ON Semiconductor
Is Now
To learn more about onsemi™, please visit our website at
www.onsemi.com
onsemi and and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.
NCP4671
400 mA, Dual Rail Ultra Low
Dropout Linear Regulator
The NCP4671 is a CMOS Dual Supply Rail Linear Regulator
designed to provide very low output voltages. The Dual Rail
architecture which separates the power for the LDO control circuitry
(provided via the Vbias pin) from the main power path (Vin) offers
ultra−low dropout performance, allowing the device to operate from
input voltages down to 0.9 V and to generate a fixed high accuracy
output voltage as low as 0.6 V.
The NCP4671 offers excellent transient response with very low
quiescent currents. The family is available in a variety of packages:
SC−70, SOT23 and a small, ultra thin 1.2 x 1.2 x 0.4mm XDFN.
http://onsemi.com
MARKING
DIAGRAMS
SC−70
CASE 419A
(In Development)
Features
• Bias Supply Voltage Range : 2.4 V to 5.25 V (VOUT < 0.8 V)
XXX
XMM
1
Set VOUT + 1.6 V to 5.25 V (VOUT ≥ 0.8 V)
• Power Input Voltage Range : 0.9 V to VBIAS (VOUT < 0.8 V)
•
•
•
•
•
•
•
•
•
Set VOUT + 0.1 V to VBIAS (VOUT ≥ 0.8 V)
Output Voltage Range: 0.6 to 1.5 V (available at 0.1 steps)
Very Low Dropout: 180 mV Typ. at 400 mA
Quiescent Current: 28 mA
Standby Current: 0.1 mA
±15 mV Output Voltage Accuracy (TA = 25°C)
High PSRR: 80 dB at 1 kHz (Ripple at VIN)
50 dB at 1 kHz (Ripple at VBIAS)
Current Fold Back Protection Typ. 120 mA
Available in XDFN, SC−70, SOT23 Package
These are Pb−Free Devices
XX
MM
XDFN6
CASE 711AA
1
XXXMM
SOT−23−5
CASE 1212
1
XX, XXX= Specific Device Code
M, MM = Date Code
A
= Assembly Location
Y
= Year
W
= Work Week
G
= Pb−Free Package
Typical Applications
• Battery Powered Equipments
• Portable Communication Equipments
• Cameras, VCRs and Camcorders
(*Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering, marking and shipping information in the
package dimensions section on page 20 of this data sheet.
NCP4671x
VIN
VIN
DC/DC
converter
VOUT
VBIAS
C1
1m
C2
1m
CE
VOUT
C3
2m 2
GND
Figure 1. Typical Application Schematic
© Semiconductor Components Industries, LLC, 2012
February, 2012 − Rev. 2
1
Publication Order Number:
NCP4671/D
NCP4671
NCP4671Hxxxxxxxx
NCP4671Dxxxxxxxx
VBIAS
VBIAS
VIN
VIN
VOUT
VOUT
Vref
Vref
UVLO
UVLO
Current
Limit
CE
Current
Limit
CE
GND
GND
Figure 2. Simplified Schematic Block Diagram
PIN FUNCTION DESCRIPTION
Pin No.
XDFN
Pin No.
SC−70
Pin No.
SOT23
Pin Name
1
1
4
VBIAS
Input Pin 1
2
2
2
GND
Ground Pin
3
5
3
CE
Chip Enable Pin (“H” Active)
4
4
1
VIN
Input Pin 2
5
−
−
NC
Not connected
6
3
5
VOUT
Description
Output Pin
ABSOLUTE MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VBIAS
6.0
V
VIN
−0.3 to VBIAS + 0.3
V
Output Voltage
VOUT
−0.3 to VIN + 0.3
V
Chip Enable Input
VCE
6.0
V
Output Current
IOUT
500
mA
PD
400
mW
Bias Supply Input Voltage (Note 1)
Power Supply Input Voltage (for Driver) (Note 1)
Power Dissipation XDFN
Power Dissipation SC−70
380
Power Dissipation SOT23
420
Maximum Junction Temperature
TJ(MAX)
150
°C
TSTG
−55 to 125
°C
ESD Capability, Human Body Model (Note 2)
ESDHBM
2000
V
ESD Capability, Machine Model (Note 2)
ESDMM
200
V
Storage Temperature
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.
2. This device series incorporates ESD protection and is tested by the following methods:
ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114)
ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115)
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.
http://onsemi.com
2
NCP4671
THERMAL CHARACTERISTICS
Symbol
Value
Unit
Thermal Characteristics, XDFN
Thermal Resistance, Junction−to−Air
Rating
RqJA
250
°C/W
Thermal Characteristics, SOT23
Thermal Resistance, Junction−to−Air
RqJA
238
°C/W
Thermal Characteristics, SC−70
Thermal Resistance, Junction−to−Air
RqJA
263
°C/W
ELECTRICAL CHARACTERISTICS
−40°C ≤ TA ≤ 85°C, VBIAS = VCE = 3.6 V, VIN = VOUT(NOM) + 0.5 V, IOUT = 1 mA, CBIAS = CIN = 1.0 mF, COUT = 2.2 mF, unless otherwise
noted. Typical values are at TA = +25°C.
