0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCP4680DSQ08T1G

NCP4680DSQ08T1G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT-353(SC-88A)

  • 描述:

    IC REG LINEAR 0.8V 150MA SC88A

  • 详情介绍
  • 数据手册
  • 价格&库存
NCP4680DSQ08T1G 数据手册
ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and       and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others. NCP4680 150 mA, Low Noise Low Dropout Regulator The NCP4680 is a CMOS linear voltage regulator with 150 mA output current capability. The device is available in a tiny 0.8x0.8 mm XDFN, and has high output voltage accuracy, low supply current and high ripple rejection. The NCP4680 is easy to use and includes output current fold−back protection. A Chip Enable function is included to save power by lowering supply current. The line and load transient responses are very good, making this regulator ideal for use as a power supply for communication equipment. Features • • • • • • • • • • • Operating Input Voltage Range: 1.40 V to 5.25 V Output Voltage Range: 0.8 V to 3.6 V (available in 0.1 V steps) Output Voltage Accuracy: ±1.0% Supply Current: 50 mA typical Dropout Voltage: 0.25 V (IOUT = 150 mA, VOUT = 2.5 V) High PSRR: 75 dB (f = 1 kHz, VOUT = 2.5 V) Line Regulation: 0.02%/V Typ. Stable with Ceramic Capacitors: 0.1 mF or more Current Fold Back Protection Available in XDFN4 0.8 x 0.8 mm, SC−70, SOT23 Packages These are Pb−Free Devices http://onsemi.com MARKING DIAGRAMS XXX XMM SC−70 CASE 419A XX M SOT−23−5 CASE 1212 1 XDFN4 CASE 711AB 1 XM M Typical Applications • • • • Battery−powered Equipment Networking and Communication Equipment Cameras, DVRs, STB and Camcorders Home Appliances XX, XXX= Specific Device Code M, MM = Date Code A = Assembly Location Y = Year W = Work Week G = Pb−Free Package NCP4680x VIN VIN CE C1 100n VOUT VOUT GND (Note: Microdot may be in either location) ORDERING INFORMATION C2 100n See detailed ordering and shipping information in the package dimensions section on page 17 of this data sheet. Figure 1. Typical Application Schematic © Semiconductor Components Industries, LLC, 2011 June, 2011 − Rev. 1 1 Publication Order Number: NCP4680/D NCP4680 VIN VOUT VIN Vref VOUT Vref Current Limit CE CE Current Limit GND GND NCP4680Hxxxx NCP4680Dxxxx Figure 2. Simplified Schematic Block Diagram PIN FUNCTION DESCRIPTION Pin No. XDFN4* Pin No. SC−70 Pin No. SOT23 Pin Name 1 4 5 VOUT Output pin 2 3 2 GND Ground 3 1 3 CE Chip enable pin (Active “H”) 4 5 1 VIN Input pin − 2 4 NC No connection Description *Tab is GND level. (They are connected to the reverse side of this IC. The tab is better to be connected to the GND, but leaving it open is also acceptable. ABSOLUTE MAXIMUM RATINGS Rating Input Voltage (Note 1) Output