0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCV8152MX330180TCG

NCV8152MX330180TCG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    XFDFN6

  • 描述:

    IC REG LINEAR 1.8V/3.3V 6XDFN

  • 数据手册
  • 价格&库存
NCV8152MX330180TCG 数据手册
DATA SHEET www.onsemi.com Voltage Regulator - Dual, Low IQ, Low Dropout MARKING DIAGRAM 150 mA NCV8152 XX = Specific Device Code M = Date Code The NCV8152 is 150 mA, Dual Output Linear Voltage Regulator. Device provides a very stable and accurate voltage with ultra low noise and very high Power Supply Rejection Ratio (PSRR) suitable for RF applications. The NCV8152 is suitable for powering RF blocks of automotive infotainment systems and other power sensitive device. Due to low power consumption the NCV8152 offers high efficiency and low thermal dissipation. • Operating Input Voltage Range: 1.9 V to 5.25 V • Two Independent Output Voltages: • OUT1 1 OUT2 2 GND 3 GND PIN CONNECTIONS Features • • • • • • • • • XX M XDFN6, 1.2x1.2 CASE 711AT 6 EN1 5 IN 4 EN2 XDFN6 (Top view) (for details please refer to the Ordering Information section) Very Low Dropout: 150 mV Typical at 150 mA Low IQ of typ. 50 mA per Channel High PSRR: 75 dB at 1 kHz Two Independent Enable Pins Thermal Shutdown and Current Limit Protections Stable with a 0.22 mF Ceramic Output Capacitor Available in XDFN6 1.2 x 1.2 mm Package Active Output Discharge for Fast Output Turn−Off NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable; Device Temperature Grade 1: −40°C to +125°C Ambient Operating Temperature Range These are Pb−Free Devices ORDERING INFORMATION See detailed ordering and shipping information on page 16 of this data sheet. Typical Applications • Wireless LAN, Bluetooth®, ZigBee® Interfaces • Parking Camera Modules • Automotive Infotainment Systems NCV8152 VIN1 VOUT2 IN EN1 OUT2 EN2 OUT1 VOUT1 GND CIN1 0.22 mF COUT1 0.22 mF COUT2 0.22 mF Figure 1. Typical Application Schematic © Semiconductor Components Industries, LLC, 2016 October, 2022 − Rev. 6 1 Publication Order Number: NCV8152/D NCV8152 ENABLE LOGIC EN1 THERMAL SHUTDOWN MOSFET DRIVER WITH CURRENT LIMIT OUT1 *ACTIVE DISCHARGE EN1 GND EN2 *ACTIVE DISCHARGE BANDGAP REFERENCE IN OUT2 MOSFET DRIVER WITH CURRENT LIMIT THERMAL SHUTDOWN ENABLE LOGIC EN2 Figure 2. Simplified Schematic Block Diagram PIN FUNCTION DESCRIPTION Pin No. XDFN6 Pin Name 1 OUT1 Regulated output voltage of the first channel. A small 0.22 mF ceramic capacitor is needed from this pin to ground to assure stability. 2 OUT2 Regulated output voltage of the second channel. A small 0.22 mF ceramic capacitor is needed from this pin to ground to assure stability. 3 GND Power supply ground. Soldered to the copper plane allows for effective heat dissipation. 