0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCV809MTRG

NCV809MTRG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT-23

  • 描述:

    IC MICROPROC RESET MON SOT-23-3

  • 详情介绍
  • 数据手册
  • 价格&库存
NCV809MTRG 数据手册
MAX809 Series, MAX810 Series Very Low Supply Current 3-Pin Microprocessor Reset Monitors The MAX809 and MAX810 are cost−effective system supervisor circuits designed to monitor VCC in digital systems and provide a reset signal to the host processor when necessary. No external components are required. The reset output is driven active within 10 msec of VCC falling through the reset voltage threshold. Reset is maintained active for a timeout period which is trimmed by the factory after VCC rises above the reset threshold. The MAX810 has an active−high RESET output while the MAX809 has an active−low RESET output. Both devices are available in SOT−23 and SC−70 packages. The MAX809/810 are optimized to reject fast transient glitches on the VCC line. Low supply current of 0.5 mA (VCC = 3.2 V) makes these devices suitable for battery powered applications. www.onsemi.com MARKING DIAGRAM 3 3 xxx MG G SOT−23 (TO−236) CASE 318 1 1 2 SC−70 (SOT−323) CASE 419 xx MG G Features 1 • Precision VCC Monitor for 1.5 V, 2.5 V, 3.0 V, 3.3 V, and 5.0 V • • • • • • • • • Supplies Precision Monitoring Voltages from 1.2 V to 4.9 V Available in 100 mV Steps Four Guaranteed Minimum Power−On Reset Pulse Width Available (1 ms, 20 ms, 100 ms, and 140 ms) RESET Output Guaranteed to VCC = 1.0 V. Low Supply Current Compatible with Hot Plug Applications VCC Transient Immunity No External Components Wide Operating Temperature: −40°C to 105°C These Devices are Pb−Free and are RoHS Compliant xxx = Specific Device Code M = Date Code G = Pb−Free Package (Note: Microdot may be in either location) PIN CONFIGURATION GND 1 3 RESET RESET Typical Applications • • • • 2 VCC 2 SOT−23/SC−70 (Top View) Computers Embedded Systems Battery Powered Equipment Critical Microprocessor Power Supply Monitoring NOTE: RESET is for MAX809 RESET is for MAX810 ORDERING INFORMATION VCC VCC MAX809/810 RESET RESET GND See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. VCC PROCESSOR DEVICE MARKING INFORMATION RESET INPUT See general marking information in the device marking section on page 10 of this data sheet. GND This document contains information on some products that are still under development. ON Semiconductor reserves the right to change or discontinue these products without notice. Figure 1. Typical Application Diagram © Semiconductor Components Industries, LLC, 2016 November, 2017 − Rev. 28 1 Publication Order Number: MAX809S/D MAX809 Series, MAX810 Series 3 VCC Timeout Counter VCC Oscillator 2 RESET Vref 1 GND Figure 2. MAX809 Series Complementary Active−Low Output 3 VCC Timeout Counter VCC Oscillator 2 RESET Vref 1 GND Figure 3. MAX810 Series Complementary Active−High Output www.onsemi.com 2 MAX809 Series, MAX810 Series PIN DESCRIPTION Pin No. Symbol 1 GND Description 2 RESET (MAX809) RESET output remains low while VCC is below the reset voltage threshold, and for a reset timeout period after VCC rises above reset threshold 2 RESET (MAX810) RESET output remains high while VCC is below the