Dual-Edge & Flex-Mode Modulation Vcore Controllers
for VR11.0 to VR12.6+ Designs
Multi-phase buck controllers from ON Semiconductor combine differential voltage and current
sensing, and adaptive voltage positioning to power the latest generation of microprocessors.
Dual-edge and flex mode PWM, combined with inductor current sensing, reduces system
cost by providing the fastest initial response to a transient, thereby requiring fewer bulk
and ceramic output capacitors to satisfy transient load-line requirements. An integrated,
high performance operational error amplifier enables easy compensation of the system. The
proprietary Dynamic Reference Injection method makes the error amplifier compensation
virtually independent of the system response to VID changes, eliminating tradeoffs between
overshoot and dynamic VID performance.
Features
• Meet VR11.0, 11.1, 12.0, 12.5, 12.6, 12.6+ specifications
• Pin programmable phase count configuration
• Current mode dual edge modulation for fast initial response to transient loading
• Phase-to-phase dynamic current balancing
• Dual high performance operational error amplifier
• Temperature compensated inductor current sensing
• Power saving phase shedding
• VIN feed forward ramp slope
• Programmable switching frequency range
• Startup into pre-charged loads while avoiding false OVP
• Over voltage, under voltage, and over current protection (OVP & UVP & OCP)
Device
NCP81101
NCP81105
NCP81108
NCP81109
NCP81110
NCP81118
NCP81102
NCP81103
NCP81106
NCP81116
NCP81119
NCP6121
NCP6151
NCP6153
NCP5395
NCP6133
NCP4206
NCP4208
NCP81022
NCP81128
VR Spec
VR12.6+
VR12.6
VR12.6
VR12.6
VR12.6
VR12.6
VR12.5
VR12.5
VR12.5
VR12.5
VR12.5
VR12
VR12
VR11.1
VR11.1
VR11.1
VR11.1
VR11.1
SV12
SV12
Controller Architecture
RPM
Dual Edge
Dual Edge
RPM
RPM
Dual Edge
Dual Edge
Dual Edge
Dual Edge
Dual Edge
Dual Edge
Flex Mode + Dual Edge
Flex Mode + Dual Edge
Dual Edge
Dual Edge
Flex Mode
Dual Edge
Dual Edge
Dual Edge
Dual Edge
CPU Phases
1
2/3
2/3
1
1
2/3
2/3/4
2/3
2/3
2/3
2/3/4
2/3
3/4
2/3/4
2/3/4
2/3/4
1/2/3/4/5/6
1/2/3/4/5/6/7/8
4
2
GPU Phases
—
—
—
—
—
—
—
—
—
—
—
1
1
—
—
—
—
—
1
2
Integrated
Drivers
1x5V
—
2
1 + FETs
1 + FETs
2x5V
—
2x5V
2 x 12 V
2 x 12 V
—
—
—
—
3 CPU
—
—
—
—
2x5V
Interface
SVID
SVID
SVID
SVID
SVID
SVID
SVID
SVID
SVID
SVID
SVID
SVID
SVID
PVID
PVID
PVID
PVID
PVID
SVI2
SVI2
SM-Bus
—
—
—
—
—
—
—
—
—
Y
—
—
—
—
—
—
Y
Y
—
—
Package
QFN-28
QFN-36
QFN-36
QFN-48
QFN-48
QFN-36
QFN-32
QFN-36
QFN-40
QFN-36
QFN-32
QFN-56
QFN-56
QFN-40
QFN-48
LFCSP-40
QFN-48
QFN-48
QFN-52
QFN-52
Please contact ON Semiconductor for product datasheets.
Page 2
Computing Solutions
Desktop Solutions
Server Solutions
NCP81102 1/2/3/4-phase controller
• Dual edge modulation for fast transient response
• Constant on-time for light load efficiency
• Supports all MLCC output capacitor solutions
• VR12.5 compliant
NCP4206 1/2/3/4/5/6-phase controller
• Highly efficient, multiphase, synchronous buck switching
regulator controller
• Supports PSI, to reduce the number of operating phases at
light loads
• SMBus interface enables digital programming of key system
parameters to optimize system performance and provide
feedback
• NCP4206 has built in shunt regulator, enabling it to be
powered from +12 V system supply through series resistor
+12V
NTMFS4C10N
NCP81161
12 V Driver
NTMFS4C06N
+12V
+12V
NTMFS4C10N
NCP81102
NCP81161
12 V Driver
4-Phase
Controller
NCP81161
12 V Driver
NTMFS4C06N
+12V
CPU
+12V
NCP81161
12 V Driver
NTMFS4C10N
NCP81161
12 V Driver
NTMFS4C06N
Dual FET*
+12V
+12V
NCP4206
NTMFS4C10N
NCP81161
12 V Driver
Dual FET*
NCP81161
12 V Driver
6-Phase
Controller
NTMFS4C06N
CPU
Dual FET*
+12V
* Dual FET =
NTMFD4C85N or
NTMFD4H84NF
(Both Pending 2H14)
NCP81161
12 V Driver
Dual FET*
+12V
NCP81161
12 V Driver
Dual FET*
+12V
NCP81161
12 V Driver
Dual FET*
Notebook Solutions
Integrated Ultrabook/Notebook Solution
NCP81103/8 1/2/3-phase controller with drivers
• High performance notebook solutions
• Dual edge modulation for fast transient response
• Features 2 integrated 5 V drivers
• VR12.5 (NCP81103) & VR12.6 (NCP81108) compliant
NCP81110 1-phase converter
• Integrated solution with drivers and 14 A TDC MOSFETs
• Smallest solution footprint for compact design
• Higher efficiency for longer battery life
• VR12.6 compliant
VIN
NTMFS4C10N
NCP81110
NTMFS4C06N
VIN
NCP81103
NTMFS4C10N
3-Phase
Controller
NTMFS4C06N
CPU
1-Phase
Controller
+ FETs
CPU
VIN
NTMFS4C10N
NCP81151
5 V Driver
ON Semiconductor
NTMFS4C06N
Page 3
VR12.5/6 Multiphase Controllers for Embedded Applications
VCC
PVCC
VRPM
SDIO
Alert
SCLK
BST
HG
SW
VRHOT
TTSENSE
VCORE
LG
Features
BST
• Dual-edge pulse width modulation
• Fastest initial response to dynamic load
events
• True differential voltage sensing
• Differential inductor DCR current sensing
• Input voltage feed forward
• Adaptive voltage positioning
• Pin-programmable controller configuration
• Integrated OVP, UVP, OCP
• Operating temperature range:
-40°C to +125°C
NCP81143
3PH
HG
VCORE
SW
SCLK
SDA
Alert
LG
NCP81145
BST
PWM2
HG
VCORE
SW
LG
VR_RDY
DIFFOUT
FB
COMP
INTSEL
ILIM
ROSC
IMAX
CSCOMP
CSSUM
IOUT
CSREF
PGND
Device
GND
CSP1
CSP2
CSP3
Description
Driver / MOSFETs
Package
NCP81140
4-Phase Controller
—
QFN-32
NCP81141
1-Phase VR12.6 Controller
Integrated 5 V Driver
QFN-28
NCP81142
4-Phase VR12.5 Controller
—
QFN-32
NCP81143
3-Phase VR12.5 Controller
2x Integrated 5 V Drivers
QFN-36
NCP81145
5 V Driver
—
DFN-8
NCP81146
12 V Driver
—
DFN-8
NCP81147*
1-Phase Buck 0.8 V / 3.3 V
—
QFN-16
NCP81148
Dual Buck with LDOs
—
QFN-28
NCP81149*
1-Phase VR12.6 Controller
Integrated MOSFETs
—
* Pending 2H14
Page 4
Computing Solutions
System Power
System power management devices provide additional rails in computing applications, beyond Vcore and graphics. They are available
with single or dual channel operation, and also in multi-phase configurations.