Test Conditions
Symbol
Min
Operating Supply Input Voltage
(Note 3)
VOUT < 0.8 V
VBIAS
Operating Power Input Voltage
(Note 3)
VOUT < 0.8 V
Output Voltage
TA = +25 °C
Parameter
VOUT ≥ 0.8 V
VIN
VOUT ≥ 0.8 V
VOUT
TA = −40°C to +85°C
Output Voltage Temp. Coefficient
TA = −40°C to +85°C
Line Regulation
VBIAS = 2.4V to 5.0V
Max
Unit
2.4
5.25
V
VOUT +
1.6
5.25
0.9
VBIAS
VOUT +
0.1
VBIAS
−15
+15
−20
+20
IOUT = 1 mA to 400 mA
Dropout Voltage
Quiescent Current
mV
0.02
0.10
0.02
0.10
30
50
%/V
mV
Please refer to following detailed table.
Output Current
Short Current Limit
LoadReg
V
ppm/°C
±50
LineReg
VIN = VOUT + 0.3 V to 2.4 V
Load Regulation
Typ
IOUT
VOUT = 0 V
400
ISC
mA
120
mA
IOUT = 0 mA
IQ
28
40
mA
Standby Current
VCE = 0 V, TA = 25°C
ISTB
0.1
3
mA
CE Pin Threshold Voltage
CE Input Voltage “H”
VCEH
CE Input Voltage “L”
VCEL
CE Pull Down Current
VIN Under Voltage Lock Out
Power Supply Rejection Ratio
V
0.8
0.3
IPD
1
IOUT = 1 mA
VIN_UVLO
VOUT +
0.05
IOUT = 30 mA, f = 1 kHz, VIN Ripple 0.2 VP−P
PSRR
80
IOUT = 30 mA, f = 1 kHz, VBIAS Ripple
0.2 VP−P
mA
VOUT +
0.1
V
dB
50
Output Noise Voltage
VOUT = 0.6 V, IOUT = 30 mA, f = 10 Hz to
100 kHz
VN
70
mVrms
Low Output Nch Tr. On Resistance
D Version only, VBIAS = 3.6 V, VCE = “L“
RLOW
50
W
3. If Input Voltage range is between 5.25 V and 5.50 V, the total operational time must be within 500 hrs.
http://onsemi.com
3
NCP4671
DROPOUT VOLTAGE (VDO [V])
VDO [V] @ IOUT = 300 mA
VDO [V] @ IOUT = 200 mA (TA = 255C)
VDO [V] @ IOUT = 400 mA
TA = 255C
TA = −405C
to +855C
TA = 255C
TA = −405C
to +855C
VOUT / VBIAS
2.5 V
3.0 V
3.3 V
3.6 V
4.2 V
5.0 V
3.6 V
3.6 V
3.6 V
3.6 V
0.6 V
0.094
0.093
0.093
0.092
0.092
0.091
0.115
0.180
0.180
0.320
0.7 V
0.094
0.093
0.093
0.092
0.092
0.092
0.120
0.190
0.180
0.320
0.8 V
0.098
0.093
0.093
0.092
0.092
0.092
0.120
0.190
0.180
0.300
0.9 V
0.098
0.094
0.093
0.092
0.092
0.092
0.120
0.190
0.180
0.300
1.0 V
0.094
0.093
0.092
0.092
0.092
0.120
0.190
0.180
0.280
1.2 V
0.098
0.096
0.095
0.095
0.094
0.130
0.200
0.180
0.280
0.098
0.096
0.095
0.095
0.095
0.130
0.200
0.180
0.260
1.4 V
0.098
0.096
0.095
0.095
0.095
0.130
0.200
0.180
0.260
1.5 V
*
0.096
0.095
0.095
0.095
0.130
0.200
0.180
0.260
1.3 V
*
*VBIAS voltage must be equal or more than VOUT(NOM) + 1.6 V
http://onsemi.com
4
NCP4671
TYPICAL CHARACTERISTICS
0.7
VBIAS = 2.40 V
0.6
0.5
VIN = 0.79 V
0.4
2.40 V
0.3
0.2
1.10 V
0.1
VOUT, OUTPUT VOLTAGE (V)
VOUT, OUTPUT VOLTAGE (V)
0.7
0.5
0
100
200
300
400
500
600
0.4
0.3
0.2
1.10 V
0.1
700
800
0
900
100
200
300
400
500
600
700
800
IOUT, OUTPUT CURRENT (mA)
IOUT, OUTPUT CURRENT (mA)
Figure 3. Output Voltage vs. Output Current
0.6 V Version (TA = 255C)
Figure 4. Output Voltage vs. Output Current
0.6 V Version (TA = 255C)
0.7
0.5
VIN = 0.79 V
0.4
0.3
0.2
1.10 V
5.25 V
VBIAS = 2.60 V
VOUT, OUTPUT VOLTAGE (V)
0.6
0.1
900
1.2
VBIAS = 5.25 V
0.0
1.0
VIN = 1.22 V
0.8
1.50 V
0.6
2.60 V
0.4
0.2
0.0
0
100
200 300 400 500 600 700
IOUT, OUTPUT CURRENT (mA)
800
0
900
Figure 5. Output Voltage vs. Output Current
0.6 V Version (TA = 255C)
1.2
VIN = 1.22 V
0.8
1.50 V
0.6
0.4
3.60 V
0.2