reset voltage threshold, and for a reset timeout period after VCC rises above reset threshold 3 VCC Ground Supply Voltage (Typ) ABSOLUTE MAXIMUM RATINGS Rating Power Supply Voltage (VCC to GND) Symbol Value Unit VCC −0.3 to 6.0 V −0.3 to (VCC + 0.3) V 20 mA RESET Output Voltage (CMOS) Input Current, VCC Output Current, RESET 20 mA dV/dt (VCC) 100 V/msec RqJA 301 314 °C/W Operating Junction Temperature Range TJ −40 to +125 °C Storage Temperature Range Tstg −65 to +150 °C Lead Temperature (Soldering, 10 Seconds) Tsol +260 °C Thermal Resistance, Junction−to−Air (Note 1) SOT−23 SC−70 ESD Protection Human Body Model (HBM): Following Specification JESD22−A114 Machine Model (MM): Following Specification JESD22−A115 Latchup Current Maximum Rating: Following Specification JESD78 Class II Positive Negative V 2000 200 ILatchup mA 200 200 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. This based on a 35x35x1.6mm FR4 PCB with 10mm2 of 1 oz copper traces under natural convention conditions and a single component characterization. 2. The maximum package power dissipation limit must not be exceeded. TJ(max) * TA with TJ(max) = 150°C PD + RqJA www.onsemi.com 3 MAX809 Series, MAX810 Series ELECTRICAL CHARACTERISTICS TA = −40°C to +105°C unless otherwise noted. Typical values are at TA = +25°C. (Note 3) Symbol Characteristic VCC Range TA = 0°C to +70°C TA = −40°C to +105°C (Note 4) Min Typ Max 1.0 1.2 − − 5.5 5.5 Unit V Supply Current VCC = 3.3 V TA = −40°C to +85°C TA = 85°C to +105°C (Note 5) VCC = 5.5 V TA = −40°C to +85°C TA = 85°C to +105°C (Note 5) ICC Reset Threshold (Vin Decreasing) (Note 6) VTH mA − − 0.5 − 1.2 2.0 − − 0.8 − 1.8 2.5 V MAX809SN490 TA = +25°C TA = −40°C to +85°C TA = +85°C to +105°C (Note 5) 4.83 4.78 4.66 4.9 − − 4.97 5.02 5.14 MAX8xxLTR, MAX8xxSQ463 TA = +25°C TA = −40°C to +85°C TA = +85°C to +105°C (Note 5) 4.56 4.50 4.40 4.63 − − 4.70 4.75 4.86 MAX809HTR TA = +25°C TA = −40°C to +85°C TA = +85°C to +105°C (Note 5) 4.48 4.43 4.32 4.55 4.62 4.67 4.78 MAX8xxMTR, MAX8xxSQ438 TA = +25°C TA = −40°C to +85°C TA = +85°C to +105°C (Note 5) 4.31 4.27 4.16 4.38 4.45 4.49 4.60 MAX809JTR, MAX8xxSQ400 TA = +25°C TA = −40°C to +85°C TA = +85°C to +105°C (Note 5) 3.94 3.90 3.80 4.00 − − 4.06 4.10 4.20 MAX8xxTTR, MAX809SQ308 TA = +25°C TA = −40°C to +85°C TA = +85°C to +105°C (Note 5) 3.04 3.00 2.92 3.08 − − 3.11 3.16 3.24 MAX8xxSTR, MAX8xxSQ293 TA = +25°C TA = −40°C to +85°C TA = +85°C to +105°C (Note 5) 2.89 2.85 2.78 2.93 − − 2.96 3.00 3.08 MAX8xxRTR, MAX8xxSQ263 TA = +25°C TA = −40°C to +85°C TA = +85°C to +105°C (Note 5) 2.59 2.56 2.49 2.63 − − 2.66 2.70 2.77 MAX809SN232, MAX809SQ232 TA = +25°C TA = −40°C to +85°C TA = +85°C to +105°C (Note 5) 2.28 2.25 2.21 2.32 − − 2.35 2.38 2.45 MAX809SN160 TA = +25°C TA = −40°C to +85°C TA = +85°C to +105°C (Note 5) 1.58 1.56 1.52 1.60 − − 1.62 1.64 1.68 MAX809SN120, MAX8xxSQ120 TA = +25°C TA = −40°C to +85°C TA = +85°C to +105°C (Note 5) 1.18 1.17 1.14 1.20 − − 1.22 1.23 1.26 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Production testing done at TA = 25°C, over temperature limits guaranteed by design. 