1 F
VIN = 2.5 V − 13.2 V
3x22 F
VBST = 4.5 V − 15 V
1500 F
VCC = 4.5 V − 13.2 V
2x0.22 F
1500 F
0.1 F
C3
0.014 F
R3
74.2
FB
LG
GND
VOS
R9
R10
NTD4806
LX
ROCSET
R1
4.12k
C2
0.007 F
VOUT
1.65 V
1 H
2x1800 F
4.7nF
1.02k
R4
3.878k
R2
17.08k
UG
1.02k
C1
0.0015 F
COMP/EN
2.2
BOOT
NTD4809
VCC
PGOOD
GND
NCP1589A Application Diagram
Device
NCP1579
Description
Synchronous Buck Controller, Low Voltage
Topology
Step-Down
VCC Min
(V)
4.5
VCC Max
(V)
13.2
fSW Typ
(MHz)
275
Package
SOIC-8
NCP1587
Synchronous Buck Controller, Low Voltage
Step-Down
4.5
13.2
250 - 300
SOIC-8
NCP1587A
Synchronous Buck Controller, Low Voltage
Step-Down
4.5
13.2
180 - 220
SOIC-8
NCP1589A
Synchronous Buck Controller, Low Voltage
Step-Down
4.5
13.2
—
DFN-10
NCP1589D
Snychronous Buck Controller
Step-Down
4.5
13.2
—
DFN-10
NCP1589L
Synchronous Buck Controller, Low Voltage, with Light Load Efficiency and Transient Enhancement
Step-Down
4.5
13.2
—
DFN-10
NCP5212
Single Synchronous Step Down Controller
Step-Down
4.5
27
300
QFN-16
NCP5212T
Single Synchronous Step Down Controller
Step-Down
4.5
27
300
QFN-16
NCP5217
Synchronous Buck Controller, Single
Step-Down
4.5
27
300
QFN-14
NCP5222
Synchronous Buck Controller, 2-Channel, 2-Phase
Step-Down
4.5
27
300
QFN-28
NCP5230
Low Voltage Synchronous Buck Controller
Step-Down
4.5
13.2
—
QFN-16
NCP5269
System Agent Controller with 2-bit VID
Step-Down
3.3
28
300 - 600
QFN-20
ON Semiconductor
Page 5
Thermal Management and System Monitoring
8 GPIOs
Extensive Portfolio
SMBus Interface
RESET I/O
Local Sensors provide temperature information at
the device location
Remote Sensors provide temperature information
of a transistor located at a different position on the
board; also includes local sensor capability
4 PWM O/Ps
System
Voltages
+12 V
+5 V
+3.3 V
8 Tach Inputs
+2.5 V
+1.8 V
Fan Controllers integrate the temperature sensor
with a fan controller/monitor
System Monitors integrate combinations of
remote and/or local temperature sensing, voltage
monitoring, fan control & monitoring, reset control,
and GPIO functions
Fan Drive and Control
• 4 PWM Fan Drive Outputs
• 8 Tach Inputs
Fan2Max
+1.5 V
+1.25 V
+0.9 V
TDM1
Temperature
• Measures 4 Temp Zones
TDM2
VBatt
TDM3
1 Local
3 Remote
THERM I/O
Bi-directional
THERM Pins
Chassis Intrusion
ALERT O/P
Supply
Range
(V)
3 - 5.5
3 - 5.5
2.8 - 5.75
3 - 3.6
3 - 3.6
3 - 3.6
3 - 3.6
3 - 3.6
2.8 - 3.6
1.4 - 2.75
3 - 5.5
3 - 5.5
3 - 5.5
3 - 3.6
3 - 3.6
Temperature
Range
(°C )
-40 to +120
-40 to +125
-40 to +125
-40 to +120
-40 to +120
-40 to +120
-40 to +120
-40 to +120
-40 to +125
-40 to +125
-55 to +125
-40 to +125
-40 to +125
-40 to +125
-40 to +125
Local
Accuracy
(°C)
±3
±2.25
±2
±1.5
±1.5
±1.5
±1
±1
±1
±1.75
±1
±3
±3
±1
±1
Interface
I2C/SMBUS
I2C/SMBUS
I2C/SMBUS
I2C/SMBUS
I2C/SMBUS
I2C/SMBUS
I2C/SMBUS
I2C/SMBUS
I2C/SMBUS
I2C/SMBUS
I2C/SMBUS
I2C/SMBUS
I2C/SMBUS
I2C/SMBUS
I2C/SMBUS
Number
of
Addresses
3
2
8
3
3
1
8
8
2
2
9
2
2
2
9
NCT75
3 - 5.5
-55 to +125
±1
I2C/SMBUS
8
NCT275*
3 - 5.5
-55 to +125
±1
I2C/SMBUS
4
NCT203
1.4 - 2.75
-40 to +125
±1.75
I2C/SMBUS
1
Device
ADM1026
System ADT7462
Monitors NCT80
ADT7476
ADT7473
ADT7475
Fan
Controllers ADM1033
ADM1034
NCT72
NCT218
NCT210
Remote ADM1032
Sensors
ADT7461
ADT7481
ADT7483
Local
Sensors
SRC
(Ω)
—
2k
—
—
3k
—
1k
1k
1.5 k
150
—
—
3k
—
—
Remote
Accuracy
±3
±2.25
—
±1.5
±1.5
±1.5
±1
±1
±1
±1
±3
±1
±1
±1
±1
Remote
Channels
2
3
—
2
2
2
1
2
1
1
2
1
1
2
2
Fan
Channels
8
4
—
3
3
3
1
2
Voltage
TACH
Monitoring
Channels Channels
8
19
8
13
2
7
4
5
4
4
1
2
GPIOs
17
8
1
—
Package
LQFP-48
LFCSP-32
TSSOP-24
QSOP-24
QSOP-16
QSOP-16
QSOP-16
QSOP-16
DFN-8, WDFN-8
WDFN-8, WLCSP-8
QSOP-16
SOIC-8, MSOP-8
SOIC-8, MSOP-8
MSOP-10
QSOP-16
DFN-8, SOIC-8,
Micro8
CSP-6
DFN-8, SOIC-8,
Micro8
* Pending 2H14.
