0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCV33274ADR2

NCV33274ADR2

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOIC14

  • 描述:

    IC OPAMP GP 4 CIRCUIT 14SOIC

  • 数据手册
  • 价格&库存
NCV33274ADR2 数据手册
MC33272A, MC33274A, NCV33274A Single Supply, High Slew Rate, Low Input Offset Voltage Operational Amplifiers The MC33272/74 series of monolithic operational amplifiers are quality fabricated with innovative Bipolar design concepts. This dual and quad operational amplifier series incorporates Bipolar inputs along with a patented Zip−R−Trim element for input offset voltage reduction. The MC33272/74 series of operational amplifiers exhibits low input offset voltage and high gain bandwidth product. Dual−doublet frequency compensation is used to increase the slew rate while maintaining low input noise characteristics. Its all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, and an excellent phase and gain margin. It also provides a low open loop high frequency output impedance with symmetrical source and sink AC frequency performance. The MC33272/74 series is specified over −40° to +85°C and are available in plastic DIP and SOIC surface mount packages. Features http://onsemi.com MARKING DIAGRAMS DUAL PDIP−8 P SUFFIX CASE 626 1 SOIC−8 D SUFFIX CASE 751 1 1 8 8 1 33272 ALYWA 8 MC33272AP AWL YYWW 8 • • • • • • • • • • • • • • • • • QUAD PDIP−14 P SUFFIX CASE 646 14 1 14 MC33274AP AWLYYWW 1 Pb−Free Packages are Available Input Offset Voltage Trimmed to 100 mV (Typ) Low Input Bias Current: 300 nA Low Input Offset Current: 3.0 nA High Input Resistance: 16 MW Low Noise: 18 nV/ √ Hz @ 1.0 kHz High Gain Bandwidth Product: 24 MHz @ 100 kHz High Slew Rate: 10 V/ms Power Bandwidth: 160 kHz Excellent Frequency Stability Unity Gain Stable: w/Capacitance Loads to 500 pF Large Output Voltage Swing: +14.1 V/ −14.6 V Low Total Harmonic Distortion: 0.003% Power Supply Drain Current: 2.15 mA per Amplifier Single or Split Supply Operation: +3.0 V to +36 V or ±1.5 V to ±18 V ESD Diodes Provide Added Protection to the Inputs NCV Prefix for Automotive and Other Applications Requiring Site and Control Changes 14 1 14 MC33274AD AWLYWW 1 SOIC−14 D SUFFIX CASE 751A 14 NCV33274A AWLYWW 1 A WL, L YY, Y WW, W = Assembly Location = Wafer Lot = Year = Work Week ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet. © Semiconductor Components Industries, LLC, 2004 1 December, 2004 − Rev. 7 Publication Order Number: MC33272A/D MC33272A, MC33274A, NCV33274A PIN CONNECTIONS DUAL CASE 626/751 Output 1 Inputs 1 VEE 1 2 3 4 − + − + 8 7 6 5 QUAD CASE 646/751A Output 1 Inputs 1 3 1 2 − + − + 14 13 VCC Output 2 Inputs 2 Output 4 Inputs 4 1 4 12 11 (Top View) VCC Inputs 2 4 5 6 + − + − VEE Inputs 3 Output 3 10 9 8 2 3 Output 2 7 (Top View) MAXIMUM RATINGS Rating Supply Voltage Input Differential Voltage Range Input Voltage Range Output Short Circuit Duration (Note 2) Maximum Junction Temperature Storage Temperature ESD Protection