4. For NCV automotive devices, this temperature range is TA = −40°C to +125°C. 5. For NCV automotive devices, this temperature range is TA = +85°C to +125°C. 6. Contact your ON Semiconductor sales representative for other threshold voltage options. www.onsemi.com 4 MAX809 Series, MAX810 Series ELECTRICAL CHARACTERISTICS (continued) TA = −40°C to +105°C unless otherwise noted. Typical values are at TA = +25°C. (Note 7) Symbol Min Typ Max Unit Detector Voltage Threshold Temperature Coefficient − 30 − ppm/°C VCC to Reset Delay VCC = VTH to (VTH − 100 mV) − 10 − msec 1.0 20 100 140 − − − − 3.3 66 330 460 Characteristic Reset Active TimeOut Period (Note 8) MAX8xxSN(Q)293D1 MAX8xxSN(Q)293D2 MAX8xxSN(Q)293D3 MAX8xxSN(Q)293 tRP msec RESET Output Voltage Low (No Load) (MAX809) VCC = VTH − 0.2 V 1.6 V v VTH v 2.0 V, ISINK = 0.5 mA 2.1 V v VTH v 4.0 V, ISINK = 1.2 mA 4.1 V v VTH v 4.9 V, ISINK = 3.2 mA VOL − − 0.3 V RESET Output Voltage High (No Load) (MAX809) VCC = VTH + 0.2 V 1.6 V v VTH v 2.4 V, ISOURCE = 200 mA 2.5 V v VTH v 4.9 V, ISOURCE = 500 mA VOH 0.8 VCC − − V RESET Output Voltage High (No Load) (MAX810) VCC = VTH − 0.2 V 1.6 V v VTH v 2.4 V, ISOURCE = 200 mA 2.5 V v VTH v 4.9 V, ISOURCE = 500 mA VOH 0.8 VCC − − V RESET Output Voltage Low (No Load) (MAX810) VCC = VTH + 0.2 V 1.6 V v VTH v 2.0 V, ISINK = 0.5 mA 2.1 V v VTH v 4.0 V, ISINK = 1.2 mA 4.1 V v VTH v 4.9 V, ISINK = 3.2 mA VOL − − 0.3 V Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 7. Production testing done at TA = 25°C, over temperature limits guaranteed by design. 8. Contact your ON Semiconductor sales representative for timeout options availability for other threshold voltage options. www.onsemi.com 5 MAX809 Series, MAX810 Series TYPICAL OPERATING CHARACTERISTICS 0.6 0.35 VTH = 4.9 V 0.5 0.30 85°C SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) VTH = 1.2 V 0.4 25°C 0.3 −40°C 0.2 0.1 85°C 0.25 0.20 25°C 0.15 −40°C 0.10 0.05 0 0 0.5 1.5 2.5 3.5 5.5 4.5 0.5 6.5 1.5 85°C 0.30 SUPPLY CURRENT (mA) NORMALIZED THRESHOLD VOLTAGE VTH = 2.93 V 0.25 25°C 0.20 0.15 −40°C 0.10 0.05 0 2.5 3.5 4.5 5.5 6.5 Figure 5. Supply Current vs. Supply Voltage 0.35 1.5 3.5 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) Figure 4. Supply Current vs. Supply Voltage 0.5 2.5 4.5 5.5 6.5 1.002 1.001 1.000 0.999 VTH = 4.9 V 0.998 0.997 0.996 VTH = 1.2 V 0.995 0.994 −50 −25 SUPPLY VOLTAGE (V) 0 25 50 75 100 TEMPERATURE (°C) Figure 6. Supply Current vs. Supply Voltage Figure 7. Normalized Reset Threshold Voltage vs. Temperature 0.40 0.40 0.32 SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) MAX809L/M, VCC = 5.0 V MAX809R/S/T, VCC = 3.3 V 0.24 0.16 0.08 0 −50 MAX809L/M/R/S/T, VCC = 1.0 V 0.32 MAX810L/M, VCC = 5.0 V 0.24 MAX810R/S/T, VCC = 3.3 V 0.16 MAX810L/M/R/S/T, VCC = 1.0 V 0.08 0 −25 0 25 50 75 100 −50 −25 0 25 50 75 100 TEMPERATURE (°C) TEMPERATURE (°C) Figure 8. Supply Current vs. Temperature (No Load, MAX809) Figure 9. Supply Current vs. Temperature (No Load, MAX810) www.onsemi.com 6 MAX809 Series, MAX810 Series TYPICAL OPERATING CHARACTERISTICS 80 OUTPUT VOLTAGE VCC−VOH (mV) OUTPUT VOLTAGE VCC (mV) 30 VTH = 4.90 V ISINK = 500 mA RESET ASSERTED 25 20 85°C 15 25°C 10 −40°C 5.0 70 VTH = 4.63 V ISOURCE = 100 mA RESET ASSERTED 60 50 85°C 40 25°C 30 −40°C 20 10 0 0 0.5 1.0 2.0 1.5 2.5 3.0 3.5 4.0 4.5 0.5 5.0 1.0 