4 EN2 Driving EN2 over 0.9 V turns−on OUT2. Driving EN below 0.4 V turns−off the OUT2 and activates the active discharge. 5 IN 6 EN1 − EP Description Input pin common for both channels. It is recommended to connect 0.22 mF ceramic capacitor close to the device pin. Driving EN1 over 0.9 V turns−on OUT1. Driving EN below 0.4 V turns−off the OUT1 and activates the active discharge. Exposed pad must be tied to ground. Soldered to the copper plane allows for effective thermal dissipation. www.onsemi.com 2 NCV8152 ABSOLUTE MAXIMUM RATINGS Rating Symbol Value Unit VIN −0.3 V to 6 V V Output Voltage VOUT1, VOUT2 −0.3 V to VIN + 0.3 V or 6 V V Enable Inputs VEN1, VEN2 −0.3 V to VIN + 0.3 V or 6 V V Input Voltage (Note 1) Output Short Circuit Duration tSC Indefinite s Operating Ambient Temperature Range TA −40 to +125 °C TJ(MAX) 150 °C TSTG −55 to +150 °C ESD Capability, Human Body Model (Note 2) ESDHBM 2000 V ESD Capability, Machine Model (Note 2) ESDMM 200 V Maximum Junction Temperature Storage Temperature Range Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area. 2. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per EIA/JESD22−A114 ESD Machine Model tested per EIA/JESD22−A115 Latchup Current Maximum Rating tested per JEDEC standard: JESD78. THERMAL CHARACTERISTICS (Note 3) Rating Thermal Characteristics, XDFN6 1.2 x 1.2 mm, Thermal Resistance, Junction−to−Air Thermal Characterization Parameter, Junction−to−Lead (Pin 2) Symbol Value qJA qJL 170 Unit °C/W 3. Single component mounted on 1 oz, FR4 PCB with 645mm2 Cu area. RECOMMENDED OPERATING CONDITIONS Parameter Symbol Min Max Unit Input Voltage VIN 1.9 5.25 V Junction Temperature TJ −40 125 °C Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. www.onsemi.com 3 NCV8152 ELECTRICAL CHARACTERISTIC −40°C ≤ TJ ≤ 125°C; VIN = VOUT(NOM) + 1 V or 2.5 V, whichever is greater; VEN = 0.9 V, IOUT = 1 mA, CIN = COUT = 0.22 mF. Typical values are at TJ = +25°C. Min/Max values are specified for TJ = −40°C and TJ = 125°C respectively. (Note 4) Test Conditions Parameter Operating Input Voltage Output Voltage Accuracy VOUT > 2 V −40°C ≤ TJ ≤ 125°C Symbol Min Max Unit VIN 1.9 5.25 V VOUT −2.8 +2.8 % −80 +80 mV VOUT ≤ 2 V Typ Line Regulation VOUT + 0.5 V or 2.5 V ≤ VIN ≤ 5 V RegLINE 0.02 0.1 %/V Load Regulation IOUT = 1 mA to 150 mA RegLOAD 15 50 mV VOUT(nom) = 1.8 V 270 420 VOUT(nom) = 3.0 V 150 240 140 240 Dropout Voltage (Note 5) Iout = 150 mA VDO VOUT(nom) = 3.3 V Output Current Limit VOUT = 90% VOUT(nom) ICL Quiescent Current IOUT = 0 mA, EN1 = VIN, EN2 = 0 V or EN2 = VIN, EN1 = 0 V IQ 50 100 mA IOUT1 = IOUT2 = 0 mA, VEN1 = VEN2 = VIN IQ 85 200 mA IDIS 0.1 1 mA Shutdown current (Note 6) VEN ≤ 0.4 V, VIN = 5.25 V EN Pin Threshold Voltage High Threshold Low Threshold VEN Voltage increasing VEN Voltage decreasing EN Pin