Page 6
Computing Solutions
Integrated MOSFET and Drivers
Features
• Integrated high- and low-side MOSFETs
• Integrated bootstrap diode
• Matched of driver and MOSFETs optimize switching performance
• Higher switching frequency enables use of smaller inductor and output capacitors
• Low-side MOSFET diode emulation mode provides asynchronous operation
• 65% lower BOM; 45% smaller footprint and simplified layout versus discrete solutions
VIN
3-Phase
3-Phase
Driver
DrMOS
IA Rail
IA Rail
Driver
DrMOS
VIN
Driver
DrMOS
GT Rail
2-Phase
2-Phase
GT Rail
Driver
DrMOS
Discrete
versus
Device
PWM Input
NCP5369
NCP81081
NCP5338
NCP5368*
5 V Tri-state
3.3 V Tri-state
5 V Tri-state
5 V Tri-state
Integrated
VIN Max (V) Freq Max (MHz)
25
25
20
15
IOUT Continuous Max (A)
Package
40
40
40
35
QFN-40
QFN-40
QFN-40
QFN-40
1
1
1
2
* Pending 2H14.
Drivers for Discrete MOSFET Implementations
Drivers specifically designed to work with controller solutions, and optimized for 5 V or 12 V gate applications.
Device
Drivers
NCP5901
NCP5901B
NCP81161
NCP81151
NCP81253
NCP81061
NCP81152
Single
Single
Single
Single
Single
Dual
Dual
VCC Typ (V) Integrated Bootstrap Diode
12
12
12
5
5
12
5
N
Y
Y
Y
Y
Y
Y
ZCD*
Package
Y
Y
Y
Y
N
Y
Y
DFN-8
DFN-8
DFN-8
DFN-8
DFN-8
QFN-16
QFN-16
* Zero Crossover Detection.
ON Semiconductor
Page 7
MOSFETs Provide Optimized Efficiency
D1
Asymmetric Dual
(2, 3, 4, 9)
(1) G1
• Co-packaged Power Stage to minimize board space
• Low Side MOSFET with Integrated Schottky
• Parasitic Inductances Minimized
• Optimized Devices to Reduce Power Losses
S1/D2 (10)
(8) G2
S2 (5, 6, 7)
Device
Package
Config
NTMFD4C85N*
PowerPhase
Asym
Dual
NTMFD4H84NF*
PhaseFET
Asym
Dual
NTMFD4H85NF*
PhaseFET
Asym
Dual
NTMFD4C86N*
PowerPhase
Asym
Dual
NTMFD4901NF
SO-8FL
Asym
Dual
NTMFD4C87N*
PowerPhase
Asym
Dual
NTMFD4C88N*
PowerPhase
Asym
Dual
NTMFD4C20N
SO-8FL
Asym
Dual
NTMFD4902NF
SO-8FL
Asym
Dual
NTLLD4901NF
m8-FL/
WDFN-8
Asym
Dual
Polarity
N
N
N
N + Int Sch
N
N + Int Sch
N
N
N
N + Int Sch
N
N
N
N
N
N
N
N + Int Sch
N
N + Int Sch
VDS
(V)
30
30
25
25
25
30
30
30
30
30
30
30
30
30
30
30
30
30
30
30
Maximum Rating
RDS(ON) (mΩ)
VGS
VGS =
VGS =
(V)
10 V
4.5 V
20
3.0
4.3
20
0.8
1.2
20
3.3
4.8
20
0.8
1.3
20
3.6
4.7
20
1.5
2.1
20
5.4
8.1
20
2.1
3.0
20
6.5
10.0
20
2.4
3.5
20
5.0
7.7
20
3.1
4.3
20
5.0
7.7
20
3.4
5.0
20
7.0
10.8
20
3.4
5.2
20
6.5
10.0
20
4.1
6.2
20
20.0
30.0
20
15.0
22.0
Qg
(nC)
15.0
45.2
8.9
28.5
8.5
33.9
10.9
21.6
9.7
20.0
10.9
13.8
10.9
11.0
9.3
13.0
9.7
11.5
5.5
5.9
Qgd
(nC)
5.2
11.8
2.6
9.0
1.9
7.9
5.4
5.5
3.7
5.3
5.4
3.6
5.4
2.9
4.2
3.0
3.7
3.4
1.4
2.9
Ciss
(pF)
1960
6660
1222
3893
1194
4896
1252
3040
1150
2950
1252
1939
1252
1546
970
1950
1150
1510
605
645
Crss
(pF)
102
126
36
164
35
180
126
77
105
82
129
49
126
39
125
50
105
83
100
16
RG
(Ω)
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
0.8
0.8
1.0
1.0
1.0
1.0
1.0
1.0
0.8
0.8
0.8
0.8
Applications
Control Side
Synchronous Side
Control Side
Synchronous Side
Control Side
Synchronous Side
Control Side
Synchronous Side
Control Side
Synchronous Side
Control Side
Synchronous Side
Control Side
Synchronous Side
Control Side
Synchronous Side
Control Side
Synchronous Side
Control Side
Synchronous Side
* Pending 3Q14.