at Any Pin − Human Body Model − Machine Model Maximum Power Dissipation Operating Temperature Range MC33272A, MC33274A NCV33274A PD TA Symbol VCC to VEE VIDR VIR tSC TJ Tstg Vesd 2000 200 Note 2 −40 to +85 −40 to +125 mW °C Value +36 Note 1 Note 1 Indefinite +150 −60 to +150 Unit V V V sec °C °C V Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. Either or both input voltages should not exceed VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 2). http://onsemi.com 2 MC33272A, MC33274A, NCV33274A DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.) Characteristics Input Offset Voltage (RS = 10 W, VCM = 0 V, VO = 0 V) (VCC = +15 V, VEE = −15 V) TA = +25°C TA = −40° to +85°C TA = −40° to +125°C (NCV33274A) (VCC = 5.0 V, VEE = 0) TA = +25°C Average Temperature Coefficient of Input Offset Voltage RS = 10 W, VCM = 0 V, VO = 0 V, TA = −40° to +125°C Input Bias Current (VCM = 0 V, VO = 0 V) TA = +25°C TA = Tlow to Thigh Input Offset Current (VCM = 0 V, VO = 0 V) TA = +25°C TA = Tlow to Thigh Common Mode Input Voltage Range (DVIO = 5.0 mV, VO = 0 V) TA = +25°C Large Signal Voltage Gain (VO = 0 V to 10 V, RL = 2.0 kW) TA = +25°C TA = Tlow to Thigh Output Voltage Swing (VID = ±1.0 V) (VCC = +15 V, VEE = −15 V) RL = 2.0 kW RL = 2.0 kW RL = 10 kW RL = 10 kW (VCC = 5.0 V, VEE = 0 V) RL = 2.0 kW RL = 2.0 kW Common Mode Rejection (Vin = +13.2 V to −15 V) Power Supply Rejection VCC/VEE = +15 V/ −15 V, +5.0 V/ −15 V, +15 V/ −5.0 V Output Short Circuit Current (VID = 1.0 V, Output to Ground) Source Sink Power Supply Current Per Amplifier (VO = 0 V) (VCC = +15 V, VEE = −15 V) TA = +25°C TA = Tlow to Thigh (VCC = 5.0 V, VEE = 0 V) TA = +25°C 3. MC33272A, MC33274A NCV33274A Tlow = −40°C Tlow = −40°C Thigh = +85°C Thigh = +125°C 6 7 Figure 3 Symbol |VIO| − − − − 3 4, 5 DVIO/DT − IIB − − |IIO| − − VICR VEE to (VCC −1.8) AVOL 90 86 8, 9, 12 VO + VO − VO + VO − 10, 11 VOL VOH CMR PSR 80 16 ISC +25 −25 17 ICC − − − 2.15 − − 2.75 3.0 2.75 +37 −37 − − mA 105 − mA 13.4 − 13.4 − − 3.7 80 13.9 −13.9 14 −14.7 − − 100 − −13.5 − −14.1 0.2 5.0 − dB dB 100 − − − V dB 3.0 − 65 80 V 300 − 650 800 nA 2.0 − nA 0.1 − − − 1.0 1.8 3.5 2.0 mV/°C Min Typ Max Unit mV 13 14, 15 http://onsemi.com 3 MC33272A, MC33274A, NCV33274A AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = −15 V, TA = 25°C, unless otherwise noted.) Characteristics Slew Rate (Vin = −10 V to +10 V, RL = 2.0 kW, CL = 100 pF, AV = +1.0 V) Gain Bandwidth Product (f = 100 kHz) AC Voltage Gain (RL = 2.0 kW, VO = 0 V, f = 20 kHz) Unity Gain Bandwidth (Open Loop) Gain Margin (RL = 2.0 kW, CL = 0 pF) Phase Margin (RL = 2.0 kW, CL = 0 pF) Channel Separation (f = 20 Hz to 20 kHz) Power Bandwidth (VO = 20 Vpp, RL = 2.0 kW, THD ≤ 1.0%) Total Harmonic Distortion (RL = 2.0 kW, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) Open Loop Output Impedance (VO = 0 V, f = 6.0 MHz) Differential Input Resistance (VCM = 0 V) Differential Input Capacitance (VCM = 0 V) Equivalent Input