Input Current VEN = VIN = 5.25 V Power Supply Rejection Ratio VIN = VOUT+1 V for VOUT > 2 V, VIN = 2.5 V, for VOUT ≤ 2 V, IOUT = 10 mA Output Noise Voltage f = 10 Hz to 100 kHz Active Discharge Resistance VEN_HI VEN_LO 150 mV mA V 0.9 0.4 IEN 0.3 PSRR 75 dB VN 75 mVrms VIN = 4 V, VEN < 0.4 V RDIS 50 W Thermal Shutdown Temperature Temperature increasing from TJ = +25°C TSD 160 °C Thermal Shutdown Hysteresis Temperature falling from TSD TSDH f = 1 kHz − 20 1.0 − mA °C Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at TJ = TA = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible. 5. Characterized when VOUT falls 100 mV below the regulated voltage at VIN = VOUT(NOM) + 1 V. 6. Shutdown Current is the current flowing into the IN pin when the device is in the disable state. www.onsemi.com 4 NCV8152 1.85 2.85 1.84 2.84 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) TYPICAL CHARACTERISTICS 1.83 1.82 1.81 IOUT = 1 mA 1.80 1.79 IOUT = 150 mA VIN = 2.8 V VOUT = 1.8 V CIN = 0.22 mF COUT = 0.22 mF 1.78 1.77 1.76 1.75 −40 −20 400 350 300 40 60 100 120 140 2.80 IOUT = 150 mA 2.79 VIN = 3.8 V VOUT = 2.8 V CIN = 0.22 mF COUT = 0.22 mF 2.78 2.77 2.76 2.75 −40 −20 0 20 40 60 80 100 120 140 Figure 4. Output Voltage vs. Temperature VOUT = 2.8 V 750 VIN = 3.8 V VOUT = 2.8 V VEN1 = VEN2 = VIN CIN = 0.22 mF COUT = 0.22 mF TJ = 125°C TJ = 25°C TJ = −40°C 150 100 0.001 0.01 0.1 1 10 100 1000 675 VEN1 = VEN2 = VIN, OUT1−LOAD OUT2−LOAD 600 525 450 VEN1 = VEN2 = VIN, OUT1−LOAD 375 300 225 VEN1 = 0 V, VEN2 = VIN, OUT1−LOAD 150 75 0 0 15 30 45 75 60 90 VIN = 3.8 V VOUT = 2.8 V CIN = 0.22 mF COUT = 0.22 mF 105 120 135 150 IOUT, OUTPUT CURRENT (mA) IOUT, OUTPUT CURRENT (mA) Figure 5. Ground Current vs. Output Current − One Channel Load Figure 6. Ground Current vs. Output Current − Different Load Combinations 0.05 125°C 90 80 70 25°C 60 −40°C 50 40 VIN = 3.8 V VOUT = 2.8 V CIN = 0.22 mF COUT = 0.22 mF 30 20 0 IOUT = 1 mA Figure 3. Output Voltage vs. Temperature VOUT = 1.8 V 200 10 0 2.81 TJ, JUNCTION TEMPERATURE (°C) 250 50 0 2.82 TJ, JUNCTION TEMPERATURE (°C) 100 IQ, QUIESCENT CURRENT (mA) 80 IGND, GROUND CURRENT (mA) 450 20 REGLINE, LINE REGULATION (%/V) IGND, GROUND CURRENT (mA) 500 0 2.83 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0.04 0.03 0.02 0.01 0 −0.01 VIN = 2.5 V to 5.25 V VOUT = 1.8 V IOUT = 1 mA CIN = 0.22 mF COUT = 0.22 mF −0.02 −0.03 −0.04 −0.05 −40 −20 0 20 40 60 80 100 120 140 VIN, INPUT VOLTAGE (V) TJ, JUNCTION TEMPERATURE (°C) Figure 7. Quiescent Current vs. Input Voltage− Both Outputs ON Figure 8. Line Regulation vs. Temperature VOUT = 1.8 V www.onsemi.com 5 NCV8152 TYPICAL CHARACTERISTICS 20 REGLOAD, LOAD REGULATION (mV) 0.04 0.03 0.02 0.01 0 −0.01 VIN = 3.8 V to 5.25 V VOUT = 2.8 V IOUT = 1 mA CIN = 0.22 mF