Voltage Symbol Value Unit VIN 6.0 V VOUT −0.3 to VIN + 0.3 V Chip Enable Input VCE 6.0 V Output Current IOUT 180 mA 286 mW Power Dissipation XDFN0808 Power Dissipation SC−70 PD Power Dissipation SOT23 380 420 Junction Temperature Storage Temperature TJ −40 to 150 °C TSTG −55 to 125 °C ESD Capability, Human Body Model (Note 2) ESDHBM 2000 V ESD Capability, Machine Model (Note 2) ESDMM 200 V Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area. 2. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114) ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115) Latch−up Current Maximum Rating tested per JEDEC standard: JESD78. http://onsemi.com 2 NCP4680 THERMAL CHARACTERISTICS Symbol Value Unit Thermal Characteristics, XDFN 0.8 x 0.8 mm Thermal Resistance, Junction−to−Air Rating RqJA 350 °C/W Thermal Characteristics, SOT23 Thermal Resistance, Junction−to−Air RqJA 238 °C/W Thermal Characteristics, SC−70 Thermal Resistance, Junction−to−Air RqJA 263 °C/W ELECTRICAL CHARACTERISTICS −40°C ≤ TA ≤ 85°C; VIN = VOUT(NOM) + 1 V or 2.5 V, whichever is greater; IOUT = 1 mA, CIN = COUT = 0.1 mF, unless otherwise noted. Typical values are at TA = +25°C. Parameter Test Conditions Operating Input Voltage Output Voltage VOUT ≥ 1.8 V TA = +25 °C −40°C ≤ TA ≤ 85°C Output Voltage Temp. Coefficient Min Max Unit VIN 1.40 Typ 5.25 V VOUT x0.99 x1.01 V VOUT < 1.8 V −18 18 mV VOUT ≥ 1.8 V x0.985 x1.015 V VOUT < 1.8 V −50 50 mV VOUT ≥ 1.8 V −40°C ≤ TA ≤ 85°C Symbol ±30 DVOUT/DTA VOUT < 1.8 V ppm/°C ±100 Line Regulation VOUT(NOM) + 0.5 V ≤ VIN ≤ 5.25 V, VIN ≥ 1.4 V LineReg 0.02 0.10 %/V Load Regulation IOUT = 1 mA to 150 mA LoadReg 5 30 mV VDO V Dropout Voltage VOUT = 0.8 V 0.70 1.00 VOUT = 0.9 V 0.62 0.91 1.0 V ≤ VOUT < 1.2 V 0.56 0.82 1.2 V ≤ VOUT < 1.4 V 0.47 0.67 1.4 V ≤ VOUT < 1.8 V 0.39 0.54 1.8 V ≤ VOUT < 2.1 V 0.33 0.48 2.1 V ≤ VOUT < 2.5 V 0.28 0.40 2.5 V ≤ VOUT < 3.0 V 0.25 0.35 0.23 0.32 IOUT = 150 mA 3.0 V ≤ VOUT < 3.6 V Output Current Short Current Limit IOUT 150 mA VOUT = 0 V ISC IQ 50 70 mA Standby Current VCE = 0 V, TA = 25°C ISTB 0.1 1.0 mA CE Pin Threshold Voltage CE Input Voltage “H” VCEH CE Input Voltage “L” VCEL Quiescent Current CE Pull Down Current Power Supply Rejection Ratio Output Noise Voltage VIN = VOUT + 1 V, DVIN = 0.2 Vpk−pk, IOUT = 30 mA, f = 1 kHz f = 10 Hz to 100 kHz, IOUT = 30 mA VOUT ≥ 1.8 V 40 mA 1.0 V 0.4 ICEPD 0.3 mA PSRR 75 dB VN 20 x VOUT mVrms VOUT < 1.8 V 40 x VOUT Low Output N−channel Tr. On Resistance VIN = 4 V, VCE = 0 V RLOW 60 W Minimum Start−up Equivalent Resistance VOUT ≤ 1.8 V (Note 3) RSUMIN 13 * VOUT W VOUT > 1.8 V 6.7 * VOUT 3. See Current Limit paragraph in application part for explanation. http://onsemi.com 3 NCP4680 TYPICAL CHARACTERISTICS 0.9 2.0 0.8 