Noise Voltage (RS = 100 W, f = 1.0 kHz) Equivalent Input Noise Current (f = 1.0 kHz) 30 31 28 29 23, 24, 26 23, 25, 26 27 Figure 18, 33 19 20, 21, 22 Symbol SR 8.0 GBW AVO BW Am fm CS BWP THD − |ZO| Rin Cin en in − − − − − 0.003 35 16 3.0 18 0.5 − − − − − − W MW pF nV/ √ Hz pA/ √ Hz 17 − − − − − − 10 24 65 5.5 12 55 −120 160 − − − − − − − − MHz dB MHz dB Deg dB kHz % Min Typ Max Unit V/ms VCC Vin − + Vin + Sections B C D VO + VEE Figure 1. Equivalent Circuit Schematic (Each Amplifier) http://onsemi.com 4 MC33272A, MC33274A, NCV33274A P D (MAX), MAXIMUM POWER DISSIPATION (mW) 2400 V IO , INPUT OFFSET VOLTAGE (mV) 2000 MC33272P & MC33274P 1600 1200 800 400 0 −60 −40 −20 0 20 40 60 80 100 120 140 160 180 MC33274D 5.0 3.0 1.0 2 −1.0 −3.0 −5.0 −55 3 1. VIO > 0 @ 25°C 2. VIO = 0 @ 25°C 3. VIO < 0 @ 25°C VCC = +15 V VEE = −15 V VCM = 0 V 1 1 3 2 MC33272D −25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 2. Maximum Power Dissipation versus Temperature Figure 3. Input Offset Voltage versus Temperature for Typical Units 400 I IB, INPUT BIAS CURRENT (nA) I IB, INPUT BIAS CURRENT (nA) 350 300 250 200 150 100 50 0 −16 VCC = +15 V VEE = −15 V TA = 25°C 600 500 400 300 200 100 0 −55 VCC = +15 V VEE = −15 V VCM = 0 V −12 −8.0 −4.0 0 4.0 8.0 12 16 −25 0 25 50 75 100 125 VCM, COMMON MODE VOLTAGE (V) TA, AMBIENT TEMPERATURE (°C) Figure 4. Input Bias Current versus Common Mode Voltage V ICR, INPUT COMMON MODE VOLTAGE RANGE (V) Figure 5. Input Bias Current versus Temperature VCC VCC A VOL, OPEN LOOP VOLTAGE GAIN (X 1.0 kV/V) 180 VCC −0.5 VCC −1.0 160 VCC −1.5 VCC −2.0 140 VCC = +15 V VEE = −15 V RL = 2.0 kW f = 10 Hz DVO = −10 V to +10 V −25 0 25 50 75 100 125 VEE +1.0 VEE +0.5 VEE −55 VEE −25 0 25 50 VCC = +5.0 V to +18 V VEE = −5.0 V to −18 V DVIO = 5.0 mV VO = 0 V 75 100 125 120 100 −55 TA, AMBIENT TEMPERATURE (°C) TA, AMBIENT TEMPERATURE (°C) Figure 6. Input Common Mode Voltage Range versus Temperature Figure 7. Open Loop Voltage Gain versus Temperature http://onsemi.com 5 MC33272A, MC33274A, NCV33274A V sat , OUTPUT SATURATION VOLTAGE (V) 40 VO, OUTPUT VOLTAGE (Vpp ) TA = 25°C 30 RL = 10 kW 20 RL = 2.0 kW VCC VCC −1.0 TA = 125°C VCC −2.0 VEE +2.0 VEE +1.0 VEE Sink TA = 125°C VCC = +5.0 V to +18 V VEE = −5.0 V to −18 V 0 5.0 10 IL, LOAD CURRENT (±mA) 15 20 TA = 25°C TA = −55°C TA = 25°C Source TA = −55°C 10 0 0 5.0 10 15 20 VCC, VEE SUPPLY VOLTAGE (V) Figure 8. Split Supply Output Voltage Swing versus Supply Voltage Figure 9. Split Supply Output Saturation Voltage versus Load Current V sat , OUTPUT SATURATION VOLTAGE (V) TA = 125°C TA = 55°C VCC −4.0 VCC −8.0 VCC −12 +0.2 +0.1 Gnd 0 100 VCC VCC = +5.0 V to +18 V RL to Gnd VEE = Gnd V sat , OUTPUT SATURATION VOLTAGE (V) VCC 15 14.6 14.2 TA = 25°C TA = 55°C TA = 125°C TA = 125°C TA = +25°C TA = −55°C 1.0 k 10 k 100 k 1.0 M 8.0 4.0 0 10 TA = 25°C TA = −55°C TA = 125°C VCC = +15 V RL to VCC VEE = Gnd RFdbk = 100 kW 10 k 100 k 100 1.0 k RL , LOAD RESISTANCE TO GROUND (kW) RL, LOAD RESISTANCE TO VCC (W) Figure 10. Single Supply Output Saturation Voltage versus Load Resistance to Ground Figure 11. Single Supply Output Saturation Voltage versus Load Resistance to VCC CMR, COMMON MODE REJECTION (dB) 28 24 VO, OUTPUT VOLTAGE (Vpp ) 20 16 12 8 4 0 1.0 k VCC = +15 V VEE = −15 V RL = 2.0 kW AV = +1.0 THD = ≤1.0% TA = 25°C 10 k 100 k f, FREQUENCY (Hz) 1.0 M 1 0M 120 100 80 60 40 20 0 10 100 1.0 k 10 k 100 k 1.0 M f, FREQUENCY (Hz) DVCM + CMR = 20Log DVCM DVO X ADM TA = 125°C TA = −55°C VCC = +15 V VEE = −15 V VCM = 0 V DVCM = ±1.5 V − ADM DVO Figure 12. Output Voltage versus Frequency Figure 13. Common Mode Rejection versus Frequency http://onsemi.com 6 MC33272A, MC33274A, NCV33274A +PSR, POWER SUPPLY REJECTION (dB) −PSR, POWER SUPPLY REJECTION (dB) 120 TA = 125°C 100 80 60 40 20 0 − ADM + VEE +PSR = 20Log DVO/ADM DVCC VCC DVO 120 100 80 60 40 20 0 − ADM + VEE −PSR = 20Log DVO/ADM DVEE VCC DVO VCC = +15 V VEE = −15 V DVCC = ±1.5 V TA = −55°C TA = −55°C DVCC = ±1.5 V VCC = +15 V VEE = −15 V TA = 125°C 10 100 1.0 k 10 k 100 k 1 .0 M 10 100 1.0 k 10 k 100 k 1.0 M f, FREQUENCY (Hz) f, FREQUENCY (Hz) Figure 14. Positive Power Supply Rejection versus Frequency Figure 15. Negative Power Supply Rejection versus Frequency |I SC |, OUTPUT SHORT CIRCUIT CURRENT (mA) 60 50 Sink 40 Source 30 20 10 0 −55 Source Sink I CC , SUPPLY CURRENT (mA) VCC = +15 V VEE = −15 V VID = ±1.0 V RL < 100 W 11 10 9.0 8.0 7.0 6.0 5.0 4.0 −25 0 25 50 75 100 125 3.0 0 2.0 4.0 6.0 8.0 10 12 14 16 18 20 TA = +125°C TA = +25°C TA = −55°C TA, AMBIENT TEMPERATURE (°C) VCC, |VEE| , SUPPLY VOLTAGE (V) Figure 16. Output Short Circuit Current versus Temperature Figure 17. Supply Current versus Supply Voltage GBW, GAIN BANDWIDTH PRODUCT (MHz) 1.15 SR, SLEW RATE (NORMALIZED) 1.1 1.05 1.0 0.95 0.9 0.85 −55 VCC = +15 V VEE = −15 V DVin = 20 V DVin − + VO 2.0 kW 100 pF 50 VCC = +15 V VEE = −15 V f = 100 kHz RL = 2.0 kW CL = 0 pF 40 30 20 10 0 −55 −25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 −25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 Figure 18. Normalized Slew Rate versus Temperature Figure 19. Gain Bandwidth Product versus Temperature http://onsemi.com 7 MC33272A, MC33274A, NCV33274A 25 20 15 A V , VOLTAGE GAIN (dB) 10 5.0 0 −5.0 −10 −15 −20 −25 100 k 1.0 M 10 M VCC = +15 V VEE = −15 V RL = 2.0 kW TA = 25°C Phase Gain 80 120 140 160 180 200 220 240 260 280 100 M φ, EXCESS PHASE (DEGREES) 100 25 20 15 A V , VOLTAGE GAIN (dB) 10 5.0 0 −10 1A − Phase V = 18 V, V = −18 V CC EE −15 2A − Phase VCC = 1.5 V, VEE = −1.5 V 1B − Gain VCC = 18 V, VEE = −18 V −20 2B − Gain V = 1.5 V, V = −1.5 V CC EE −25 100 k 1.0 M TA = 25°C CL = 0 pF 1A 80 100 140 160 2A 1B 2B 180 200 220 240 φ, PHASE (DEGREES) 125 120 −5.0 10 M 100 M f, FREQUENCY (Hz) f, FREQUENCY (Hz) Figure 20. Voltage Gain and Phase versus Frequency Figure 21. Gain and Phase versus Frequency A VOL , OPEN LOOP VOLTAGE GAIN (dB) 20 10 0 2A 1B 2B 100 A m , OPEN LOOP GAIN MARGIN (dB) 120 1A 140 160 180 200 220 240 260 280 20 30 φ EXCESS PHASE (DEGREES) 12 Gain Margin 10 8.0 6.0 4.0 2.0 Phase Margin 0 1.0 10 100 VCC = +15 V VEE = −15 V VO = 0 V − 0 10 20 30 VO 2.0 kW CL VCC = +15 V VEE = −15 V −10 Vout = 0 V TA = 25°C 1A − Phase (RL = 2.0 kW) −20 2A − Phase (RL = 2.0 kW, CL = 300 pF) 1B − Gain (RL = 2.0 kW) 2B − Gain (RL = 2.0 kW, CL = 300 pF) −30 3.0 4.0 6.0 8.0 10 f, FREQUENCY (MHz) Vin + 40 50 1000 CL, OUTPUT LOAD CAPACITANCE (pF) Figure 22. Open Loop Voltage Gain and Phase versus Frequency Figure 23. Open Loop Gain Margin and Phase Margin versus Output Load Capacitance A m , OPEN LOOP GAIN MARGIN (dB) 12 10 8.0 6.0 4.0 2.0 0 −55 CL = 100 pF CL = 300 pF CL = 500 pF VCC = +15 V VEE = −15 V −25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) φ m, PHASE MARGIN (DEGREES) CL = 10 pF 60 50 40 30 20 10 0 −55 −25 0 25 50 75 CL = 10 pF CL = 100 pF CL = 300 pF CL = 500 pF VCC = +15 V VEE = −15 V 100 TA, AMBIENT TEMPERATURE (°C) Figure 24. Open Loop Gain Margin versus Temperature Figure 25. Phase Margin versus Temperature http://onsemi.com 8 φ m, PHASE MARGIN (DEGREES) MC33272A, MC33274A, NCV33274A 15 12 A m , GAIN MARGIN (dB) Phase Margin 9.0 6.0 3.0 0 VCC = +15 V VEE = −15 V RT = R1+R2 VO = 0 V TA = 25°C Vin R1 R2 − + VO φ m , PHASE MARGIN (DEGREES) CS, CHANNEL SEPERATION (dB) Gain Margin 60 50 40 30 20 10 0 10 k 160 150 140 130 120 110 100 100 Driver Channel VCC = +15 V VEE = −15 V RL = 2.0 kW DVOD = 20 Vpp TA = 25°C 1.0 10 100 1.0 k 1.0 k 10 k f, FREQUENCY (Hz) 100 k 1.0 M RT, DIFFERENTIAL SOURCE RESISTANCE (W) Figure 26. Phase Margin and Gain Margin versus Differential Source Resistance Figure 27. Channel Separation versus Frequency THD, TOTAL HARMONIC DISTORTION (%) 1.0 50 |Z O |, OUTPUT IMPEDANCE ( Ω ) AV = +1000 AV = +100 40 30 20 10 0 10 k AV = 1000 AV = 100 AV = 10 AV = 1.0 VCC = +15 V VEE = −15 V VO = 0 V TA = 25°C 0.1 AV = +10 0.01 AV = +1.0 VO = 2.0 Vpp TA = 25°C 100 1.0 k f, FREQUENCY (Hz) VCC = +15 V VEE = −15 V 10 k 100 k 0.001 10 100 k 1.0 M 10 M f, FREQUENCY (Hz) Figure 28. Total Harmonic Distortion versus Frequency Figure 29. Output Impedance versus Frequency e n , INPUT REFERRED NOISE VOLTAGE ( nV/ √ Hz ) 50 + 40 30 20 10 0 VCC = +15 V VEE = −15 V TA = 25°C 10 100 1.0 k f, FREQUENCY (Hz) 10 k 100 k − VO i n , INPUT REFERRED NOISE CURRENT ( pA/ √ Hz ) 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 10 VCC = +15 V VEE = −15 V TA = 25°C 100 Input Noise Current Circuit RS + − VO Input Noise Voltage Test Circuit (RS = 10 kW) 1.0 k f, FREQUENCY (Hz) 10 k 100 k Figure 30. Input Referred Noise Voltage versus Frequency Figure 31. Input Referred Noise Current versus Frequency http://onsemi.com 9 MC33272A, MC33274A, NCV33274A 60 PERCENT OVERSHOOT (%) 50 40 30 20 10 0 10 100 CL, LOAD CAPACITANCE (pF) 1000 VCC = +15 V VEE = −15 V RL = 2.0 kW TA = 25°C Figure 32. Percent Overshoot versus Load Capacitance V O, OUTPUT VOLTAGE (5.0 V/DIV) VCC = +15 V VEE = −15 V AV = +1.0 RL = 2.0 kW CL = 100 pF TA = 25°C V O, OUTPUT VOLTAGE (5.0 V/DIV) CL = 100 pF VCC = +15 V VEE = −15 V AV = +1.0 RL = 2.0 kW TA = 25°C t, TIME (2.0 ns/DIV) CL = f t, TIME (2.0 ms/DIV) Figure 33. Non−inverting Amplifier Slew Rate for the MC33274 Figure 34. Non−inverting Amplifier Overshoot for the MC33274 V O, OUTPUT VOLTAGE (50 mV/DIV) t, TIME (2.0 ms/DIV) V O, OUTPUT VOLTAGE (5.0 V/DIV) VCC = +15 V VEE = −15 V AV = +1.0 RL = 2.0 kW CL = 300 pF TA = 25°C VCC = +15 V VEE = −15 V AV = +1.0 RL = 2.0 kW CL = 300 pF TA = 25°C t, TIME (1.0 ms/DIV) Figure 35. Small Signal Transient Response for MC33274 Figure 36. Large Signal Transient Response for MC33274 http://onsemi.com 10 MC33272A, MC33274A, NCV33274A ORDERING INFORMATION Device MC33272AD MC33272ADG MC33272ADR2 MC33272ADR2G MC33272AP MC33272APG MC33274AD MC33274AD MC33274ADR2 MC33274ADR2G MC33274AP NCV33274ADG* NCV33274ADR2* Package SOIC−8 SOIC−8 (Pb−Free) SOIC−8 SOIC−8 (Pb−Free) PDIP−8 PDIP−8 (Pb−Free) SOIC−14 SOIC−14 SOIC−14 SOIC−14 (Pb−Free) PDIP−14 SOIC−14 (Pb−Free) SOIC−14 Shipping† 98 Units / Rail 98 Units / Rail 2500 Tape & Reel 2500 Tape & Reel 50 Units / Rail 50 Units / Rail 55 Units / Rail 55 Units / Rail 2500 Tape & Reel 2500 Tape & Reel 25 Units / Rail 2500 Tape & Reel 2500 Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV devices are automotive qualified. http://onsemi.com 11 MC33272A, MC33274A, NCV33274A PACKAGE DIMENSIONS SOIC−8 D SUFFIX CASE 751−07 ISSUE AD −X− A 8 5 B 1 4 S 0.25 (0.010) M Y M −Y− G C −Z− H D 0.25 (0.010) M SEATING PLANE K NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0_ 8_ 0.010 0.020 0.228 0.244 N X 45 _ 0.10 (0.004) M J ZY S X S DIM A B C D G H J K M N S SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm inches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 12 MC33272A, MC33274A, NCV33274A PACKAGE DIMENSIONS PDIP−14 P SUFFIX CASE 646−06 ISSUE M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 −−− 10_ 0.015 0.039 MILLIMETERS MIN MAX 18.16 18.80 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 −−− 10_ 0.38 1.01 14 8 B 1 7 A F N −T− SEATING PLANE L C K H G D 14 PL 0.13 (0.005) M J M DIM A B C D F G H J K L M N SOIC−14 D SUFFIX CASE 751A−03 ISSUE G −A− 14 8 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50 INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019 −B− P 7 PL 0.25 (0.010) M B M 1 7 G C R X 45 _ F −T− SEATING PLANE D 14 PL 0.25 (0.010) K M M S J TB A S DIM A B C D F G J K M P R http://onsemi.com 13 MC33272A, MC33274A, NCV33274A PACKAGE DIMENSIONS PDIP−8 P SUFFIX CASE 626−05 ISSUE L NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC −−− 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC −−− 10_ 0.030 0.040 8 5 −B− 1 4 F NOTE 2 −A− L C −T− SEATING PLANE J N D K M M TA B H G 0.13 (0.005) M M ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. http://onsemi.com 14 MC33272A/D
NCV33274ADR2 价格&库存

很抱歉,暂时无法提供与“NCV33274ADR2”相匹配的价格&库存,您可以联系我们找货

免费人工找货