COUT = 0.22 mF −0.02 −0.03 −0.04 −0.05 −40 −20 10 0 20 40 60 80 100 120 140 8 7 6 12 10 8 VIN = 2.5 V VOUT = 1.8 V IOUT = 1 mA to 150 mA CIN = 0.22 mF COUT = 0.22 mF 6 4 2 0 −40 −20 0 20 40 60 80 100 120 140 Figure 10. Load Regulation vs. Temperature VOUT = 1.8 V 350 4 3 2 1 0 −40 −20 0 20 40 60 80 100 120 140 315 280 245 210 TJ = 125°C 175 TJ = −40°C 140 105 VIN = 2.8 V VOUT = 1.8 V CIN = 0.22 mF COUT = 0.22 mF 70 35 0 TJ = 25°C 0 15 30 45 60 75 90 105 120 135 150 TJ, JUNCTION TEMPERATURE (°C) IOUT, OUTPUT CURRENT (mA) Figure 11. Load Regulation vs. Temperature VOUT = 2.8 V Figure 12. Dropout Voltage vs. Output Current VOUT = 1.8 V 350 VDROP, DROPOUT VOLTAGE (mV) 200 VDROP, DROPOUT VOLTAGE (mV) 14 Figure 9. Line Regulation vs. Temperature VOUT = 2.8 V 5 180 160 140 TJ = 125°C 120 100 TJ = −40°C 80 60 40 20 0 16 TJ, JUNCTION TEMPERATURE (°C) VIN = 2.5 V VOUT = 1.8 V IOUT = 1 mA to 150 mA CIN = 0.22 mF COUT = 0.22 mF 9 18 TJ, JUNCTION TEMPERATURE (°C) VDROP, DROPOUT VOLTAGE (mV) REGLOAD, LOAD REGULATION (mV) REGLINE, LINE REGULATION (%/V) 0.05 TJ = 25°C 0 15 30 45 60 75 VIN = 3.8 V VOUT = 2.8 V CIN = 0.22 mF COUT = 0.22 mF 90 105 120 135 150 300 250 VIN = 2.8 V VOUT = 1.8 V CIN = 0.22 mF COUT = 0.22 mF IOUT = 150 mA 200 IOUT = 75 mA 150 100 IOUT = 0 mA 50 0 −40 −20 0 20 40 60 80 100 120 140 IOUT, OUTPUT CURRENT (mA) TJ, JUNCTION TEMPERATURE (°C) Figure 13. Dropout Voltage vs. Output Current VOUT = 2.8 V Figure 14. Dropout Voltage vs. Temperature VOUT = 1.8 V www.onsemi.com 6 NCV8152 TYPICAL CHARACTERISTICS 175 VDROP, DROPOUT VOLTAGE (mV) 200 600 VIN = 3.8 V VOUT = 2.8 V CIN = 0.22 mF COUT = 0.22 mF IOUT = 150 mA 150 125 IOUT = 75 mA 100 75 50 IOUT = 0 mA 25 0 −40 −20 0 20 40 60 80 100 500 400 300 200 100 0 120 140 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3 3.6 TJ, JUNCTION TEMPERATURE (°C) VOUT, OUTPUT VOLTAGE (V) Figure 15. Dropout Voltage vs. Temperature VOUT = 2.8 V Figure 16. Dropout Voltage vs. Output Voltage ISC, SHORT−CIRCUIT CURRENT (mA) 400 360 320 280 240 200 160 VIN = 3.8 V VOUT = 0 V CIN = 0.22 mF COUT = 0.22 mF 120 80 40 0 −40 −20 0 20 40 60 80 100 300 270 240 210 180 150 120 90 60 0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 TJ, JUNCTION TEMPERATURE (°C) VIN, INPUT VOLTAGE (V) Figure 17. Short−Circuit Current vs. Temperature Figure 18. Short−Circuit Current vs. Input Voltage 200 1.0 180 0.9 160 140 120 100 80 VIN = 5.5 V VOUT = 2.8 V CIN = 0.22 mF COUT = 0.22 mF 60 40 20 0 −40 −20 VOUT = 0 V CIN = 0.22 mF COUT = 0.22 mF 30 120 140 0 20 40 60 80 100 VEN, ENABLE VOLTAGE (V) IDIS, DISABLE CURRENT (nA) ISC, SHORT−CIRCUIT CURRENT (mA) VDROP, DROPOUT VOLTAGE (mV) 225 0.8 0.7 OFF −> ON 0.6 ON −> OFF 0.5 0.4 0.3 VIN = 3.8 V VOUT = 2.8 V CIN = 0.22 mF COUT = 0.22 mF 0.2 0.1 0 −40 −20 120 140 0 20 