POWER−DOWN RESET DELAY (msec) 75 VOD = 20 mV 50 VOD = 100 mV 25 VOD = 200 mV 0 25 75 50 3.5 4.0 4.5 100 125 VOD = VCC−VTH VOD = 10 mV 300 VOD = 20 mV 200 100 VOD = 100 mV VOD = 200 mV 0 −50 −25 0 25 50 75 100 TEMPERATURE (°C) Figure 12. Power−Down Reset Delay vs. Temperature and Overdrive (VTH = 1.2 V) Figure 13. Power−Down Reset Delay vs. Temperature and Overdrive (VTH = 4.9 V) 1.3 1.2 1.1 1.0 0.9 0.8 0.7 −50 5.0 400 TEMPERATURE (°C) NORMALIZED POWER−UP RESET TIMEOUT POWER−DOWN RESET DELAY (msec) VOD = VCC−VTH 100 −25 3.0 Figure 11. Output Voltage High vs. Supply Voltage 125 0 −50 2.5 SUPPLY VOLTAGE (V) SUPPLY VOLTAGE (V) Figure 10. Output Voltage Low vs. Supply Voltage VOD = 10 mV 2.0 1.5 −25 0 25 50 75 TEMPERATURE (°C) Figure 14. Normalized Power−Up Reset vs. Temperature www.onsemi.com 7 100 125 MAX809 Series, MAX810 Series Detail Operation Description The MAX809/810 series microprocessor reset supervisory circuits are designed to monitor the power supplies in digital systems and provide a reset signal to the processor without any external components. Figure 2 shows the timing diagram and a typical application below. Initially consider that input voltage VCC is at a nominal level greater than the voltage detector upper threshold (VTH). And the If there is an input power interruption and VCC becomes significantly deficient, it will fall below the lower detector threshold (VTH−). This event causes the RESET output to be in the low state for the MAX809, or in the high state for the NCP810 devices. After completion of the power interruption, VCC will rise to its nominal level and become greater than the VTH. This sequence activates the internal oscillator circuitry and digital counter to count. After the count of the timeout period, the reset output will revert back to the original state. RESET (RESET) output voltage (Pin 2) will be in the high state for MAX809, or in the low state for MAX 810 devices. Input Voltage VCC VTH+ VTH– VCC Reset Output MAX809, NCP803 Reset Output MAX810 VTH– 0V VCC VTH– 0V tRP Figure 15. Timing Waveforms www.onsemi.com 8 MAX809 Series, MAX810 Series APPLICATIONS INFORMATION VCC Transient Rejection maintained valid to VCC = 0 V, a pull−down resistor must be connected from RESET to ground to discharge stray capacitances and hold the output low (Figure 17). This resistor value, though not critical, should be chosen such that it does not appreciably load RESET under normal operation (100 kW will be suitable for most applications). The MAX809 provides accurate VCC monitoring and reset timing during power−up, power−down, and brownout/sag conditions, and rejects negative−going transients (glitches) on the power supply line. Figure 16 shows the maximum transient duration vs. maximum negative excursion (overdrive) for glitch rejection. Any combination of duration and overdrive which lies under the curve will not generate a reset signal. Combinations above the curve are detected as a brownout or power−down. Typically, transient that goes 100 mV below the reset threshold and lasts 5.0 ms or less will not cause a reset pulse. Transient immunity can be improved by adding a capacitor in close proximity to the VCC pin of the MAX809. VCC VCC MAX809/810 