100
200
300
400
500
600
700
800
800
900
VBIAS = 5.25 V
0.0
0
200 300 400 500 600 700
IOUT, OUTPUT CURRENT (mA)
1.2
VBIAS = 3.60 V
1.0
100
Figure 6. Output Voltage vs. Output Current
1.0 V Version (TA = 255C)
VOUT, OUTPUT VOLTAGE (V)
VOUT, OUTPUT VOLTAGE (V)
3.60 V
VIN = 0.79 V
0.0
0.0
VOUT, OUTPUT VOLTAGE (V)
VBIAS = 3.60 V
0.6
900
1.0
VIN = 1.22 V
0.8
1.50 V
0.6
0.4
5.25 V
0.2
0.0
0
100
200
300
400
500
600
700
800
IOUT, OUTPUT CURRENT (mA)
IOUT, OUTPUT CURRENT (mA)
Figure 7. Output Voltage vs. Output Current
1.0 V Version (TA = 255C)
Figure 8. Output Voltage vs. Output Current
1.0 V Version (TA = 255C)
http://onsemi.com
5
900
NCP4671
TYPICAL CHARACTERISTICS
1.6
1.4
VIN = 1.76 V
1.2
2.00 V
1.0
0.8
0.6
3.10 V
0.4
0.2
0.0
VOUT, OUTPUT VOLTAGE (V)
VOUT, OUTPUT VOLTAGE (V)
1.6
VBIAS = 3.10 V
0
100 200 300 400 500 600 700 800 900 1000
2.00 V
1.0
0.8
0.6
3.60 V
0.4
0.2
0.0
VBIAS = 3.60 V
0
100 200 300 400 500 600 700 800 900 1000
IOUT, OUTPUT CURRENT (mA)
Figure 9. Output Voltage vs. Output Current
1.5 V Version (TA = 255C)
Figure 10. Output Voltage vs. Output Current
1.5 V Version (TA = 255C)
0.7
1.4
VIN = 1.76 V
1.2
VOUT, OUTPUT VOLTAGE (V)
VOUT, OUTPUT VOLTAGE (V)
VIN = 1.72 V
1.2
IOUT, OUTPUT CURRENT (mA)
1.6
2.00 V
1.0
0.8
0.6
5.25 V
0.4
0.2
0.0
1.4
VBIAS = 5.25 V
0
100 200 300 400 500 600 700 800 900 1000
0.6
0.5
IOUT = 1 mA
0.4
30 mA
0.3
50 mA
0.2
0.1
0
VBIAS = 2.4 V
0
1
IOUT, OUTPUT CURRENT (mA)
0.7
0.7
0.6
0.6
IOUT = 1 mA
0.4
0.3
30 mA
0.2
50 mA
0.1
0
VBIAS = 3.6 V
0
1
2
3
4
3
4
5
Figure 12. Output Voltage vs. Input Voltage
0.6 V Version (TA = 255C)
VOUT, OUTPUT VOLTAGE (V)
VOUT, OUTPUT VOLTAGE (V)
Figure 11. Output Voltage vs. Output Current
1.5 V Version (TA = 255C)
0.5
2
VIN, INPUT VOLTAGE (V)
0.5
0.4
30 mA
0.3
50 mA
0.2
0.1
0
5
IOUT = 1 mA
VBIAS = 5.25 V
0
1
2
3
4
5
VIN, INPUT VOLTAGE (V)
VIN, INPUT VOLTAGE (V)
Figure 13. Output Voltage vs. Input Voltage
0.6 V Version (TA = 255C)
Figure 14. Output Voltage vs. Input Voltage
0.6 V Version (TA = 255C)
http://onsemi.com
6
NCP4671
TYPICAL CHARACTERISTICS
1.2
VOUT, OUTPUT VOLTAGE (V)
VOUT, OUTPUT VOLTAGE (V)
1.2
1
0.8
IOUT = 1 mA
0.6
30 mA
0.4
50 mA
0.2
1
0.8
IOUT = 1 mA
0.6
30 mA
0.4
50 mA
0.2
VBIAS = 2.6 V
0
0
1
2
3
4
VBIAS = 3.2 V
0
5
4
5
1.6
VOUT, OUTPUT VOLTAGE (V)
VOUT, OUTPUT VOLTAGE (V)
3
Figure 16. Output Voltage vs. Input Voltage
1.0 V Version (TA = 255C)
0.8
IOUT = 1 mA
0.6
30 mA
0.4
50 mA
0.2
VBIAS = 5.25 V
0
1
2
3
4
VIN, INPUT VOLTAGE (V)
1.4
1.2
1
30 mA
0.6
0.4
50 mA
0.2
0
5
IOUT = 1 mA
0.8
VBIAS = 3.1 V
0
Figure 17. Output Voltage vs. Input Voltage
1.0 V Version (TA = 255C)
1.6
1.6
1.4
1.4
1.2
1
0.8
IOUT = 1 mA
0.6
30 mA
0.4
50 mA
0.2
VBIAS = 3.6 V
0
1
2
3
4
VIN, INPUT VOLTAGE (V)
1
2
3
4
VIN, INPUT VOLTAGE (V)
5
Figure 18. Output Voltage vs. Input Voltage
1.5 V Version (TA = 255C)
VOUT, OUTPUT VOLTAGE (V)
VOUT, OUTPUT VOLTAGE (V)
2
Figure 15. Output Voltage vs. Input Voltage
1.0 V Version (TA = 255C)
1
0
1
VIN, INPUT VOLTAGE (V)
1.2
0
0
VIN, INPUT VOLTAGE (V)
1.2
1
30 mA
0.6
0.4
50 mA
0.2
0
5
IOUT = 1 mA
0.8
VBIAS = 5.25 V
0
1
2
3
4
5