40 60 80 100 120 140 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 19. Disable Current vs. Temperature Figure 20. Enable Voltage Threshold vs. Temperature www.onsemi.com 7 6.0 NCV8152 TYPICAL CHARACTERISTICS 50 RDIS, DISCHARGE RESISTIVITY (W) 500 400 350 300 250 200 VIN = 3.8 V VOUT = 2.8 V CIN = 0.22 mF COUT = 0.22 mF 150 100 50 0 −40 −20 0 20 40 60 80 140 RR, RIPPLE REJECTION (dB) 50 40 0 0.1 VIN = 2.5 V VOUT = 1.2 V CIN = none COUT = 0.22 mF 1 10 100 5 0 −40 −20 0 20 40 60 80 100 120 140 1000 80 70 60 50 40 30 IOUT = 1 mA IOUT = 10 mA IOUT = 100 mA IOUT = 150 mA 20 10 0 0.1 10000 VIN = 2.5 V VOUT = 1.2 V CIN = none COUT = 1 mF 90 1 10 100 1000 10000 FREQUENCY (kHz) 100 IOUT = 1 mA IOUT = 10 mA IOUT = 100 mA IOUT = 150 mA 70 60 50 40 0 0.1 10 Figure 24. Power Supply Rejection Ratio, VOUT = 1.2 V, COUT = 1 mF 80 10 VIN = 3.8 V VOUT = 2.8 V CIN = 0.22 mF COUT = 0.22 mF 15 FREQUENCY (kHz) 90 20 20 Figure 23. Power Supply Rejection Ratio, VOUT = 1.2 V, COUT = 0.22 mF 100 30 25 100 IOUT = 1 mA IOUT = 10 mA IOUT = 100 mA IOUT = 150 mA 60 10 30 TJ, JUNCTION TEMPERATURE (°C) 70 20 35 Figure 22. Discharge Resistance vs. Temperature 80 30 40 TJ, JUNCTION TEMPERATURE (°C) 90 RR, RIPPLE REJECTION (dB) 120 45 Figure 21. Current to Enable Pin vs. Temperature 100 RR, RIPPLE REJECTION (dB) 100 RR, RIPPLE REJECTION (dB) IEN, ENABLE CURRENT (nA) 450 VIN = 3.8 V VOUT = 2.8 V CIN = none COUT = 0.22 mF 1 10 100 1000 10000 VIN = 3.8 V VOUT = 2.8 V CIN = none COUT = 1 mF 90 80 70 60 50 40 30 20 10 0 0.1 IOUT = 1 mA IOUT = 10 mA IOUT = 100 mA IOUT = 150 mA 1 10 100 1000 10000 FREQUENCY (kHz) FREQUENCY (kHz) Figure 25. Power Supply Rejection Ratio, VOUT = 2.8 V, COUT = 0.22 mF Figure 26. Power Supply Rejection Ratio, VOUT = 2.8 V, COUT = 1 mF www.onsemi.com 8 OUTPUT VOLTAGE NOISE (mV/rtHz) NCV8152 10 1 IOUT = 150 mA IOUT 0.1 0.01 1 mA VIN = 2.8 V VOUT = 1.8 V CIN = 0.22 mF COUT = 0.22 mF MLCC, X7R, 1206 size 0.001 0.01 0.1 IOUT = 10 mA RMS Output Noise (mV) 10 Hz − 100 kHz 100 Hz − 100 kHz 68.07 67.07 10 mA 67.30 66.31 150 mA 69.74 68.80 IOUT = 1 mA 1 100 10 1000 FREQUENCY (kHz) Figure 27. Output Voltage Noise Spectral Density for VOUT = 1.8 V, COUT = 220 nF OUTPUT VOLTAGE NOISE (mV/rtHz) 10 IOUT = 150 mA 1 IOUT 0.1 0.01 VIN = 2.8 V VOUT = 1.8 V CIN = 1 mF COUT = 1 mF MLCC, X7R, 1206 size 0.001 0.01 0.1 RMS Output Noise (mV) 10 Hz − 100 kHz 100 Hz − 100 kHz 75.33 1 mA 76.23 10 mA 67.12 66.12 150 mA 69.06 68.12 IOUT = 10 mA IOUT = 1 mA 1 10 100 1000 FREQUENCY (kHz) Figure 28. Output Voltage Noise Spectral Density for VOUT = 1.8 V, COUT = 1 mF OUTPUT VOLTAGE NOISE (mV/rtHz) 10 1 IOUT = 150 mA IOUT 0.1 0.01 VIN = 3.8 V VOUT = 2.8 V CIN = 0.22 mF COUT = 0.22 mF MLCC, X7R, 1206 size 0.001 0.01 0.1 IOUT = 10 mA RMS Output Noise (mV) 10 Hz − 