RESET RESET VCC R1 100 k GND VTH Overdrive Figure 17. Ensuring RESET Valid to VCC = 0 V Processors With Bidirectional I/O Pins MAXIMUM TRANSIENT DURATION (msec) Duration Some Microprocessor’s have bidirectional reset pins. Depending on the current drive capability of the processor pin, an indeterminate logic level may result if there is a logic conflict. This can be avoided by adding a 4.7 kW resistor in series with the output of the MAX809 (Figure 18). If there are other components in the system which require a reset signal, they should be buffered so as not to load the reset line. If the other components are required to follow the reset I/O of the Microprocessor, the buffer should be connected as shown with the solid line. 300 250 200 VTH = 4.9 V 150 VTH = 2.93 V 100 VTH = 1.2 V 50 BUFFER 0 10 BUFFERED RESET TO OTHER SYSTEM COMPONENTS VCC 60 110 160 210 260 310 360 410 RESET COMPARATOR OVERDRIVE (mV) VCC VCC MAX809/810 Figure 16. Maximum Transient Duration vs. Overdrive for Glitch Rejection at 25°C 4.7 k RESET RESET RESET Signal Integrity During Power−Down GND The MAX809 RESET output is valid to VCC = 1.0 V. Below this voltage the output becomes an “open circuit” and does not sink current. This means CMOS logic inputs to the Microprocessor will be floating at an undetermined voltage. Most digital systems are completely shutdown well above this voltage. However, in situations where RESET must be Microprocessor RESET GND Figure 18. Interfacing to Bidirectional Reset I/O www.onsemi.com 9 MAX809 Series, MAX810 Series ORDERING, MARKING AND THRESHOLD INFORMATION Part Number VTH* (V) Timeout* (ms) Description MAX809SN160T1G 1.60 140−460 SAA MAX809SN232T1G 2.32 140−460 SQP MAX809RTRG 2.63 140−460 SPS NCV809RTRG 2.63 140−460 RPA MAX809STRG 2.93 140−460 SPT NCV809STRG 2.93 140−460 SUC MAX809TTRG 3.08 140−460 SPU MAX809JTRG 4.00 140−460 SPR MAX809MTRG 4.38 140−460 SPV NCV809MTRG 4.38 140−460 TAT MAX809HTRG 4.55 140−460 SBD MAX809LTRG 4.63 140−460 SPW NCV809LTRG 4.63 140−460 STA MAX809SN490T1G 4.90 140−460 SBH MAX809SN120T1G 1.20 140−460 SSO MAX809SN293D1T1G 2.93 1−3.3 MAX809SN293D2T1G 2.93 NCV809SN293D2T1G MAX809SN293D3T1G Package Shipping† SOT23−3 (Pb−Free) 3000 / Tape & Reel SC70−3 (Pb−Free) 3000 / Tape & Reel SSP Push−Pull RESET NCV809SN293D1T1G* Marking ACT 20−66 SSQ 2.93 20−66 ACE 2.93 100−330 SSR MAX809SQ120T1G 1.20 140−460 ZD MAX809SQ232T1G 2.32 140−460 ZE MAX809SQ263T1G 2.63 140−460 ZF MAX809SQ293T1G 2.93 140−460 ZG MAX809SQ308T1G 3.08 140−460 ZH MAX809SQ400T1G 4.00 140−460 SZ MAX809SQ438T1G 4.38 140−460 ZI MAX809SQ463T1G 4.63 140−460 ZJ MAX809SQ293D1T1G 2.93 1−3.3 ZK MAX809SQ293D2T1G 2.93 20−66 ZL MAX809SQ293D3T1G 2.93 100−330 ZM NCV809SQ293T1G* (In Development) www.onsemi.com 10 MAX809 Series, MAX810 Series ORDERING, MARKING AND THRESHOLD INFORMATION Part Number VTH** (V) Timeout** (ms) Description MAX810RTRG 2.63 140−460 SPX MAX810STRG 2.93 140−460 SPY MAX810TTRG 3.08 140−460 SPZ MAX810MTRG 4.38 140−460 SQA MAX810LTRG 4.63 140−460 SQB MAX810SN120T1G 1.20 140−460 SSS MAX810SN293D1T1G 2.93 1−3.3 SST MAX810SN293D2T1G 2.93 20−66 SSU MAX810SN293D3T1G 2.93 100−330 SSZ MAX810SQ120T1G 1.20 140−460 MAX810SQ263T1G 2.63 140−460 ZO MAX810SQ270T1G 2.70 20−66 ZB MAX810SQ293T1G 