) 0.7 0.8 0.9 1.0 Figure 51. Load Transients Response, 0.6 V Version, IOUT Step 50 mA to 100 mA 150 100 50 IOUT (mA) VOUT (V) 0 1.010 1.005 1.000 0.995 VIN = 1.5 V, VBIAS = 3.6 V, CIN = 2.2 mF, CBIAS = 1 mF 0.990 0.985 0.0 0.1 0.2 0.3 0.4 0.5 0.6 t (ms) 0.7 0.8 0.9 1.0 Figure 52. Load Transients Response, 1.0 V Version, IOUT Step 50 mA to 100 mA 150 100 50 IOUT (mA) VOUT (V) 0 1.510 1.505 1.500 1.495 VIN = 2.0 V, VBIAS = 3.6 V, CIN = 2.2 mF, CBIAS = 1 mF 1.490 1.485 0.0 0.1 0.2 0.3 0.4 0.5 0.6 t (ms) 0.7 0.8 0.9 Figure 53. Load Transients Response, 1.5 V Version, IOUT Step 50 mA to 100 mA http://onsemi.com 15 1.0 NCP4671 TYPICAL CHARACTERISTICS 1.65 VIN 1.10 0.55 VIN (V) VOUT (V) 0.00 IOUT = 30 mA IOUT = 1 mA 0.6 0.4 IOUT = 250 mA 0.2 VBIAS = VCE = 3.6 V, COUT = 2.2 mF 0.0 0 4 8 12 16 20 24 28 32 36 40 t (ms) Figure 54. Turn On Behavior, 0.6 V Version 2.25 VIN 1.50 0.75 0.00 IOUT = 1 mA 1.0 VIN (V) VOUT (V) IOUT = 400 mA 0.8 0.6 IOUT = 30 mA 0.4 0.2 VBIAS = VCE = 3.6 V, COUT = 2.2 mF 0.0 0 4 8 12 16 20 24 28 32 36 40 t (ms) Figure 55. Turn On Behavior, 1.0 V Version 3 VIN 2 1 VIN (V) VOUT (V) 0 IOUT = 30 mA 2.0 IOUT = 1 mA 1.5 1.0 IOUT = 400 mA 0.5 VBIAS = VCE = 3.6 V, COUT = 2.2 mF 0.0 0 4 8 12 16 20 24 28 32 36 t (ms) Figure 56. Turn On Behavior, 1.5 V Version http://onsemi.com 16 40 NCP4671 TYPICAL CHARACTERISTICS 5.4 Chip Enable 3.6 1.8 VCE (V) VOUT (V) 0 IOUT = 30 mA IOUT = 1 mA 0.6 0.4 IOUT = 250 mA VIN = 1.1 V, VBIAS = 3.6 V, CIN = COUT = 2.2 mF, CBIAS = 1 mF 0.2 0.0 0 4 8 12 16 20 24 28 32 36 40 t (ms) Figure 57. Turn On Behavior with CE, 0.6 V Version 5.4 Chip Enable 3.6 1.8 0 IOUT = 1 mA 1.0 VCE (V) VOUT (V) IOUT = 30 mA 0.8 0.6 IOUT = 400 mA 0.4 0.2 VIN = 1.5 V, VBIAS = 3.6 V, CIN = COUT = 2.2 mF, CBIAS = 1 mF 0.0 0 4 8 12 16 20 24 28 32 36 40 t (ms) Figure 58. Turn On Behavior with CE, 1.0 V Version 5.4 Chip Enable 3.6 1.8 VCE (V) VOUT (V) 0 IOUT = 30 mA 2.0 IOUT = 1 mA 1.5 1.0 0.5 IOUT = 400 mA VIN = 2.5 V, VBIAS = 3.6 V, CIN = COUT = 2.2 mF, CBIAS = 1 mF 0.0 0 4 8 12 16 20 24 28 32 36 t (ms) Figure 59. Turn On Behavior with CE, 1.5 V Version http://onsemi.com 17 40 NCP4671 TYPICAL CHARACTERISTICS 5.4 VIN = 1.1 V, VBIAS = 3.6 V, CIN = COUT = 2.2 mF, CBIAS = 1 mF 3.6 1.8 0 VCE (V) VOUT (V) Chip Enable IOUT = 1 mA 0.6 0.4 IOUT = 30 mA 0.2 0.0 0.0 IOUT = 250 mA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t (ms) Figure 60. Turn Off Behavior with CE, 0.6 V Version VIN = 1.1 V, VBIAS = 3.6 V, CIN = COUT = 2.2 mF, CBIAS = 1 mF 5.4 3.6 1.0 0 Chip Enable IOUT = 1 mA VCE (V) VOUT (V) 1.8 0.8 0.6 IOUT = 30 mA 0.4 0.2 0.0 0.0 IOUT = 400 mA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t (ms) Figure 61. Turn Off Behavior with CE, 1.0 V Version 5.4 VIN = 2.0 V, VBIAS = 3.6 V, CIN = COUT = 2.2 mF, CBIAS = 1 mF VCE (V) VOUT (V) 1.8 0 Chip Enable 2.0 3.6 IOUT = 1 mA 1.5 IOUT = 30 mA 1.0 0.5 0.0 0.0 IOUT = 400 mA 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 t (ms) Figure 62. Turn Off Behavior with CE, 1.5 V Version http://onsemi.com 18 1.0 NCP4671 APPLICATION INFORMATION A typical application circuit for the NCP4671 series is shown in Figure 63. The NCP4671 has two independent inputs, VBIAS pin is used for powering control part of the LDO and its value is equal or higher than value of second input pin VIN where voltage that has to be regulated is connected. and ground pin of the NCP4671. Higher values and lower ESR of capacitor C1 improves line transient response. Output Decoupling Capacitor (C3) A 2.2 mF or larger ceramic output decoupling capacitor is sufficient to achieve stable operation of the IC. If a tantalum capacitor is used, and its ESR is high, loop oscillation may result. The capacitors should be connected as close as possible to the output and ground pins. Larger values and lower ESR improves dynamic parameters. NCP4671x VIN VIN C1 1m C2 1m VOUT VOUT VBIAS VBIAS Enable Operation C3 CE The enable pin CE may be used for turning the regulator on and off. The regulator is switched on when CE pin voltage is above logic high level. The enable pin has an internal pull down current source. If the enable function is not needed connect CE pin to VBIAS. 