VIN = 1.4 V 0.7 VOUT (V) 1.8 V 0.4 0.3 3.8 V 1.2 5.25 V 1.0 0.8 0.6 0.2 4.8 V 3.8 V 0.4 0.1 0.0 2.8 V 1.4 0.5 0.2 0 50 100 150 200 IOUT (mA) 250 300 0.0 350 0 Figure 3. Output Voltage vs. Output Current 0.8 V Version (TJ = 255C) VIN = 3 V 300 350 400 4.5 V 2.5 VOUT (V) 3.5 V 1.5 1.0 5.25 V VIN = 3.5 V 3.0 2.0 VOUT (V) 150 200 250 IOUT (mA) 5.25 V 3.2 V 4.5 V 3.6 V 2.0 1.5 1.0 0.5 0.5 0 50 100 150 200 IOUT (mA) 250 300 0.0 350 0 Figure 5. Output Voltage vs. Output Current 2.8 V Version (TJ = 255C) 0.40 0.7 0.35 TJ = 85°C 0.5 VDO (V) −40°C 0.3 0.05 75 100 300 350 125 0 150 25°C 0.15 0.1 50 250 TJ = 85°C 0.20 0.10 25 150 200 IOUT (mA) 0.25 0.2 0 100 0.30 25°C 0.4 50 Figure 6. Output Voltage vs. Output Current 3.3 V Version (TJ = 255C) 0.8 0.6 VDO (V) 100 3.5 2.5 0 50 Figure 4. Output Voltage vs. Output Current 1.8 V Version (TJ = 255C) 3.0 0.0 4.8 V VIN = 2.2 V 1.6 1.5 V 0.6 VOUT (V) 1.8 2.8 V 1.6 V −40°C 0 IOUT (mA) 25 50 75 IOUT (mA) Figure 7. Dropout Voltage vs. Output Current 0.8 V Version 100 125 150 Figure 8. Dropout Voltage vs. Output Current 1.8 V Version http://onsemi.com 4 NCP4680 TYPICAL CHARACTERISTICS 0.30 0.30 0.25 0.25 0.20 TJ = 85°C VDO (V) VDO (V) 0.20 0.15 25°C 0.10 0 25 50 75 IOUT (mA) 100 125 150 −40°C 0 50 75 IOUT (mA) 100 125 150 1.82 0.81 1.81 VOUT (V) 1.83 0.82 0.80 0.79 1.80 1.79 0.78 1.78 0.77 1.77 0.76 1.76 −20 0 20 40 60 VIN = 2.8 V 1.84 0.83 1.75 −40 80 −20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 11. Output Voltage vs. Temperature, 0.8 V Version Figure 12. Output Voltage vs. Temperature, 1.8 V Version 2.85 3.35 VIN = 3.8 V 2.84 3.32 2.81 3.31 VOUT (V) 3.33 2.82 2.80 2.79 3.30 3.29 2.78 3.28 2.77 3.27 2.76 3.26 −20 0 20 40 60 VIN = 4.3 V 3.34 2.83 2.75 −40 25 1.85 VIN = 1.8 V 0.84 0.75 −40 0 Figure 10. Dropout Voltage vs. Output Current 3.3 V Version 0.85 VOUT (V) 25°C 0.05 Figure 9. Dropout Voltage vs. Output Current 2.8 V Version VOUT (V) TJ = 85°C 0.10 −40°C 0.05 0 0.15 3.25 −40 80 −20 0 20 40 60 80 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 13. Output Voltage vs. Temperature, 2.8 V Version Figure 14. Output Voltage vs. Temperature, 3.3 V Version http://onsemi.com 5 NCP4680 TYPICAL CHARACTERISTICS 120 140 100 120 100 IGND (mA) IGND (mA) 80 60 40 0 1 2 3 4 0 5 2 3 4 5 VIN, INPUT VOLTAGE (V) Figure 16. Supply Current vs. Input Voltage, 1.8 V Version 120 100 100 IGND (mA) 120 80 60 80 60 40 40 20 20 1 2 3 4 0 5 0 1 2 3 4 5 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 17. Supply Current vs. Input Voltage, 2.8 V Version Figure 18. Supply Current vs. Input Voltage, 3.3 V Version 60 60 55 55 50 50 45 45 40 −40 1 VIN, INPUT VOLTAGE (V) 140 0 0 Figure 15. Supply Current vs. Input Voltage, 0.8 V Version IGND (mA) IGND (mA) 20 140 0 IGND (mA) 60 40 20 0 80 −20 0 20 40 60 40 −40 80 −20 0 20 40 60 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 19. Supply Current vs. Temperature, 0.8 V Version Figure 20. Supply Current vs. Temperature, 1.8 V Version http://onsemi.com 6 80 NCP4680 60 60 55 55 IGND (mA) IGND (mA) TYPICAL CHARACTERISTICS 50 45 45 40 −40 −20 0 20 40 60 40 −40 80 40 60 80 Figure 22. Supply Current vs. Temperature, 3.3 V Version 1.8 0.7 1.6 1.4 VOUT (V) 1 mA 0.5 0.4 30 mA 0.3 1.2 1.0 1 mA 0.8 30 mA 0.6 IOUT = 50 mA 0.2 0.4 0.1 IOUT = 50 mA 0.2 0 1 2 3 4 VIN, INPUT VOLTAGE (V) 0 5 0 Figure 23. Output Voltage vs. Input Voltage, 0.8 V Version 1 2 3 4 VIN, INPUT VOLTAGE (V) 5 Figure 24. Output Voltage vs. Input Voltage, 1.8 V Version 3.0 3.5 2.5 3.0 2.5 VOUT (V) 2.0 VOUT (V) 20 Figure 21. Supply Current vs. Temperature, 2.8 V Version 0.8 1.5 1.0 1 mA 0.5 0 0 TJ, JUNCTION TEMPERATURE (°C) 2.0 0 −20 TJ, JUNCTION TEMPERATURE (°C) 0.9 0.6 VOUT (V) 50 0 1 2.0 1.5 30 mA 1.0 IOUT = 50 mA 0.5 2 3 4 VIN, INPUT VOLTAGE (V) 0.0 5 1 mA 30 mA IOUT = 50 mA 0 Figure 25. Output Voltage vs. Input Voltage, 2.8 V Version 1 2 3 4 VIN, INPUT VOLTAGE (V) Figure 26. Output Voltage vs. Input Voltage, 3.3 V Version http://onsemi.com 7 5 NCP4680 TYPICAL CHARACTERISTICS 120 120 100 60 150 mA 40 IOUT = 1 mA 80 PSRR (dB) 80 PSRR (dB) 100 IOUT = 1 mA 30 mA 30 mA 60 150 mA 40 20 20 0 0.1 1 10 FREQUENCY (kHz) 100 0 0.1 1000 Figure 27. PSRR, 0.8 V Version, VIN = 1.8 V 10 FREQUENCY (kHz) 100 1000 Figure 28. PSRR, 1.8 V Version, VIN = 2.8 V 120 120 IOUT = 1 mA 80 60 100 30 mA PSRR (dB) 100 PSRR (dB) 1 150 mA 40 20 IOUT = 1 mA 80 30 mA 60 150 mA 40 20 0 0.1 1 10 FREQUENCY (kHz) 100 0 0.1 1000 Figure 29. PSRR, 2.8 V Version, VIN = 3.8 V 1 10 FREQUENCY (kHz) 100 1000 Figure 30. PSRR, 3.3 V Version, VIN = 4.3 V 2.0 2.0 VN (mVrms/√Hz) 2.5 VN (mVrms/√Hz) 2.5 1.5 1.0 1.5 1.0 0.5 0.5 0 0.01 0.1 1 10 100 0.1 0.01 1000 0.1 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 31. Output Voltage Noise, 0.8 V Version, VIN = 1.8 V Figure 32. Output Voltage Noise, 1.8 V Version, VIN = 2.8 V http://onsemi.com 8 NCP4680 TYPICAL CHARACTERISTICS 4.0 5.0 3.5 4.5 4.0 VN (mVrms/√Hz) 2.5 2.0 1.5 1.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.5 0 0.01 0.1 1 10 100 0 0.01 1000 0.1 1 10 100 1000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 33. Output Voltage Noise, 2.8 V Version, VIN = 3.8 V Figure 34. Output Voltage Noise, 3.3 V Version, VIN = 4.3 V 3.3 2.8 2.3 1.3 0.801 VIN (V) VOUT (V) 1.8 0.800 0.799 0.798 0.797 0 10 20 30 40 50 60 70 80 90 100 t (ms) Figure 35. Line Transients, 0.8 V Version, tR = tF = 5 ms, IOUT = 30 mA 4.3 3.8 3.3 2.3 1.801 1.800 1.799 1.798 1.797 0 10 20 30 40 50 t (ms) 60 70 80 90 Figure 36. Line Transients, 1.8 V Version, tR = tF = 5 ms, IOUT = 30 mA http://onsemi.com 9 100 VIN (V) 2.8 VOUT (V) VN (mVrms/√Hz) 3.0 NCP4680 TYPICAL CHARACTERISTICS 5.3 4.8 4.3 3.3 2.801 VIN (V) VOUT (V) 3.8 2.800 2.799 2.798 2.797 0 10 20 30 40 50 60 70 80 90 100 t (ms) Figure 37. Line Transients, 2.8 V Version, tR = tF = 5 ms, IOUT = 30 mA 5.8 5.3 4.8 3.8 3.302 3.301 VIN (V) VOUT (V) 4.3 3.300 3.299 3.298 3.297 0 10 20 30 40 50 60 70 80 90 100 t (ms) Figure 38. Line Transients, 3.3 V Version, tR = tF = 5 ms, IOUT = 30 mA 150 100 50 0.83 IOUT (mA) VOUT (V) 0 0.82 0.81 0.80 0.79 0.78 0.77 0 10 20 30 40 50 t (ms) 60 70 80 90 Figure 39. Load Transients, 0.8 V Version, IOUT = 50 − 100 mA, tR = tF = 0.5 ms, VIN = 1.8 V http://onsemi.com 10 100 NCP4680 TYPICAL CHARACTERISTICS 150 100 50 IOUT (mA) VOUT (V) 0 1.83 1.82 1.81 1.80 1.79 1.78 1.77 0 10 20 30 40 50 60 70 80 90 100 t (ms) Figure 40. Load Transients, 1.8 V Version, IOUT = 50 − 100 mA, tR = tF = 0.5 ms, VIN = 2.8 V 150 100 50 IOUT (mA) VOUT (V) 0 2.83 2.82 2.81 2.80 2.79 2.78 2.77 0 10 20 30 40 50 60 70 80 90 100 t (ms) Figure 41. Load Transients, 2.8 V Version, IOUT = 50 − 100 mA, tR = tF = 0.5 ms, VIN = 3.8 V 150 100 50 2.83 IOUT (mA) VOUT (V) 0 2.82 2.81 2.80 2.79 2.78 2.77 0 10 20 30 40 50 60 70 80 90 t (ms) Figure 42. Load Transients, 3.3 V Version, IOUT = 50 − 100 mA, tR = tF = 0.5 ms, VIN = 4.3 V http://onsemi.com 11 100 NCP4680 TYPICAL CHARACTERISTICS 225 150 75 IOUT (mA) VOUT (V) 0 0.90 0.85 0.80 0.75 0.70 0.65 0 10 20 30 40 50 t (ms) 60 70 80 90 100 Figure 43. Load Transients, 0.8 V Version, IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 1.8 V 225 150 75 IOUT (mA) VOUT (V) 0 1.90 1.85 1.80 1.75 1.70 1.65 0 10 20 30 40 50 60 70 80 90 100 t (ms) Figure 44. Load Transients, 1.8 V Version, IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 2.8 V 225 150 75 IOUT (mA) VOUT (V) 0 2.90 2.85 2.80 2.75 2.70 2.65 0 10 20 30 40 50 60 70 80 90 t (ms) Figure 45. Load Transients, 2.8 V Version, IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 3.8 V http://onsemi.com 12 100 NCP4680 TYPICAL CHARACTERISTICS 225 150 75 IOUT (mA) VOUT (V) 0 3.40 3.35 3.30 3.25 3.20 3.15 0 10 20 30 40 50 t (ms) 60 70 80 90 100 Figure 46. Load Transients, 3.3 V Version, IOUT = 1 − 150 mA, tR = tF = 0.5 ms, VIN = 4.3 V 2.0 Chip Enable 1.5 1.0 0 0.8 0.6 IOUT = 1 mA 0.4 VCE (V) VOUT (V) 0.5 IOUT = 100 mA 0.2 0 −0.2 0 5 10 15 20 25 t (ms) 30 35 40 45 50 Figure 47. Start−up, 0.8 V Version, VIN = 1.8 V 4 3 Chip Enable 2 0 2.0 1.5 IOUT = 1 mA 1.0 IOUT = 150 mA 0.5 0 −0.5 0 5 10 15 20 25 t (ms) 30 35 40 45 Figure 48. Start−up, 1.8 V Version, VIN = 2.8 V http://onsemi.com 13 50 VCE (V) VOUT (V) 1 NCP4680 TYPICAL CHARACTERISTICS 4.5 3.0 Chip Enable 1.5 0 2.5 2.0 VCE (V) VOUT (V) 3.0 IOUT = 1 