100 kHz 100 Hz − 100 kHz 1 mA 93.42 91.99 10 mA 92.88 91.45 150 mA 94.67 93.26 IOUT = 1 mA 1 10 100 1000 FREQUENCY (kHz) Figure 29. Output Voltage Noise Spectral Density for VOUT = 2.8 V, COUT = 220 nF www.onsemi.com 9 NCV8152 IOUT = 150 mA 1 IOUT 0.1 0.01 VIN = 3.8 V VOUT = 2.8 V CIN = 1 mF COUT = 1 mF MLCC, X7R, 1206 size 0.001 0.01 0.1 RMS Output Noise (mV) 10 Hz − 100 kHz 100 Hz − 100 kHz 100.86 1 mA 102.14 10 mA 93.03 91.59 150 mA 94.74 93.12 IOUT = 10 mA IOUT = 1 mA 1 10 100 1000 FREQUENCY (kHz) Figure 30. Output Voltage Noise Spectral Density for VOUT = 2.8 V, COUT = 1 mF 100 VOUT = 2.8 V 10 ESR (W) OUTPUT VOLTAGE NOISE (mV/rtHz) 10 1 UNSTABLE OPERATION VOUT = 1.8 V STABLE OPERATION 0.1 0.01 0 15 30 45 60 75 90 105 120 135 IOUT, OUTPUT CURRENT (mA) Figure 31. Output Capacitor ESR vs. Output Current www.onsemi.com 10 150 NCV8152 VIN = 3.8 V VOUT1 = disable VOUT2 = 1.2 V IOUT1 = 10 mA COUT1 = COUT2 = 220 nF 40 ms/div VOUT1 VOUT2 40 ms/div 500 mV/div Figure 33. Enable Turn−on Response − VR1 = 10 mA, VR2 = 10 mA 50 mA/div IIN VOUT2 VIN = 3.8 V VOUT1 = disable VOUT2 = 1.2 V IOUT2 = 150 mA COUT1 = COUT2 = 220 nF VOUT1 VOUT2 VIN = 3.8 V VOUT1 = 2.8 V VOUT2 = 1.2 V IOUT1 = 10 mA IOUT2 = 150 mA COUT1 = COUT2 = 220 nF 40 ms/div Figure 35. Enable Turn−on Response − VR1 = 10 mA, VR2 = 150 mA tRISE = 1 ms VOUT2 VIN = 3.8 V to 4.8 V IOUT2 = 10 mA COUT1 = 220 nF COUT2 = 220 nF VIN tFALL = 1 ms VOUT1 20 mV/div VIN 500 mV/div 40 ms/div Figure 34. Enable Turn−on Response − VR1 = Off, VR2 = 150 mA VOUT1 20 mV/div 1 V/div 1 V/div VOUT1 20 mV/div 500 mV/div 1 V/div 1 V/div IIN VEN 20 mV/div 500 mV/div Figure 32. Enable Turn−on Response − VR1 = Off, VR2 = 10 mA VEN VIN = 3.8 V VOUT1 = 2.8 V VOUT2 = 1.2 V IOUT1 = 10 mA IOUT2 = 10 mA COUT1 = COUT2 = 220 nF 50 mA/div VOUT2 1 V/div VOUT1 IIN 1 V/div 1 V/div 1 V/div IIN VEN 50 mA/div 500 mV/div VEN 50 mA/div 500 mV/div TYPICAL CHARACTERISTICS VOUT2 VIN = 4.8 V to 3.8 V IOUT2 = 150 mA COUT1 = 220 nF COUT2 = 220 nF 2 ms/div 2 ms/div Figure 36. Line Transient Response − Rising Edge, VEN1 = 0 V, VEN2 = VIN, VOUT2 = 3.3 V, IOUT2 = 10 mA Figure 37. Line Transient Response − Falling Edge, VEN1 = 0 V, VEN2 = VIN, VOUT2 = 3.3 V, IOUT2 = 10 mA www.onsemi.com 11 NCV8152 VIN = 3.8 V to 4.8 V IOUT2 = 10 mA COUT1 = 220 nF COUT2 = 220 nF VOUT2 VOUT1 tFALL = 1 ms VIN = 4.8 V to 3.8 V IOUT2 = 150 mA COUT1 = 220 nF COUT2 = 220 nF VOUT2 2 ms/div Figure 39. Line Transient Response − Falling Edge, VEN1 = 0 V, VEN2 = VIN, VOUT2 = 3.3 V, IOUT2 = 150 mA IOUT2 50 mA/div 2 ms/div Figure 38. Line Transient Response − Rising Edge, VEN1 = 0 V, VEN2 = VIN, VOUT2 = 3.3 V, IOUT2 = 150 mA tRISE = 1 ms VOUT2 20 mV/div 50 mA/div 20 mV/div 50 mA/div 50 mA/div 20 mV/div VOUT1 VIN 20 mV/div 500 mV/div tRISE = 1 ms 20 mV/div VIN 