2m2 GND Figure 63. Typical Application Schematic Output Discharger The D version includes a transistor between VOUT and GND that is used for faster discharging of the output capacitor. This function is activated when the IC goes into disable mode. Dual rail architecture is appropriate when the regulator is connected for example behind a buck DC/DC converter. Bias voltage can be taken from input of the buck DC/DC converter and as input voltage is used output of the buck DC/DC converter as it is shown in Figure 64. Condition that bias voltage must be higher than input voltage can be in this schematic easy fulfilled. Thermal As power across the IC increases, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the ambient temperature affect the rate of temperature rise for the part. That is to say, when the device has good thermal conductivity through the PCB, the junction temperature will be relatively low with high power dissipation applications. NCP4671x VIN VIN DC/DC converter VOUT VBIAS VOUT C1 1m C2 1m CE GND C3 2m2 PCB layout Make VIN, VBIAS and GND line sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect capacitors C1, C2 and C3 as close as possible to the IC, and make wiring as short as possible. Figure 64. Typical Application Schematic with DC/DC Converter Input Decoupling Capacitors (C1 and C2) A 1 mF ceramic input decoupling capacitors should be connected as close as possible to the VIN and VBIAS input http://onsemi.com 19 NCP4671 ORDERING INFORMATION Nominal Output Voltage Marking Enable Package Shipping† NCP4671DSN06T1G 0.6 V R1A Auto−Discharge SOT−23−5 (Pb−Free) 3000 / Tape & Reel NCP4671DSN09T1G 0.9 V R1D Auto−Discharge SOT−23−5 (Pb−Free) 3000 / Tape & Reel NCP4671DSN10T1G 1.0 V R1E Auto−Discharge SOT−23−5 (Pb−Free) 3000 / Tape & Reel NCP4671DSN12T1G 1.2 V R1F Auto−Discharge SOT−23−5 (Pb−Free) 3000 / Tape & Reel NCP4671DSN13T1G 1.3 V R1G Auto−Discharge SOT−23−5 (Pb−Free) 3000 / Tape & Reel NCP4671DSN15T1G 1.5 V R1J Auto−Discharge SOT−23−5 (Pb−Free) 3000 / Tape & Reel NCP4671DMX06TCG 0.6 V BA Auto−Discharge XDFN6 (Pb−Free) 5000 / Tape & Reel NCP4671DMX09TCG 0.9 V BD Auto−Discharge XDFN6 (Pb−Free) 5000 / Tape & Reel NCP4671DMX12TCG 1.2 V BF Auto−Discharge XDFN6 (Pb−Free) 5000 / Tape & Reel NCP4671DMX13TCG 1.3 V BG Auto−Discharge XDFN6 (Pb−Free) 5000 / Tape & Reel NCP4671DMX15TCG 1.5 V BJ Auto−Discharge XDFN6 (Pb−Free) 5000 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 20 NCP4671 PACKAGE DIMENSIONS SC−88A (SC−70−5/SOT−353) CASE 419A−02 ISSUE K A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A−01 OBSOLETE. NEW STANDARD 419A−02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. G 5 4 −B− S 1 2 DIM A B C D G H J K N S 3 D 5 PL 0.2 (0.008) M B M N J C H K http://onsemi.com 21 INCHES MIN MAX 0.071 0.087 0.045 0.053 0.031 0.043 0.004 0.012 0.026 BSC --0.004 0.004 0.010 0.004 0.012 0.008 REF 0.079 0.087 MILLIMETERS MIN MAX 1.80 2.20 1.15 1.35 0.80 1.10 0.10 0.30 0.65 BSC --0.10 0.10 0.25 0.10 0.30 0.20 REF 2.00 2.20 NCP4671 PACKAGE DIMENSIONS XDFN6 1.2x1.2, 0.4P CASE 711AA−01 ISSUE O PIN ONE REFERENCE NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.25mm FROM TERMINAL TIPS. 4. COPLANARITY APPLIES TO ALL OF THE TERMINALS. A B D ÍÍÍ ÍÍÍ ÍÍÍ E DIM A A1 b C D E e L 0.05 C 2X 2X 0.05 C TOP VIEW A 0.05 C 0.05 C A1 SIDE VIEW NOTE 4 C MILLIMETERS MIN MAX --0.40 0.00 0.05 0.13 0.23 0.20 0.30 1.20 BSC 1.20 BSC 0.40 BSC 0.37 0.48 RECOMMENDED MOUNTING FOOTPRINT* SEATING PLANE 6X 6X 0.22 0.66 PACKAGE OUTLINE e 1 3 1.50 C 6X L 0.40 PITCH 6 4 DIMENSIONS: MILLIMETERS 6X 0.05 BOTTOM VIEW *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. b M C A B NOTE 3 http://onsemi.com 22 NCP4671 PACKAGE DIMENSIONS SOT−23 5−LEAD CASE 1212−01 ISSUE A A 5 E 1 L1 A1 4 2 L 3 5X e A2 0.05 S B D NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSIONS: MILLIMETERS. 3. DATUM C IS THE SEATING PLANE. A E1 b 0.10 C M C B S A S C RECOMMENDED SOLDERING FOOTPRINT* 3.30 DIM A A1 A2 b c D E E1 e L L1 MILLIMETERS MIN MAX --1.45 0.00 0.10 1.00 1.30 0.30 0.50 0.10 0.25 2.70 3.10 2.50 3.10 1.50 1.80 0.95 BSC 0.20 --0.45 0.75 5X 0.85 5X 0.95 PITCH 0.56 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 23 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NCP4671/D
NCP4671DSN15T1G
文档中的物料型号为:ATMEGA8-16AU。