mA 1.5 1.0 IOUT = 150 mA 0.5 0 −0.5 0 5 10 15 20 25 30 35 40 45 50 t (ms) Figure 49. Start−up, 2.8 V Version, VIN = 3.8 V 6.0 4.5 Chip Enable 3.0 0 4 3 2 IOUT = 1 mA 1 IOUT = 150 mA VCE (V) VOUT (V) 1.5 0 −1 0 5 10 15 20 25 30 35 40 45 50 t (ms) Figure 50. Start−up, 3.3 V Version, VIN = 4.3 V 2.0 1.5 1.0 0 Chip Enable 0.8 0.6 IOUT = 1 mA IOUT = 30 mA 0.4 IOUT = 100 mA 0.2 0 −0.2 0 10 20 30 40 50 60 70 80 90 t (ms) Figure 51. Shutdown, 0.8 V Version D, VIN = 1.8 V http://onsemi.com 14 100 VCE (V) VOUT (V) 0.5 NCP4680 TYPICAL CHARACTERISTICS 4 3 2 0 Chip Enable 2.0 IOUT = 1 mA 1.5 1.0 IOUT = 30 mA 0.5 IOUT = 150 mA VCE (V) VOUT (V) 1 0 −0.5 0 10 20 30 40 50 t (ms) 60 70 80 90 100 Figure 52. Shutdown, 1.8 V Version D, VIN = 2.8 V 4.5 3.0 1.5 0 Chip Enable 2.5 VCE (V) VOUT (V) 3.0 IOUT = 1 mA 2.0 1.5 IOUT = 30 mA 1.0 0.5 IOUT = 150 mA 0 −0.5 0 10 20 30 40 50 t (ms) 60 70 80 90 100 Figure 53. Shutdown, 2.8 V Version D, VIN = 3.8 V 6.0 4.5 3.0 VOUT (V) 0 4 3 IOUT = 1 mA IOUT = 30 mA 2 1 IOUT = 150 mA 0 −1 0 10 20 30 40 50 t (ms) 60 70 80 90 Figure 54. Shutdown, 3.3 V Version D, VIN = 4.3 V http://onsemi.com 15 100 VCE (V) 1.5 Chip Enable NCP4680 APPLICATION INFORMATION start−up into at least double the minimum equivalent load. The minimum equivalent resistance can be computed by formula 1: A typical application circuit for NCP4680 series is shown in Figure 55. NCP4680x VIN VIN C1 100n VOUT R EQMIN + VOUT CE GND V OUT(NOM) I OUTMAX (eq. 1) This leads us to the result that the minimum equivalent start up resistance for VOUT(NOM) < 1.8 V is: C2 100n R SUMIN + 2 @ R EQMIN (eq. 2) Enable Operation The enable pin CE may be used for turning the regulator on and off. The IC is switched on when a high level voltage is applied to the CE pin. The enable pin has an internal pull down current source. If the enable function is not needed connect CE pin to VIN. Figure 55. Typical Application Schematic Input Decoupling Capacitor (C1) A 0.1 mF ceramic input decoupling capacitor should be connected as close as possible to the input and ground pin of the NCP4680. Higher values and lower ESR improves line transient response. Output Discharger The D version includes a transistor between VOUT and GND that is used for faster discharging of the output capacitor. This function is activated when the IC goes into disable mode. Output Decoupling Capacitor (C2) A 0.1 mF ceramic output decoupling capacitor is enough to achieve stable operation of the IC. If a tantalum capacitor is used, and its ESR is high, loop oscillation may result. The capacitors should be connected as close as possible to the output and ground pins. Larger values and lower ESR improves dynamic parameters. Thermal As power across the IC