VIN, INPUT VOLTAGE (V)
Figure 19. Output Voltage vs. Input Voltage
1.5 V Version (TA = 255C)
Figure 20. Output Voltage vs. Input Voltage
1.5 V Version (TA = 255C)
http://onsemi.com
7
NCP4671
TYPICAL CHARACTERISTICS
1.2
0.7
VOUT, OUTPUT VOLTAGE (V)
VOUT, OUTPUT VOLTAGE (V)
0.8
IOUT = 1 mA
0.6
0.5
30 mA
0.4
0.3
50 mA
0.2
0.1
0
0
1
2
3
4
VBIAS, BIAS VOLTAGE (V)
1
IOUT = 1 mA
0.6
0.4
Figure 21. Output Voltage vs. Bias Voltage 0.6 V
Version (TA = 255C)
1.4
IOUT = 1 mA
1.2
VOUT, OUTPUT VOLTAGE (V)
VOUT, OUTPUT VOLTAGE (V)
1
2
3
4
VBIAS, BIAS VOLTAGE (V)
5
0.61
30 mA
1
0.8
0.6
50 mA
0.4
0.2
0
1
2
3
4
0.605
0.6
0.595
0.59
0.585
0.58
−50
5
−25
0
25
50
75
100
VBIAS, BIAS VOLTAGE (V)
TJ, JUNCTION TEMPERATURE (°C)
Figure 23. Output Voltage vs. Bias Voltage 1.5 V
Version (TA = 255C)
Figure 24. Output Voltage vs. Temperature 0.6 V
Version
1.505
VOUT, OUTPUT VOLTAGE (V)
1.015
VOUT, OUTPUT VOLTAGE (V)
0
Figure 22. Output Voltage vs. Bias Voltage 1.0 V
Version (TA = 255C)
1.6
0
50 mA
0.2
0
5
30 mA
0.8
1.01
1.005
1
0.995
0.99
0.985
−50
−25
0
25
50
75
TJ, JUNCTION TEMPERATURE (°C)
100
1.5
1.495
1.49
1.485
1.48
−50
−25
0
25
50
75
TJ, JUNCTION TEMPERATURE (°C)
100
Figure 26. Output Voltage vs. Temperature 1.5 V
Version
Figure 25. Output Voltage vs. Temperature 1.0 V
Version
http://onsemi.com
8
NCP4671
TYPICAL CHARACTERISTICS
10
12
Iq, QUIECENT CURRENT (mA)
Iq, QUIECENT CURRENT (mA)
14
5.25 V
10
8
3.6 V
6
4
2
VBIAS = 2.4 V
0
0
1
2
3
4
3.6 V
4
2
VBIAS = 2.4 V
0
1
3
4
5
VIN, INPUT VOLTAGE (V)
VIN, INPUT VOLTAGE (V)
Figure 28. Quiescent Current vs. Input Voltage
1.0 V Version
40
VBIAS = 3.6 V
VIN = 1.1 V
9
8
5.25 V
7
6
3.6 V
5
4
3
2
36
32
28
24
VBIAS = 2.4 V
1
0
0
40
2
Figure 27. Quiescent Current vs. Input Voltage
0.6 V Version
SUPPLY CURRENT (mA)
Iq, QUIECENT CURRENT (mA)
5.25 V
6
0
5
10
1
2
3
4
20
−50
5
−25
0
25
50
75
100
VIN, INPUT VOLTAGE (V)
TJ, JUNCTION TEMPERATURE (°C)
Figure 29. Quiescent Current vs. Input Voltage
1.5 V Version
Figure 30. Supply Current vs. Temperature 0.6 V
Version
40
VBIAS = 3.6 V
VIN = 1.5 V
36
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
8
32
28
24
20
−50
−25
0
25
50
75
TJ, JUNCTION TEMPERATURE (°C)
VBIAS = 3.6 V
VIN = 2.0 V
36
32
28
24
20
−50
100
−25
0
25
50
75
100
TJ, JUNCTION TEMPERATURE (°C)
Figure 31. Supply Current vs. Temperature 1.0 V
Version
Figure 32. Supply Current vs. Temperature 1.5 V
Version
http://onsemi.com
9
NCP4671
TYPICAL CHARACTERISTICS
200
VDO, DROPOUT VOLTAGE (mV)
VDO, DROPOUT VOLTAGE (mV)
200
160
TJ = 85°C
120
80
25°C
−40°C
40
0
50
100
150
200
250
300
350
120
25°C
80
−40°C
40
100
150
200
250
300
350
400
IOUT, OUTPUT CURRENT (mA)
IOUT, OUTPUT CURRENT (mA)
Figure 33. Dropout Voltage vs. Output Current
0.6 V Version
Figure 34. Dropout Voltage vs. Output Current
1.0 V Version
100
IOUT = 1 mA
TJ = 85°C
200
80
PSRR (dB)
VDO, DROPOUT VOLTAGE (mV)
TJ = 85°C
0
50
400
250
150
100
25°C
−40°C
60
30 mA
50 mA
40
20
50
0
160
50
100
150
200
250
300
350
0
100
400
VIN = 1.1 V + 200 mVPP modulation,
VBIAS = 3.6 V, CBIAS = 1 mF
1k
10k
100k
1M
10M
IOUT, OUTPUT CURRENT (mA)
FREQUENCY (Hz)