器件简介:ATMEGA8-16AU 是一款低功耗、高性能的8位AVR微控制器,采用ATMEL的无铅AU封装。

引脚分配:该芯片包含40个引脚,具有多种引脚配置选项。

参数特性:工作电压为2.7-5.5V,工作频率为16MHz,具有8KB的闪存和1KB的SRAM。

功能详解:ATMEGA8-16AU 具有多种功能,包括通用I/O引脚、定时器、串行通信接口等。

应用信息:适用于各种工业和消费电子产品,如家用电器、远程控制、医疗设备等。

封装信息:采用无铅AU封装。
NCP4671DSN15T1G 价格&库存

很抱歉,暂时无法提供与“NCP4671DSN15T1G”相匹配的价格&库存,您可以联系我们找货

免费人工找货
NCP4671DSN15T1G
  •  国内价格 香港价格
  • 1+9.513531+1.13681
  • 10+8.4726110+1.01243
  • 25+8.0446725+0.96129
  • 100+6.60956100+0.78980
  • 250+6.17814250+0.73825
  • 500+5.45974500+0.65241
  • 1000+4.310321000+0.51506

库存:5862

NCP4671DSN15T1G
  •  国内价格 香港价格
  • 3000+4.022963000+0.48072
  • 6000+3.821826000+0.45669
  • 15000+3.6781315000+0.43952

库存:5862