Page 8
Computing Solutions
MOSFETs Provide Optimized Efficiency
SO-8FL
5 x 6 mm
µ8FL
3.3 x 3.3 mm
DPAK
SOIC-8
5 x 6 mm
ON Semiconductor
Device
Package
NTMFS4C01N
SO-8FL
Configuration Polarity
VDS
(V)
Maximum Rating
RDS(ON) (mΩ)
VGS
VGS = VGS =
(V)
10 V
4.5 V
Single
N
30
20
0.9
1.2
Qg
(nC)
Qgd
(nC)
Ciss
(pF)
Crss
(pF)
RG
(Ω)
Applications
65.0
18.0
9200
231
1.0
HPPC
NTMFS4C03N
SO-8FL
Single
N
30
20
2.1
2.8
43.7
5.3
2850
72
1.0
HPPC
NTMFS4983NF
SO-8FL
Integ Sch
N
30
20
2.1
3.1
22.6
6.9
3250
90
1.0
Synchronous Side
NTMFS4C35N
SO-8FL
Single
N
30
20
3.2
4.2
15.0
5.5
2300
46
1.0
Synchronous Side
NTMFS4985NF
SO-8FL
Integ Sch
N
30
20
3.4
5.0
14.2
4.2
2100
60
1.0
Synchronous Side
NTMFS4C05N
SO-8FL
Single
N
30
20
3.4
5.0
13.0
3.0
1950
50
1.0
Synchronous Side
NTMFS4C06N
SO-8FL
Single
N
30
20
4.0
6.0
14.5
5.5
1988
71
1.0
Synchronous Side
NTMFS4C08N
SO-8FL
Single
N
30
20
5.8
8.5
8.7
2.8
1100
38
1.0
Synchronous Side
NTMFS4C09N
SO-8FL
Single
N
30
20
6.0
8.8
10.9
5.4
1252
126
1.0
Control Side
Control Side
NTMFS4C10N
SO-8FL
Single
N
30
20
7.0
10.8
9.3
4.2
970
125
1.0
NTMFS4C13N
SO-8FL
Single
N
30
20
9.1
13.8
6.6
2.7
720
95
1.0
Control Side
NTTFS4C05N
µ8-FL
Single
N
30
20
3.6
5.1
13.0
3.0
1950
50
1.0
Synchronous Side
NTTFS4C06N
µ8-FL
Single
N
30
20
4.0
6.0
14.5
5.5
1988
71
1.0
Synchronous Side
NTTFS4C08N
µ8-FL
Single
N
30
20
5.8
8.5
8.7
2.8
1100
38
1.0
Synchronous Side
NTTFS4C10N
µ8-FL
Single
N
30
20
7.4
11.0
9.3
4.2
970
125
1.0
Control Side
NTTFS4C13N
µ8-FL
Single
N
30
20
9.1
13.8
6.6
2.7
720
95
1.0
Control Side
NTTFS4C25N
µ8-FL
Single
N
30
20
17.0
26.5
4.0
1.3
455
60
1.0
Control Side
NTD4904N
DPAK
Single
N
30
20
3.7
5.5
16.8
3.0
3052
23.0
1.0
Synchronous Side
NTD4965N
DPAK
Single
N
30
20
4.7
7.0
17.5
8.5
1684
330
0.8
Synchronous Side
NTD4906N
DPAK
Single
N
30
20
5.5
8.0
11.0
1.8
1932
19
1.0
Synchronous Side
NTD4969N
DPAK
Single
N
30
20
9.0
12.0
8.7
4.0
835
163
0.7
Control Side
NTD4970N
DPAK
Single
N
30
20
11.0
15.0
7.7
3.7
743
330
0.9
Control Side
NTMS4937N
SOIC-8
Single
N
30
20
6.5
8.7
17.4
3.3
2563
25
1.0
Synchronous Side
NTMS4939N
SOIC-8
Single
N
30
20
8.4
11.0
12.4
1.9
2000
16
0.7
Synchronous Side
NTMS4916N
SOIC-8
Single
N
30
20
9.0
12.0
14.0
7.0
1468
280
0.7
Control Side
NTMS4917N
SOIC-8
Single
N
30
20
11.0
15.0
10.8
3.5
1132
216
0.7
Control Side
NTMS4800N
SOIC-8
Single
N
30
20
20.0
27.0
7.7
3.2
940
125
1.5
Control Side
NTMS4840N
SOIC-8
Single
N
30
20
24.0
36.0
4.8
1.9
520
70
2.0
Control Side
NTMD4820N
SOIC-8
Dual
N
30
20
20.0
27.0
7.7
3.2
940
125
1.5
DC-DC, Load Switch
NTMD4840N
SOIC-8
Dual
N
30
20
24.0
36.0
4.8
1.9
520
70
1.0
DC-DC, Load Switch
NTMS4177P
SOIC-8
Single
P
-30
20
12.0
19.0
29.0
13.0
3100
370
2.0
Load Switch
NTMS4176P
SOIC-8
Single
P
-30
25
18.0
30.0
17.0
8.4
1720
256
2.9
Load Switch
Page 9
MOSFETs Provide Optimized Efficiency
Trench 6 High Efficiency (T6HE) for Servers and
Point-of-Load Modules
• High Efficiency DC-DC Conversion
• Integrated Schottky Lowsides
• Lowest RDS(on) in the industry
Maximum Rating
RDS(ON) (mΩ)
VGS
VGS =
VGS =
(V)
10 V
4.5 V
Device
Package
Config
Polarity
VDS
(V)
Qg
(nC)
Qgd
(nC)
Ciss
(pF)
Crss
(pF)
RG
(Ω)
Applications
NTMFS4H01N
SO-8FL
Single
N
25
20
0.7
1.0
39.0
8.5
5693
212
1.2
Synchronous Side
NTMFS4H01NF
SO-8FL
Integ Sch
N
25
20
0.7
1.0
37.8
8.0
5538
175.3
1.3
Synchronous Side
NTMFS4H013NF*
SO-8FL
Integ Sch
N
25
20
0.9
1.3
28.0
7.5
3780
150
1.0
Synchronous Side
NTMFS4H02N
SO-8FL
Single
N
25
20
1.4
2.2
18.0
4.2
2651
103
1.0
Synchronous Side
NTMFS4H02NF
SO-8FL
Integ Sch
N
25
20
1.4
2.3
18.7
4.3
2652
94
1.0
Synchronous Side
NTTFS4H05N
µ8-FL
Single
N
25
20
3.3
4.8
8.7
1.9
1205
45
1.0
Control Side
NTTFS4H07N
µ8-FL
Single
N
25
20
4.8
7.1
5.7
1.3
771
34
1.0
Control Side
* Pending 2H14.
Switching Devices
ON Semiconductor offers a range of switching devices for high speed interface in servers, desktop computing, notebook and netbook
computers. Applications include PCI Express, DisplayPort, Gigabit Ethernet and USB 2.0.