Figure 35. Dropout Voltage vs. Output Current
1.5 V Version
Figure 36. PSRR vs. Frequency 0.6 V Version
100
100
90
IOUT = 1 mA
80
IOUT = 1 mA
80
PSRR (dB)
PSRR (dB)
70
60
40
30 mA
20
0
100
10k
100k
50
40
30
30 mA
20
VIN = 1.5 V + 200 mVPP modulation,
VBIAS = 3.6 V, CBIAS = 1 mF
1k
60
10
1M
10M
0
100
VIN = 2.0 V + 200 mVPP modulation,
VBIAS = 3.6 V, CBIAS = 1 mF
1k
10k
100k
1M
10M
FREQUENCY (Hz)
FREQUENCY (Hz)
Figure 37. PSRR vs. Frequency 1.0 V Version
Figure 38. PSRR vs. Frequency 1.5 V Version
http://onsemi.com
10
NCP4671
TYPICAL CHARACTERISTICS
100
80
PSRR (dB)
30 mA
60
IOUT = 1 mA
40
20
0
100
VIN = 1.1 V, CIN = 2.2 mF,
VBIAS = 3.6 V + 200 mVPP modulation
1k
10k
100k
150 mA
1M
10M
FREQUENCY (Hz)
Figure 39. PSRR vs. Frequency 0.6 V Version
100
PSRR (dB)
80
30 mA
60
IOUT = 1 mA
40
20
VIN = 1.5 V, CIN = 2.2 mF,
VBIAS = 3.6 V + 200 mVPP modulation
0
100
1k
10k
100k
150 mA
1M
10M
FREQUENCY (Hz)
Figure 40. PSRR vs. Frequency 1.0 V Version
100
90
30 mA
80
PSRR (dB)
70
60
IOUT = 1 mA
50
40
30
150 mA
20
10
VIN = 2.0 V, CIN = 2.2 mF,
VBIAS = 3.6 V + 200 mVPP modulation
0
100
1k
10k
100k
1M
10M
FREQUENCY (Hz)
Figure 41. PSRR vs. Frequency 1.5 V Version
http://onsemi.com
11
NCP4671
TYPICAL CHARACTERISTICS
4.2
3.6
3.0
VBIAS (V)
VOUT (V)
2.4
0.66
0.64
0.62
0.60
0.58
VIN = 1.1 V, CIN = 2.2 mF,
VBIAS = Step 2.4 V to 3.6 V
0.56
0.54
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 42. Line Transients Response, 0.6 V
Version
4.2
3.6
3.0
VBIAS (V)
VOUT (V)
2.4
1.04
1.02
1.00
0.98
VIN = 1.5 V, CIN = 2.2 mF,
VBIAS = Step 2.4 V to 3.6 V
0.96
0.94
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 43. Line Transients Response, 1.0 V
Version
4.2
3.6
3.0
1.56
VBIAS (V)
VOUT (V)
2.4
1.54
1.52
1.50
1.48
VIN = 2.0 V, CIN = 2.2 mF,
VBIAS = Step 2.4 V to 3.6 V
1.46
1.44
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 44. Line Transients Response, 1.5 V
Version
http://onsemi.com
12
NCP4671
TYPICAL CHARACTERISTICS
2.6
2.1
1.6
VIN (V)
VOUT (V)
1.1
0.604
0.602
0.600
0.598
VIN = Step 1.1 V to 2.1 V,
VBIAS = 3.6 V, CBIAS = 1 mF
0.596
0.594
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 45. Line Transients Response, 0.6 V
Version
3.0
2.5
2.0
VIN (V)
VOUT (V)
1.5
1.004
1.002
1.000
0.998
VIN = Step 1.5 V to 2.5 V,
VBIAS = 3.6 V, CBIAS = 1 mF
0.996
0.994
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 46. Line Transients Response, 1.0 V
Version
3.5
3.0
2.5
VIN (V)
VOUT (V)
2.0
1.504
1.502
1.500
1.498
VIN = Step 2.0 V to 3.0 V,
VBIAS = 3.6 V, CBIAS = 1 mF
1.496
1.494
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 47. Line Transients Response, 1.5 V
Version
http://onsemi.com
13
NCP4671
TYPICAL CHARACTERISTICS
600
400
200
IOUT (mA)
VOUT (V)
0
0.64
0.62
0.60
0.58
VIN = 1.1 V, VBIAS = 3.6 V,
CIN = 2.2 mF, CBIAS = 1 mF
0.56
0.54
0.0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 48. Load Transients Response, 0.6 V
Version, IOUT Step 1 mA to 400 mA
600
400
200
1.06
IOUT (mA)
VOUT (V)
0
1.04
1.02
1.00
0.98
VIN = 1.5 V, VBIAS = 3.6 V,
CIN = 2.2 mF, CBIAS = 1 mF
0.96
0.94
0.0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 49. Load Transients Response, 1.0 V