2.93 140−460 ZP MAX810SQ400T1G 4.00 20−66 ZC MAX810SQ438T1G 4.38 140−460 ZQ MAX810SQ463T1G 4.63 140−460 ZR MAX810SQ293D1T1G 2.93 1−3.3 ZS MAX810SQ293D2T1G 2.93 20−66 ZT MAX810SQ293D3T1G 2.93 100−330 ZU Push−Pull RESET Marking Package Shipping† SOT23−3 (Pb−Free) 3000 / Tape & Reel SC70−3 (Pb−Free) 3000 / Tape & Reel ZN †For information on tape and reel specifications,including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. **Contact your ON Semiconductor sales representative for other threshold voltage options. www.onsemi.com 11 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOT−23 (TO−236) CASE 318−08 ISSUE AS DATE 30 JAN 2018 SCALE 4:1 D 0.25 3 E 1 2 T HE NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. DIM A A1 b c D E e L L1 HE T L 3X b L1 VIEW C e TOP VIEW A A1 SIDE VIEW SEE VIEW C c MIN 0.89 0.01 0.37 0.08 2.80 1.20 1.78 0.30 0.35 2.10 0° MILLIMETERS NOM MAX 1.00 1.11 0.06 0.10 0.44 0.50 0.14 0.20 2.90 3.04 1.30 1.40 1.90 2.04 0.43 0.55 0.54 0.69 2.40 2.64 −−− 10 ° MIN 0.035 0.000 0.015 0.003 0.110 0.047 0.070 0.012 0.014 0.083 0° INCHES NOM 0.039 0.002 0.017 0.006 0.114 0.051 0.075 0.017 0.021 0.094 −−− MAX 0.044 0.004 0.020 0.008 0.120 0.055 0.080 0.022 0.027 0.104 10° GENERIC MARKING DIAGRAM* END VIEW RECOMMENDED SOLDERING FOOTPRINT XXXMG G 1 3X 2.90 3X XXX = Specific Device Code M = Date Code G = Pb−Free Package 0.90 *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. 0.95 PITCH 0.80 DIMENSIONS: MILLIMETERS STYLE 1 THRU 5: CANCELLED STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE STYLE 11: STYLE 12: PIN 1. ANODE PIN 1. CATHODE 2. CATHODE 2. CATHODE 3. CATHODE−ANODE 3. ANODE STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE STYLE 17: PIN 1. NO CONNECTION 2. ANODE 3. CATHODE STYLE 18: STYLE 19: STYLE 20: PIN 1. NO CONNECTION PIN 1. CATHODE PIN 1. CATHODE 2. CATHODE 2. ANODE 2. ANODE 3. GATE 3. ANODE 3. CATHODE−ANODE STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT STYLE 23: PIN 1. ANODE 2. ANODE 3. CATHODE STYLE 24: PIN 1. GATE 2. DRAIN 3. SOURCE STYLE 27: PIN 1. CATHODE 2. CATHODE 3. CATHODE STYLE 28: PIN 1. ANODE 2. ANODE 3. ANODE DOCUMENT NUMBER: DESCRIPTION: 98ASB42226B SOT−23 (TO−236) STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE STYLE 13: PIN 1. SOURCE 2. DRAIN 3. GATE STYLE 25: PIN 1. ANODE 2. CATHODE 3. GATE STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SC−70 (SOT−323) CASE 419 ISSUE R DATE 11 OCT 2022 SCALE 4:1 GENERIC MARKING DIAGRAM XX MG G 1 XX M G = Specific Device Code = Date Code = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. STYLE 1: CANCELLED STYLE 6: PIN 1. EMITTER 2. BASE 3. COLLECTOR DOCUMENT NUMBER: DESCRIPTION: STYLE 2: PIN 1. ANODE 2. N.C. 3. CATHODE STYLE 3: PIN 1. BASE 2. EMITTER 3. COLLECTOR STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE STYLE 5: PIN 1. ANODE 2. ANODE 3. CATHODE STYLE 7: PIN 1. BASE 2. EMITTER 3. COLLECTOR STYLE 8: PIN 1. GATE 2. SOURCE 3. DRAIN STYLE 9: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE STYLE 10: PIN 1. CATHODE 2. ANODE 3. ANODE-CATHODE 98ASB42819B SC−70 (SOT−323) STYLE 11: PIN 1. CATHODE 2. CATHODE 3. CATHODE Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
NCV809MTRG
物料型号: - MAX809系列 - MAX810系列