2nd LCD
Display
LCD
Panel
Server Implementation
TMDS
DisplayPort
Switch
Docking Station Connector
VGA Switch
HDMI/DVI
Switch
LAN Switch
Internal
Graphics
Processor
Gigabit LAN
Transceiver
USB Power/
Data Switch
Stereo Switch
Mic Switch
Page 10
External
Graphics
Processor
Audio
Amp
PCIe
Switch
Processor
North Bridge
(ICH)
South Bridge
(MCH)
Codec
Device
Interface
Data Rate
NCN3612B
NCN3411
NCN2612B
NCN2411
NS3L500
NCN7200
NCN1188
NS5S1153
NLAS7242
NLAS52231
NLAS4684
PCIe 3.0, DisplayPort 1.2
PCIe 3.0
PCIe 2.0, DisplayPort 1.1
PCIe 2.0
Gigabit Ethernet
Gigabit Ethernet
USB 2.0 / MHL
USB 2.0
USB 2.0
Audio
Audio
8 Gb/s
8 Gb/s
5 Gb/s
5 Gb/s
1 Gb/s
1 Gb/s
2.25 Gb/s
480 Mb/s
480 Mb/s
36 MHz
9.5 MHz
No
Quiescent
Channels Current
12
8
12
8
11
11
2
2
2
2
2
250 μA
200 μA
250 μA
200 μA
250 μA
380 μA
21 μA
21 μA
1 μA
1 μA
180 nA
Computing Solutions
Advanced Load Switches
VCC
EN
PG
Smart Load Switch
ecoSWITCH™ Integrated
Load Switch
NCP45xxx Integrated Load Switch Feature
• Simple/clean design
• No current consumption in standby power mode
• Small PCB footprint
• Low RDS(ON) due to charge pump driving NMOS
• Adjustable soft-start time (SR)
• Adjustable integrated discharge
• Fault protection
• Power rail monitoring & sequencing
Thermal,
Undervoltage
&
Short-Circuit
Protection
Bandgap
&
Biases
Control
Logic
Charge
Pump
Delay and
Slew Rate
Control
SR
Type
VIN
GND
BLEED
VOUT
ron
(mW)
I Max
(A)
VI Min
(V)
VI Max
(V)
IQ
(mA)
Discharge
Slew Rate
(ms)
Features
Package(s)
NCP330
26 at 3.3 V
3
1.8
5.5
100
-
2000
Reverse blocking
TDFN-4
NCP333
55 at 3.3 V
1.5
1.2
5.5
1
Auto
95
-
WLCSP-4
NCP334
47 at 3.3 V
2
1.2
5.5
1
-
71
-
WLCSP-4
NCP335
47 at 3.3 V
2
1.2
5.5
1
Auto
71
-
WLCSP-4
NCP336
23 at 3.3 V
3
1.2
5.5
1
-
810
-
WLCSP-6
NCP337
23 at 3.3 V
3
1.2
5.5
1
Auto
810
-
WLCSP-6
NCP338
27 at 1.8 V
2
1
3.6
0.6
Auto
20
-
WLCSP-6
Device
NCP339
26 at 3.3 V
3
1.2
5.5
2
-
2700
Reverse blocking
WLCSP-6
NCP432
50 at 1.8 V
1.5
1
3.6
0.6
-
20
-
WLCSP-4
NCP433
50 at 1.8 V
1.5
1
3.6
0.6
Auto
20
-
WLCSP-4
NCP434
43 at 1.8 V
2
1
3.6
0.6
-
61
-
WLCSP-4
NCP435
43 at 1.8 V
2
1
3.6
0.6
Auto
61
-
WLCSP-4
NCP436
23 at 1.8 V
3
1
3.6
1
-
27
-
WLCSP-6
NCP437
23 at 1.8 V
3
1
3.6
1
Auto
27
-
WLCSP-6
NCP45524
18.0
6
0.5
13.5
-
Adj
-
Power good
DFN-8
NCP45525
18.0
6
0.5
13.5
-
Adj
Adj
-
DFN-8
NCP45560
2.4
24
0.5
13.5
-
Adj
Adj
Power good; Fault
DFN-12
NCP45540
3.9
20
0.5
13.5
-
Adj
Adj
Power good; Fault
DFN-12
NCP4543
10.2
7.3
0.5
6
-
Adj
Adj
-
QFN-18
NCP4545
4.7
10.5
0.5
6
-
Adj
Adj
-
QFN-18
NCP45520
9.5
10.5
0.5
13.5
-
Adj
-
Power good; Fault
DFN-8
NCP45521
9.5
10.5
0.5
13.5
-
Adj
Adj
Fault
DFN-8
ON Semiconductor
Page 11
Evaluating ESD Protection Effectiveness
As the design window for protection shrinks, choosing ESD
protection products with low Rdyn becomes more important to
ensure that clamping voltages do not exceed the safe protection
window of new chipsets. Suppliers of ESD protection products
must therefore provide information on the effectiveness of the
product for protection, not just self-survival levels.
35
Voltage (V)
Competition
Industry’s lowest clamping voltage for sensitive chipsets!
Lowest Vclamp over ESD current window
Figure 2. Typical TLP I-V curves from TLP measurements
ESD and EMI solutions protect against unwanted signals that
interfere with the overall system performance. During a system’s
normal operation, these protection devices must not degrade
signal integrity, as they must be completely transparent. As
the data rates on serial interfaces increase, it is important to
demonstrate that protection products do not degrade signal
integrity. ON Semiconductor uses several methods to demonstrate
that these products do not degrade signal integrity.
25
20
15
10
5
0
-5
0
50
100
Time (ns)
150
200
Figure 1. ESD clamping screenshot
TLP creates I-V curves in which each data point is obtained with
a square pulse that closely matches an ESD event in terms of
current shape and pulse width. TLP pulse lengths are typically
100 ns, with pulse amplitudes up to 40 A. Sample TLP I-V curves
are shown in Figure 2, comparing an ON Semiconductor product
with a competitor’s product intended for the same application.
The ON Semiconductor product turns on at a lower voltage and
has significantly lower dynamic resistance than the competitor’s
device. The TLP I-V curves and parameters extracted from them
Page 12
ESD8004
Maintaining Signal Integrity
30
-10
-50
IEC6100-4-2 Level 4 Current Range
ON Semiconductor demonstrates ESD protection effectiveness
using two methods: ESD screen shots and Transmission Line
Pulse (TLP) measurements. ESD screen shots capture the voltage
across the protector when an IEC 61000-4-2 ESD stress is forced
through it; typically for an 8 kV contact stress. The screen shot
shown in Figure 1 demonstrates how an ON Semiconductor
protection device clamps the voltage to below 20 V within 10 ns
for an 8 kV stress. Screen shots provide a graphic and intuitive
view of a protection product’s effectiveness, especially when
comparing two products intended for the same application.
Application Note AND8307/D describes the capture of screen
shot data. Screen shots do not, however, allow the extraction
of fundamental parameters describing the performance of a
protection product. Transmission Line Pulse (TLP) provides a more
quantitative measurement of ESD protection device effectiveness.
can be used to compare the properties of different ESD protection
devices and can be used to predict a circuit’s ESD clamping
performance. Parameters that can be extracted from TLP data
include clamping voltage values for specified current levels, as well
as dynamic resistance and voltage intercepts. Application Note
AND9006/D gives a full explanation of the TLP technique, and
Application Note AND9007/D describes datasheet parameters
extracted from TLP measurements.