Version, IOUT Step 1 mA to 400 mA
600
400
200
IOUT (mA)
VOUT (V)
0
1.56
1.54
1.52
1.50
1.48
VIN = 2.0 V, VBIAS = 3.6 V,
CIN = 2.2 mF, CBIAS = 1 mF
1.46
1.44
0.0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
Figure 50. Load Transients Response, 1.5 V
Version, IOUT Step 1 mA to 400 mA
http://onsemi.com
14
1.0
NCP4671
TYPICAL CHARACTERISTICS
150
100
50
IOUT (mA)
VOUT (V)
0
0.610
0.605
0.600
0.595
VIN = 1.1 V, VBIAS = 3.6 V,
CIN = 2.2 mF, CBIAS = 1 mF
0.590
0.585
0.0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 51. Load Transients Response, 0.6 V
Version, IOUT Step 50 mA to 100 mA
150
100
50
IOUT (mA)
VOUT (V)
0
1.010
1.005
1.000
0.995
VIN = 1.5 V, VBIAS = 3.6 V,
CIN = 2.2 mF, CBIAS = 1 mF
0.990
0.985
0.0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
1.0
Figure 52. Load Transients Response, 1.0 V
Version, IOUT Step 50 mA to 100 mA
150
100
50
IOUT (mA)
VOUT (V)
0
1.510
1.505
1.500
1.495
VIN = 2.0 V, VBIAS = 3.6 V,
CIN = 2.2 mF, CBIAS = 1 mF
1.490
1.485
0.0
0.1
0.2
0.3
0.4
0.5 0.6
t (ms)
0.7
0.8
0.9
Figure 53. Load Transients Response, 1.5 V
Version, IOUT Step 50 mA to 100 mA
http://onsemi.com
15
1.0
NCP4671
TYPICAL CHARACTERISTICS
1.65
VIN
1.10
0.55
VIN (V)
VOUT (V)
0.00
IOUT = 30 mA
IOUT = 1 mA
0.6
0.4
IOUT = 250 mA
0.2
VBIAS = VCE = 3.6 V,
COUT = 2.2 mF
0.0
0
4
8
12
16
20
24
28
32
36
40
t (ms)
Figure 54. Turn On Behavior, 0.6 V Version
2.25
VIN
1.50
0.75
0.00
IOUT = 1 mA
1.0
VIN (V)
VOUT (V)
IOUT = 400 mA
0.8
0.6
IOUT = 30 mA
0.4
0.2
VBIAS = VCE = 3.6 V,
COUT = 2.2 mF
0.0
0
4
8
12
16
20
24
28
32
36
40
t (ms)
Figure 55. Turn On Behavior, 1.0 V Version
3
VIN
2
1
VIN (V)
VOUT (V)
0
IOUT = 30 mA
2.0
IOUT = 1 mA
1.5
1.0
IOUT = 400 mA
0.5
VBIAS = VCE = 3.6 V,
COUT = 2.2 mF
0.0
0
4
8
12
16
20
24
28
32
36
t (ms)
Figure 56. Turn On Behavior, 1.5 V Version
http://onsemi.com
16
40
NCP4671
TYPICAL CHARACTERISTICS
5.4
Chip Enable
3.6
1.8
VCE (V)
VOUT (V)
0
IOUT = 30 mA
IOUT = 1 mA
0.6
0.4
IOUT = 250 mA
VIN = 1.1 V, VBIAS = 3.6 V,
CIN = COUT = 2.2 mF, CBIAS = 1 mF
0.2
0.0
0
4
8
12
16
20
24
28
32
36
40
t (ms)
Figure 57. Turn On Behavior with CE, 0.6 V
Version
5.4
Chip Enable
3.6
1.8
0
IOUT = 1 mA
1.0
VCE (V)
VOUT (V)
IOUT = 30 mA
0.8
0.6
IOUT = 400 mA
0.4
0.2
VIN = 1.5 V, VBIAS = 3.6 V,
CIN = COUT = 2.2 mF, CBIAS = 1 mF
0.0
0
4
8
12
16
20
24
28
32
36
40
t (ms)
Figure 58. Turn On Behavior with CE, 1.0 V
Version
5.4
Chip Enable
3.6
1.8
VCE (V)
VOUT (V)
0
IOUT = 30 mA
2.0
IOUT = 1 mA
1.5
1.0
0.5
IOUT = 400 mA
VIN = 2.5 V, VBIAS = 3.6 V,
CIN = COUT = 2.2 mF, CBIAS = 1 mF
0.0
0
4
8
12
16
20
24
28
32
36
t (ms)
Figure 59. Turn On Behavior with CE, 1.5 V
Version
http://onsemi.com
17
40
NCP4671
TYPICAL CHARACTERISTICS
5.4
VIN = 1.1 V, VBIAS = 3.6 V,
CIN = COUT = 2.2 mF, CBIAS = 1 mF
3.6
1.8
0
VCE (V)
VOUT (V)
Chip Enable
IOUT = 1 mA
0.6
0.4
IOUT = 30 mA
0.2
0.0
0.0
IOUT = 250 mA
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
t (ms)
Figure 60. Turn Off Behavior with CE, 0.6 V
Version
VIN = 1.1 V, VBIAS = 3.6 V,
CIN = COUT = 2.2 mF, CBIAS = 1 mF
5.4
3.6
1.0
0
Chip Enable
IOUT = 1 mA