increase, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and also the ambient temperature affect the rate of temperature increase for the part. When the device has good thermal conductivity through the PCB the junction temperature will be relatively low in high power dissipation applications. Current Limit The NCP4680 includes fold−back type current limit protection. Its typical characteristic for 0.8 V version is shown in Figure 3. The advantage of this protection is that power loss at the regulator is minimized at over current or short circuit conditions. When the over current or short circuit event disappears, the regulator reverts from fold back to regulation. This kind of current limit may cause issues at start−up for voltage versions below 1.8 V and some load types: for these lower voltage options it is recommended to PCB layout Make the VIN and GND line as large as practical. If their impedance is high, noise pickup or unstable operation may result. Connect capacitors C1 and C2 as close as possible to the IC, and make wiring as short as possible. http://onsemi.com 16 NCP4680 ORDERING INFORMATION Nominal Output Voltage Description Marking Package Shipping† NCP4680DMX10TCG 1.0 V Auto discharge A (fixed)* XDFN4 (Pb−Free) 10000 / Tape & Reel NCP4680DMX12TCG 1.2 V Auto discharge A (fixed)* XDFN4 (Pb−Free) 10000 / Tape & Reel NCP4680DMX15TCG 1.5 V Auto discharge A (fixed)* XDFN4 (Pb−Free) 10000 / Tape & Reel NCP4680DMX18TCG 1.8 V Auto discharge A (fixed)* XDFN4 (Pb−Free) 10000 / Tape & Reel NCP4680DMX23TCG 2.3 V Auto discharge A (fixed)* XDFN4 (Pb−Free) 10000 / Tape & Reel NCP4680DMX28TCG 2.8 V Auto discharge A (fixed)* XDFN4 (Pb−Free) 10000 / Tape & Reel NCP4680DMX30TCG 3.0 V Auto discharge A (fixed)* XDFN4 (Pb−Free) 10000 / Tape & Reel NCP4680DMX33TCG 3.3 V Auto discharge A (fixed)* XDFN4 (Pb−Free) 10000 / Tape & Reel NCP4680DSQ08T1G 0.8 V Auto discharge AF08 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4680DSQ09T1G 0.9 V Auto discharge AF09 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4680DSQ12T1G 1.2 V Auto discharge AF12 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4680DSQ15T1G 1.5 V Auto discharge AF15 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4680DSQ18T1G 1.8 V Auto discharge AF18 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4680DSQ25T1G 2.5 V Auto discharge AF25 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4680DSQ28T1G 2.8 V Auto discharge AF28 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4680DSQ30T1G 3.0 V Auto discharge AF30 SC−70 (Pb−Free) 3000 / Tape & Reel NCP4680DSQ33T1G 3.3 V Auto discharge AF33 SC−70 (Pb−Free) 3000 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *Marking codes for XDFN0808 packages are unified. **To