器件简介: - 这些重置监视器电路设计用于监控数字系统中的电源,并在电源电压下降通过重置电压阈值时提供复位信号给主机处理器。

引脚分配: - GND:接地 - RESET:复位输出,MAX809为低电平有效,MAX810为高电平有效 - VCC:供电电压

参数特性: - 精确的VCC监控,适用于1.5V、2.5V、3.0V、3.3V和5.0V电源 - 监控电压精度从1.2V到4.9V,以100mV步进 - 四种保证的最小上电复位脉冲宽度(1ms、20ms、100ms和140ms) - RESET输出保证至VCC=1.0V - 低供电电流 - 兼容热插拔应用 - VCC瞬态抑制 - 无需外部组件 - 宽工作温度范围:-40°C至105°C - 无铅且符合RoHS标准

功能详解: - 设计用于在数字系统中监控电源并在电源中断时提供复位信号。 - 重置输出在VCC下降通过重置电压阈值后10秒内激活,并在VCC上升超过重置阈值后保持一段时间。 - MAX810具有高电平有效的RESET输出,而MAX809具有低电平有效的RESET输出。

应用信息: - 计算机 - 嵌入式系统 - 电池供电设备 - 关键微处理器电源监控

封装信息: - SOT-23和SC-70封装
NCV809MTRG 价格&库存

很抱歉,暂时无法提供与“NCV809MTRG”相匹配的价格&库存,您可以联系我们找货

免费人工找货
NCV809MTRG
  •  国内价格 香港价格
  • 1+10.353581+1.28436
  • 10+6.2850110+0.77966
  • 25+5.2303025+0.64882
  • 100+4.03159100+0.50012
  • 250+3.44270250+0.42707
  • 500+3.08008500+0.38209
  • 1000+2.776431000+0.34442

库存:2847