VCE (V)
VOUT (V)
1.8
0.8
0.6
IOUT = 30 mA
0.4
0.2
0.0
0.0
IOUT = 400 mA
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
t (ms)
Figure 61. Turn Off Behavior with CE, 1.0 V
Version
5.4
VIN = 2.0 V, VBIAS = 3.6 V,
CIN = COUT = 2.2 mF, CBIAS = 1 mF
VCE (V)
VOUT (V)
1.8
0
Chip Enable
2.0
3.6
IOUT = 1 mA
1.5
IOUT = 30 mA
1.0
0.5
0.0
0.0
IOUT = 400 mA
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
t (ms)
Figure 62. Turn Off Behavior with CE, 1.5 V
Version
http://onsemi.com
18
1.0
NCP4671
APPLICATION INFORMATION
A typical application circuit for the NCP4671 series is
shown in Figure 63. The NCP4671 has two independent
inputs, VBIAS pin is used for powering control part of the
LDO and its value is equal or higher than value of second
input pin VIN where voltage that has to be regulated is
connected.
and ground pin of the NCP4671. Higher values and lower
ESR of capacitor C1 improves line transient response.
Output Decoupling Capacitor (C3)
A 2.2 mF or larger ceramic output decoupling capacitor is
sufficient to achieve stable operation of the IC. If a tantalum
capacitor is used, and its ESR is high, loop oscillation may
result. The capacitors should be connected as close as
possible to the output and ground pins. Larger values and
lower ESR improves dynamic parameters.
NCP4671x
VIN
VIN
C1
1m
C2
1m
VOUT
VOUT
VBIAS
VBIAS
Enable Operation
C3
CE
The enable pin CE may be used for turning the regulator
on and off. The regulator is switched on when CE pin voltage
is above logic high level. The enable pin has an internal pull
down current source. If the enable function is not needed
connect CE pin to VBIAS.
2m2
GND
Figure 63. Typical Application Schematic
Output Discharger
The D version includes a transistor between VOUT and
GND that is used for faster discharging of the output
capacitor. This function is activated when the IC goes into
disable mode.
Dual rail architecture is appropriate when the regulator is
connected for example behind a buck DC/DC converter.
Bias voltage can be taken from input of the buck DC/DC
converter and as input voltage is used output of the buck
DC/DC converter as it is shown in Figure 64. Condition that
bias voltage must be higher than input voltage can be in this
schematic easy fulfilled.
Thermal
As power across the IC increases, it might become
necessary to provide some thermal relief. The maximum
power dissipation supported by the device is dependent
upon board design and layout. Mounting pad configuration
on the PCB, the board material, and also the ambient
temperature affect the rate of temperature rise for the part.
That is to say, when the device has good thermal
conductivity through the PCB, the junction temperature will
be relatively low with high power dissipation applications.
NCP4671x
VIN
VIN
DC/DC
converter
VOUT
VBIAS VOUT
C1
1m
C2
1m
CE GND
C3
2m2
PCB layout
Make VIN, VBIAS and GND line sufficient. If their
impedance is high, noise pickup or unstable operation may
result. Connect capacitors C1, C2 and C3 as close as possible
to the IC, and make wiring as short as possible.