order other package and voltage variants, please contact your ON Semiconductor sales representative. http://onsemi.com 17 NCP4680 PACKAGE DIMENSIONS SC−88A (SC−70−5/SOT−353) CASE 419A−02 ISSUE K A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A−01 OBSOLETE. NEW STANDARD 419A−02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. G 5 4 −B− S 1 2 DIM A B C D G H J K N S 3 D 5 PL 0.2 (0.008) M B M N J C H K http://onsemi.com 18 INCHES MIN MAX 0.071 0.087 0.045 0.053 0.031 0.043 0.004 0.012 0.026 BSC --0.004 0.004 0.010 0.004 0.012 0.008 REF 0.079 0.087 MILLIMETERS MIN MAX 1.80 2.20 1.15 1.35 0.80 1.10 0.10 0.30 0.65 BSC --0.10 0.10 0.25 0.10 0.30 0.20 REF 2.00 2.20 NCP4680 PACKAGE DIMENSIONS SOT−23 5−LEAD CASE 1212−01 ISSUE A A 5 E 1 L1 A1 4 2 L 3 5X e A2 0.05 S B D NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSIONS: MILLIMETERS. 3. DATUM C IS THE SEATING PLANE. A E1 b 0.10 C M C B S A S C RECOMMENDED SOLDERING FOOTPRINT* 3.30 DIM A A1 A2 b c D E E1 e L L1 5X 0.85 5X 0.95 PITCH 0.56 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 19 MILLIMETERS MIN MAX --1.45 0.00 0.10 1.00 1.30 0.30 0.50 0.10 0.25 2.70 3.10 2.50 3.10 1.50 1.80 0.95 BSC 0.20 --0.45 0.75 NCP4680 PACKAGE DIMENSIONS XDFN4 0.8x0.8, 0.48P CASE 711AB−01 ISSUE O PIN ONE REFERENCE 2X 0.05 C 4X A B D ÉÉ NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINALS. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. L3 L2 0.06 E REF DETAIL A DIM A A1 A3 b D D2 E e L L2 L3 0.05 C 2X TOP VIEW 0.07 (A3) 0.05 C 4X 0.17 0.37 A 0.05 C NOTE 4 A1 SIDE VIEW C SEATING PLANE DETAIL B RECOMMENDED MOUNTING FOOTPRINT* e e/2 DETAIL A MILLIMETERS MIN MAX −−− 0.40 0.00 0.05 0.10 REF 0.17 0.27 0.80 BSC 0.20 0.30 0.80 BSC 0.48 BSC 0.23 0.33 0.17 0.27 0.01 0.11 1 4X D2 2 0.27 3X 0.44 45 5 0.32 3X L 4 PACKAGE OUTLINE 3 4X b 0.05 M BOTTOM VIEW 1.00 DETAIL B C A B 0.48 PITCH NOTE 3 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 20 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NCP4680/D
NCP4680DSQ08T1G
物料型号:NCP4680

器件简介:NCP4680是一款CMOS线性电压调节器,具有150mA的输出电流能力。它体积小巧,采用0.8x0.8 mm的XDFN封装,并具备高输出电压精度、低供电电流和高纹波抑制。该设备易于使用,并包括输出电流折回保护。它还包括一个芯片使能功能,通过降低供电电流来节省电力。该调节器的线路和负载瞬态响应非常好,使其非常适合用作通信设备的电源。

引脚分配:NCP4680有4个引脚,分别为: - VoUT:输出引脚 - GND:地 - CE:芯片使能引脚(活性“高”) - VIN:输入引脚

参数特性: - 工作输入电压范围:1.40 V至5.25 V - 输出电压范围:0.8 V至3.6 V(以0.1 V步进提供) - 输出电压精度:±1.0% - 供电电流:典型值为50 µA - 降低电压:0.25 V(IOUT = 150 mA,VOUT = 2.5 V) - 高电源抑制比(PSRR):75 dB(f = 1 kHz,VOUT = 2.5 V) - 线路调节:典型值0.02%/V

功能详解:NCP4680提供了多种功能,包括: - 电池供电设备 - 网络和通信设备 - 摄像机、DVR、STB和摄像机 - 家用电器

应用信息:NCP4680适用于多种应用,包括电池供电设备、网络和通信设备、摄像机、DVR、STB和家用电器等。

封装信息:NCP4680提供XDFN4 0.8 x 0.8 mm、SC-70、SOT23封装,并且这些设备都是无铅的。
NCP4680DSQ08T1G 价格&库存

很抱歉,暂时无法提供与“NCP4680DSQ08T1G”相匹配的价格&库存,您可以联系我们找货

免费人工找货