One way in which to measure signal integrity effects is with the
S-parameter return and insertion loss plots, such as the ones in
Figures 3 and 4. S11 plots measure signal power return loss over
frequency, where a small amount of loss shows up as a large –dB
value due to the matched impedance of the interconnect. Lower
return loss translates into more of the signal, both amplitude
and phase, being transferred through the interconnect which can
be seen in the S21 plot where the signal power insertion loss
is being measured. Both S-parameter plots below show how an
ON Semiconductor ESD protection device maintains the lowest
loss and best transparency among other top competitor devices.
Application Note AND9114/D explains these signal integrity
measurements and the ESD device characteristics that affect
them in more detail.
Computing Solutions
Figure 3. Return loss (S11) characteristics of ESD protection solutions
Figure 4. Insertion loss (S21) characteristics of ESD protection solutions
Surge Protection
For lower data-rates (10/100BASE-T, xDSL), ON Semiconductor
offers a combination of crowbar devices known as thyristor surge
protector devices (TSPD), and transient voltage suppressor (TVS)
devices similar to those used in ESD protection. TSPDs offer
the advantage of lower clamping voltages and possess higher
surge current capability, for both common and differential mode
protection.
ON Semiconductor
30
25
Voltage (V), Current (A)
ON Semiconductor provides solutions for protecting against
surge strikes, induced by a lighting strike or power-cross fault.
Common interfaces found in a wide variety of consumer and
telecommunications/networking equipment are the RJ45 interface
for the 10/100BASE-T and 1000BASE-T Ethernet protocols and
the RJ11 interface for xDSL protocols. RJ45 consists of four pairs
of differential data lines, each carrying a maximum data rate of
250 Mbps in a 1000BASE-T configuration, while RJ11 consists
of a single differential data pair. These interfaces are often surge
rated to an intra-building standard. Protection for these interfaces
mainly consist of ensuring that transverse (metallic or differential)
surge strikes do not damage sensitive downstream chips such
as PHYs. Differential protection is achieved by connecting shunt
protection elements from line-to-line (for each pair of lines)
that transfer the incoming hostile surge energy back towards
the source. This is different from common mode protection as
elements are connected line-to-GND and shunt the surge energy
to GND.
ESD1014 V(t)
ESD1014 I(t)
Competitor V(t)
Competitor I(t)
20
15
10
5
0
-10
0
10
20
30
40
50
Time (μs)
60
70
80
90
Figure 5. Example of V & I plots in an 8/20 μs surge
TVS clamping devices support surge levels for the 8/20 μs pulse
and are commonly used on the tertiary or PHY-side to capture
and safely dissipate any residual surge pulses. Pictured in Figure
1 is a time-domain plot of the 8/20 μs surge current applied to
the ESD1014 TVS from ON Semiconductor. Also shown are timedomain response voltages, clearly showing the superiority of the
ON Semiconductor solution in comparison to a competing device.
Page 13
USB 3.0/3.1
Two SuperSpeed Pairs, One High Speed Pair, V CC , Low Capacitance ESD Protection
Key Requirement
• Cap < 0.5 pF (USB 3.0)
• Cap < 0.4 pF (USB 3.1)
Features
• 0.37 pF or less
• Flow through routing
• Industry leading low clamping voltage
versus competitors
USB 3.0 Type A
Connector
USB 3.0 Type A
Connector
StdA_SSTX+
StdA_SSTX+
Vbus
ESD8004/
ESD8104
StdA_SSTX-
Vbus
ESD8006
D-
DGND_DRAIN
I/O
1
I/O
2
I/O . . . . . I/O I/O I/O
3
(N-2) (N-1) N
ESD7L5.0
Top layer
Other layer
GND_DRAIN
D+
D+
StdA_SSRX+
StdA_SSRX+
GND
GND
StdA_SSRX-
ESD8004/8104 — 0.30 pF, 2 Layer Routing
(ESD7L5.0 for D+, D- Lines)
=
Device
ESD8006
ESD8004
ESD8104
ESD7L
ESD8351
Without ESD
Page 14
Data Lines
Capacitance
(pF)
Package
Size
(mm)
3 Pair (Tx, Rx, D+, D-)
2 Pair (Tx, Rx)
2 Pair (Tx, Rx)
1 Pair (D+, D-)
Single Line 0201
0.25
0.30
0.30
0.50
0.37
UDFN-8
UDFN-10
UDFN-10
SOT-723
X3DFN-2
3.3 x 1.0
2.5 x 1.0
2.5 x 1.0
1.2 x 1.2
0.62 x 0.32
USB 3.1 @ 10 Gb/s
StdA_SSTX-
StdA_SSRX-
ESD8006 — 0.25 pF, 1 Layer Routing
With ESD
Computing Solutions
Thunderbolt
Four High Speed Pairs, up to Six Additional Lines, Low Capacitance ESD
Key Requirement
• Cap < 0.4 pF
Thunderbolt Connetctor
Top Layer
GND
Features
• 0.25 pF
• Flow through routing
• Grounds between pairs for reduced cross talk
• Industry leading clamping voltage
ML0+
ESD8006
ML0–
GND
ML1+
ML1–
GND
ML2+
ML2–
I/O
1
I/O
2
I/O
4
I/O
5
I/O