Figure 64. Typical Application Schematic with DC/DC
Converter
Input Decoupling Capacitors (C1 and C2)
A 1 mF ceramic input decoupling capacitors should be
connected as close as possible to the VIN and VBIAS input
http://onsemi.com
19
NCP4671
ORDERING INFORMATION
Nominal
Output Voltage
Marking
Enable
Package
Shipping†
NCP4671DSN06T1G
0.6 V
R1A
Auto−Discharge
SOT−23−5
(Pb−Free)
3000 / Tape
& Reel
NCP4671DSN09T1G
0.9 V
R1D
Auto−Discharge
SOT−23−5
(Pb−Free)
3000 / Tape
& Reel
NCP4671DSN10T1G
1.0 V
R1E
Auto−Discharge
SOT−23−5
(Pb−Free)
3000 / Tape
& Reel
NCP4671DSN12T1G
1.2 V
R1F
Auto−Discharge
SOT−23−5
(Pb−Free)
3000 / Tape
& Reel
NCP4671DSN13T1G
1.3 V
R1G
Auto−Discharge
SOT−23−5
(Pb−Free)
3000 / Tape
& Reel
NCP4671DSN15T1G
1.5 V
R1J
Auto−Discharge
SOT−23−5
(Pb−Free)
3000 / Tape
& Reel
NCP4671DMX06TCG
0.6 V
BA
Auto−Discharge
XDFN6
(Pb−Free)
5000 / Tape
& Reel
NCP4671DMX09TCG
0.9 V
BD
Auto−Discharge
XDFN6
(Pb−Free)
5000 / Tape
& Reel
NCP4671DMX12TCG
1.2 V
BF
Auto−Discharge
XDFN6
(Pb−Free)
5000 / Tape
& Reel
NCP4671DMX13TCG
1.3 V
BG
Auto−Discharge
XDFN6
(Pb−Free)
5000 / Tape
& Reel
NCP4671DMX15TCG
1.5 V
BJ
Auto−Discharge
XDFN6
(Pb−Free)
5000 / Tape
& Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
20
NCP4671
PACKAGE DIMENSIONS
SC−88A (SC−70−5/SOT−353)
CASE 419A−02
ISSUE K
A
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A−01 OBSOLETE. NEW STANDARD
419A−02.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
G
5
4
−B−
S
1
2
DIM
A
B
C
D
G
H
J
K
N
S
3
D 5 PL
0.2 (0.008)
M
B
M
N
J
C
H
K
http://onsemi.com
21
INCHES
MIN
MAX
0.071
0.087
0.045
0.053
0.031
0.043
0.004
0.012
0.026 BSC
--0.004
0.004
0.010
0.004
0.012
0.008 REF
0.079
0.087
MILLIMETERS
MIN
MAX
1.80
2.20
1.15
1.35
0.80
1.10
0.10
0.30
0.65 BSC
--0.10
0.10
0.25
0.10
0.30
0.20 REF
2.00
2.20
NCP4671
PACKAGE DIMENSIONS
XDFN6 1.2x1.2, 0.4P
CASE 711AA−01
ISSUE O
PIN ONE
REFERENCE
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.25mm FROM TERMINAL TIPS.
4. COPLANARITY APPLIES TO ALL OF THE
TERMINALS.
A
B
D
ÍÍÍ
ÍÍÍ
ÍÍÍ
E
DIM
A
A1
b
C
D
E
e
L
0.05 C
2X
2X
0.05 C
TOP VIEW
A
0.05 C
0.05 C
A1
SIDE VIEW
NOTE 4
C
MILLIMETERS
MIN
MAX
--0.40
0.00
0.05
0.13
0.23
0.20
0.30
1.20 BSC
1.20 BSC
0.40 BSC
0.37
0.48
RECOMMENDED
MOUNTING FOOTPRINT*
SEATING
PLANE
6X
6X
0.22
0.66
PACKAGE
OUTLINE
e
1
3
1.50
C
6X
L
0.40
PITCH
6
4
DIMENSIONS: MILLIMETERS
6X
0.05
BOTTOM VIEW
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
b
M
C A B
NOTE 3
http://onsemi.com
22
NCP4671
PACKAGE DIMENSIONS
SOT−23 5−LEAD
CASE 1212−01
ISSUE A
A
5
E
1
L1
A1
4
2
L
3
5X
e
A2
0.05 S
B
D
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSIONS: MILLIMETERS.
3. DATUM C IS THE SEATING PLANE.
A
E1
b
0.10
C
M
C B
S
A
S
C
RECOMMENDED
SOLDERING FOOTPRINT*
3.30
DIM
A
A1
A2
b
c
D
E
E1
e
L
L1
MILLIMETERS
MIN
MAX
--1.45
0.00
0.10
1.00
1.30
0.30
0.50
0.10
0.25
2.70
3.10
2.50
3.10
1.50
1.80
0.95 BSC
0.20
--0.45
0.75
5X
0.85
5X
0.95
PITCH
0.56
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
23
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NCP4671/D