7
GND
I/O
8
Thunderbolt Connetctor
Bottom Layer
ESD9X
Pins 3, 6, 9, 10
Hot Plug Detect
=
CONFIG1
ESD8006
ML3+
Device
ESD8006
ESD8351
Data Lines
Capacitance
(pF)
Package
Size
(mm)
3 Pair
Single Line 0201
0.25
0.37
UDFN-8
X3DFN2
3.3 x 1.0
0.62 x 0.32
ML3–
GND
GND
CONFIG2
Aux+
Aux–
PWR
Top layer
Bottom layer
ESD9X
Without ESD8006
Thunderbolt @ 10 Gb/s
ON Semiconductor
With ESD8006
Page 15
USB 2.0
One High Speed Pair, V CC , Low Capacitance ESD Protection
Key Requirement
• Cap < 1.5 pF
I/O 1 I/O 2 I/O 3 I/O 4
Features
• 0.5 - 0.8 pF
• 4 low speed + 1 VBUS integrated – can protect up to 2 USB ports
• Industry leading low clamping voltage
Device
Data Lines
Capacitance
(pF)
NUP4114UCL
NUP4114UPX
NUP4114H
NUP3115
ESD7L5.0
ESD7451
ESD7481
2 Pair + Power
2 Pair + Power
2 Pair + Power
1 Pair + ID + Power (D+, D-, ID, VBUS)
1 Pair (D+, D-)
Single Line 0402
Single Line 0201
0.50
0.80
0.80
0.80
0.50
0.25
0.25
GND
D+
=
DVBUS
Package
Size
(mm)
SC-88
SOT-563
TSOP-6
UDFN-6
SOT-723
XDFN-2
X3DFN-2
2.0 x 2.1
1.6 x 1.6
3.0 x 2.75
1.6 x 1.6
1.2 x 1.2
1.0 x 0.6
0.62 x 0.32
NUP4114
One High Speed Pair, V CC , Common Mode Filter + ESD Protection
Micro USB
Connector
Key Requirement
• Cap < 1.5 pF
• Common Mode Filtering
GND
EMI2121
D+
Features
• 0.5 - 0.8 pF
• Integrated EMI suppression with ESD protection
• Industry leading low clamping voltage
Device
EMI2121
EMI2124
Data Lines
Capacitance
@ 2.5 V (pF)
1 Pair + Power (D+, D-, VBUS)
1 Pair + ID + Power (D+, D-, ID, VBUS)
0.9
0.9
DVBUS
Top layer
Other layer
CM Attenuation DM Bandwidth
@ 800 MHz (–dB) F3dB (GHz)
Package
–25
–25
ID
2.5
2.5
WQFN
WQFN
Size
(mm)
2.2 x 2.0 x 0.75
2.2 x 2.0 x 0.75
0
-5
-10
dB
-15
-20
-25
-30
USB 2.0 @ 480 Mb/s
Page 16
-35
1.E+06
Suppresses Common Mode Noise
Deeper than Competing Passive Solution
Common
Mode
Differential
Mode
1.E+07
1.E+08
1.E+09
Frequency
Computing Solutions
HDMI, Display Port
Four High Speed Pairs, Up to Six Additional Interface Lines, Low Capacitance ESD
Key Requirement
• Cap < 0.5 pF (HDMI 1.3/1.4)
• Cap < 0.4 pF (HDMI 2.0)
I/O
1
I/O
2
Device
ESD8104
Features
• 0.3 pF ESD protection
• Flow through routing in high speed lines
• Industry leading low clamping voltage
ESD8104
I/O . . . . . I/O I/O I/O
3
(N-2) (N-1) N
ESD8040
ESD7451
ESD7481
=
HDMI Type-A Connector
Data Lines
Capacitance
(pF)
Package
Size
(mm)
0.30
UDFN-10
2.5 x 1.0
0.30
UDFN-18
5.5 x 1.5
0.25
0.25
XDFN-2
X3DFN-2
1.0 x 0.6
0.62 x 0.32
2 Pair
4 Pair + CEC, SDL,
SDA, 5V,HPD
Single Line 0402
Single Line 0201
ESD8040
HDMI Type-A Connector
D2+
D2+
GND
GND
D2-
D2-
D1+
D1+
GND
GND
D1-
D1-
ESD8104
D0+
D0+
GND
GND
D0-
D0-
CLK+
CLK+
GND
GND
CLK-
CLK-
CEC
CEC
N/C (or HEC_DAT - HDMI1.4)
N/C (or HEC_DAT - HDMI1.4)
SCL
SCL
SDA
SDA
GND
GND
5V
5V
HPD (and HEC_DAT - HDMI1.4)
HPD (and HEC_DAT - HDMI1.4)
• MediaGuard fully integrated solution
• Includes ethernet protection (HDMI1.4)
• Backdrive current protection
NUP4114
Without ESD
ON Semiconductor
HDMI 2.0 @ 6.0 Gb/s
Top layer
Other layer
With ESD
Page 17
Ethernet: 10/100BASE-T, 1000BASE-TX, and Gigabit
Four Pairs, Low Capacitance Surge and ESD Protection
The 1000BASE-T or Gigabit Ethernet interface operating at higher bitrates is susceptible to ESD strikes, cable-discharge events and
lightning-induced transients. Our products help meet IEC 61000-4-5, GR-1089-CORE and other Standards.
Features
• Line-to-line capacitance < 3 pF
• Vclamp (25 A surge) < 11 V
• IEC 61000-4-2 rating > 30 kV
• No latching danger
• Surge rating maintained to 125°C
Typical Application
RJ45
TRANSFORMER
CLC03
8
TPOPD
C1
C+
VDD
C5
ESD1014
TPOND
BLC03
1
1000BASE-T
ETHERNET TRANSCEIVER
C5
8
TPONC
C1
B+
VDD
1
TPOPC
8
TPONB
C1
ALC03
ESD1014
TPOPB
A+
VDD
C5
1
Benefits
• Compatible with Gb Ethernet and beyond
• Enhanced protection for downstream electronics
• Accommodates operating transients above 3.3 V
• Small form-factor allows integration into connectors
TPONA
C1
8
1
TPOPA
D+
VDD
C5
DLC03
Line Side : LC03-6 (optional)
Transformer Side: ESD1014
Protection against metallic (transverse) strikes
TD1+
TD2+
MDI0+
MDI0–
TD2–
MDI1+
MDI1–
MDI2+
MDI2–
TD3+
MDI3+
MDI3–
TD3–
TRANSFORMER
PHY
TD1–
Through Board
TD4+
Top layer
Other layer
TD4–
With ESD1014
Voltage (V), Current (A)
30
25
8/20 μs
Surge Current
Competitor
Voltage
20
15
ESD1014
Voltage
10
5
0
-10
0
10
20
30
Time (μs)
Line-to-Line Surge
Page 18
40
50
60
Signal Integrity for Gigabit Ehternet
Computing Solutions
Serial EEPROMs
Features
EasyPRO™ is a user-friendly, portable
programming tool for ON Semiconductor
serial EEPROMs (I2C, SPI, Microwire)
• Broad density range: 1 kb to 2 Mb
• Wide operating Vcc range: 1.8/1.7 V to 5.5 V
• High endurance: 1 million program/erase cycles
• Wide temperature range: industrial and extended
EEPROMs
Data
Transmission
Standard
I2C
SPI
Microwire
Device
Density
Organization*
VCC Min
(V)
VCC Max
(V)
fCLK Max
(MHz)
Package(s)
CAT24M01
CAT24C512
CAT24C256
CAT24C128
CAT24C64
CAT24C32
CAT24C16
CAT24C08
CAT24C04
CAT24C02
CAT25M02
CAT25M01
CAT25512
CAT25256
CAT25128
CAT25640
CAT25320
CAT25160
CAT25080
CAT25040
CAT25020
CAT25010
CAT93C86
CAT93C86B
CAT93C76
CAT93C76B
CAT93C66
CAT93C56
CAT93C46
CAT93C46B
1 Mb
512 kb
256 kb
128 kb
64 kb
32 kb
16 kb
8 kb
4 kb
2 kb
2 Mb
1 Mb
512 kb
256 kb
128 kb
64 kb
32 kb
16 kb
8 kb
4 kb
2 kb
1 kb
16 kb
16 kb
8 kb
8 kb
4 kb
2 kb
1 kb
1 kb
128k x 8
64k x 8
32k x 8
16k x 8
8k x 8
4k x 8
2k x 8
1k x 8
512 x 8
256 x 8
256k x 8
128k x 8
64k x 8
32k x 8
16k x 8
8k x 8
4k x 8
2k x 8
1k x 8
512 x 8
256 x 8
128 x 8
2k x 8 / 1k x 16
2k x 8 / 1k x 16
1k x 8 / 512 x 16
1k x 8 / 512 x 16
512 x 8 / 256 x 16
256 x 8 / 128 x 16
128 x 8 / 64 x 16
128 x 8 / 64 x 16
1.8
1.8
1.8
1.8
1.7
1.7
1.7
1.7
1.7
1.7
1.7
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8 / 1.65
1.8
1.8 / 1.65
1.8
1.8
1.8
1.8 / 1.65
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
5.5
1
1
1
1
1
1
0.4
0.4
0.4
0.4
10
10
20
20
20
20
20
20
20
20
20
20
3
4
3
4
2
2
2
4
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8, UDFN-8; WLCSP-5
SOIC-8, TSSOP-8, UDFN-8, TSOT23-5, WLCSP-4, WLCSP-5
SOIC-8, TSSOP-8, UDFN-8, TSOT23-5, WLCSP-4, WLCSP-5
SOIC-8, TSSOP-8, UDFN-8, TSOT23-5, WLCSP-4, WLCSP-5
SOIC-8, TSSOP-8, UDFN-8, TSOT23-5, WLCSP-4, WLCSP-5
SOIC-8
SOIC-8, TSSOP-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8
SOIC-8, TSSOP-8, UDFN-8
SOIC-8, TSSOP-8
SOIC-8, TSSOP-8
SOIC-8, TSSOP-8
SOIC-8, TSSOP-8, UDFN-8
* Organization for Microwire devices is selectable.
Application Specific EEPROMs
Data
Transmission
Standard
Device
Density
Organization
VCC Min
(V)
VCC Max
(V)
fCLK Max
(MHz)
I2C
I2C
2
I C/SMBus
CAT24C208
CAT34C04*
CAT34TS04
8 kb
4 kb
4 kb
1024 x 8
512 x 8
512 x 8
2.5
1.7
2.2
5.5
5.5
5.5
0.4
1
1
I2C
CAT34C02
2 kb
256 x 8
1.7
5.5
0.4
I2C/SMBus
CAT34TS02
2 kb
256 x 8
3.0
3.6
0.4
Package(s)
Notes
SOIC-8
UDFN-8
TDFN-8, UDFN-8
UDFN-8, TDFN-8,
TSSOP-8
TDFN-8, UDFN-8
VESA™ dual-port serial EEPROM
Serial Presence Detect (SPD) I2C EEPROM for DDR4 DIMM
4 kb SPD EEPROM w/ Temperature Sensor for DDR4 DIMM
Serial Presence Detect (SPD) I2C EEPROM for DDR3 DIMM
2 kb SPD EEPROM w/ Temperature Sensor for DDR3 DIMM
* Pending 3Q14.
ON Semiconductor
Page 19
Clock Synthesizers for High Performance Computing
Features
• Uses 25 MHz fundamental mode parallel resonant crystal
• PCI-e Gen 1,2 & 3 jitter complaint HCSL differential outputs
• NB3N50134 features configurable spread spectrum outputs
• NB3N51044 features individual OE control signal for each output, PLL bypass
mode and an Input multiplexer
• NB3N51054 features I2C interface for OE control and configurable spread
spectrum outputs
• 3.3 V supply
VDD
X1/CLK
25 MHz Clock or
Crystal
X2
Clock Buffer
Crystal Oscillator
Charge
Pump
Phase
Detector
HSCL
Output
VCO
HSCL
Output
M
GND
S0
S1
OE
CLK0
CLK0
CLK1
CLK1
IREF
NB3N5573 Simplified Logic Diagram
Number
of Inputs
Input Type
fin Typ
(MHz)
Number
of Outputs
Output
Type
fout Typ
(MHz)
Spread Spectrum
Outputs
Package
NB3N3002
1
Crystal; LVCMOS; LVTTL
25
1
HCSL
25; 100; 125; 200
No
TSSOP-16
NB3N5573
1
Crystal; LVCMOS; LVTTL
25
2
HCSL
25; 100; 125; 200
No
TSSOP-16
NB3N51032
1
Crystal; LVCMOS; LVTTL
25
2
HCSL
25; 100; 125; 200
No
TSSOP-16
NB3N51034
1
Crystal; LVCMOS; LVTTL
25
4
HCSL
100: 200
Yes
TSSOP-20
NB3N51044
2
Crystal; LVCMOS; LVTTL
25
4
HCSL
100: 125
No
TSSOP-28
NB3N51054
1
Crystal; LVCMOS; LVTTL
25
4
HCSL
100
Yes
TSSOP-24
Device
Page 20
Computing Solutions
Fanout Buffers for High Performance Computing
Features
• DC to 400 MHz
• Single ended input: LVPECL, LVDS, HCSL
• Typical input clock frequencies: 100, 133, 166, or 400 MHz
• Typical propagation delay: 800 ps
• HCSL differential outputs
• Integrated 50 Ω input termination resistors
• IREF pin enables setting of output drive
• Additive phase jitter 0.1 ps typical @ 100 MHz; PCI-e Gen 3 jitter complaint
Q0
Q0
VTCLK
Q1
Q1
CLK
CLK
Q19
Q19
VTCLK
Q20
VCC
IREF
GND
Q20
RREF
NB3N121K Logic Diagram
Ratio
Additive
tJitter(RMS) Typ
(ps)
tskew(o-o) Max
(ps)
tpd Typ
(ns)
tR & tF Max
(ps)
fmaxClock Typ
(MHz)
Package
NB3N106K
1:6
0.1
100
0.8
400
400
QFN-24
NB3N108K
1:8
0.1
100
0.8
400
400
QFN-32
NB3N111K
1:10
0.1
100
0.8
400
400
QFN-32
NB3N121K
1:21
0.1
100
0.8
700
400
QFN-52
NB4N111K
1:10