20 mV/div 500 mV/div TYPICAL CHARACTERISTICS VIN = 3.8 V VOUT1 = 2.8 V VOUT2 = 1.2 V IOUT1 = 10 mA COUT1 = 220 nF COUT2 = 220 nF VOUT1 IOUT2 tFALL = 1 ms VOUT2 VIN = 3.8 V VOUT1 = 2.8 V VOUT2 = 1.2 V IOUT1 = 10 mA COUT1 = 220 nF COUT2 = 220 nF VOUT1 2 ms/div 10 ms/div Figure 40. Load Transient Response − Rising Edge, IOUT = 1 mA to 150 mA Figure 41. Load Transient Response − Falling Edge, IOUT = 150 mA to 1 mA 50 mA/div IOUT2 tRISE = 500 ns VOUT2 20 mV/div 100 mV/div 20 mV/div 100 mV/div 50 mA/div IOUT2 VIN = 3.8 V VOUT1 = 2.8 V VOUT2 = 1.2 V IOUT1 = 10 mA COUT1 = 220 nF COUT2 = 220 nF VOUT1 tFALL = 500 ns VOUT2 VIN = 3.8 V VOUT1 = 2.8 V VOUT2 = 1.2 V IOUT1 = 10 mA COUT1 = 220 nF COUT2 = 220 nF VOUT1 2 ms/div 10 ms/div Figure 42. Load Transient Response − Rising Edge, IOUT = 0.1 mA to 150 mA Figure 43. Load Transient Response − Falling Edge, IOUT = 150 mA to 0.1 mA www.onsemi.com 12 NCV8152 50 mA/div tRISE = 500 ns VOUT2 VIN = 3.8 V VOUT1 = 2.8 V VOUT2 = 1.2 V IOUT1 = 10 mA COUT1 = 220 nF COUT2 = 220 nF VOUT1 tFALL = 500 ns 50 mV/div IOUT2 IOUT2 VIN = 3.8 V VOUT1 = 2.8 V VOUT2 = 1.2 V IOUT1 = 10 mA COUT1 = 220 nF COUT2 = 220 nF VOUT2 VOUT1 20 mV/div 20 mV/div 50 mV/div 50 mA/div TYPICAL CHARACTERISTICS 2 ms/div 2 ms/div Figure 44. Load Transient Response − Rising Edge, IOUT = 50 mA to 150 mA Figure 45. Load Transient Response − Falling Edge, IOUT = 150 mA to 50 mA VOUT2 50 mA/div 50 mV/div VOUT1 tRISE = 500 ns VIN = 4.3 V VOUT1 = 3.3 V VOUT2 = 3.0 V IOUT1 = 10 mA COUT1 = 220 nF COUT2 = 220 nF 20 mV/div 50 mV/div IOUT1 20 mV/div 50 mA/div IOUT1 2 ms/div VIN = 4.3 V VOUT1 = 3.3 V VOUT2 = 3.0 V IOUT1 = 10 mA COUT1 = 220 nF COUT2 = 220 nF VOUT2 10 ms/div Figure 48. Load Transient Response − Falling Edge, IOUT = 150 mA to 1 mA tRISE = 1 ms VOUT1 VIN = 4.3 V VOUT1 = 3.3 V VOUT2 = 3.0 V IOUT1 = 10 mA COUT1 = 220 nF COUT2 = 220 nF VOUT2 IOUT1 50 mA/div IOUT1 VOUT1 tFALL = 1 ms 20 mV/div 100 mV/div 20 mV/div 100 mV/div 50 mA/div Figure 47. Load Transient Response − Rising Edge, IOUT = 1 mA to 150 mA tFALL = 500 ns VOUT1 VIN = 4.3 V VOUT1 = 3.3 V VOUT2 = 3.0 V IOUT1 = 10 mA COUT1 = 220 nF COUT2 = 220 nF VOUT2 2 ms/div 20 ms/div Figure 46. Load Transient Response − Rising Edge, IOUT = 0.1 mA to 150 mA Figure 49. Load Transient Response − Falling Edge, IOUT = 150 mA to 0.1 mA www.onsemi.com 13 NCV8152 50 mA/div VOUT1 VIN = 4.3 V VOUT1 = 3.3 V VOUT2 = 3.0 V IOUT1 = 10 mA COUT1 = 220 nF COUT2 = 220 nF VOUT2 VOUT1 VOUT2 VIN = 4.3 V VOUT1 = 3.3 V VOUT2 = 3.0 V IOUT1 = 10 mA COUT1 = 220 nF COUT2 = 220 nF 2 ms/div 2 ms/div Figure 50. Load Transient Response − Rising Edge, IOUT = 50 mA to 150 mA Figure 51. Load Transient Response − Falling Edge, IOUT = 150 mA to 50 mA VIN = 4.3 V VOUT1 = 2.8 V IOUT1 = 10 mA IOUT2 = 10 mA CIN = COUT1 = COUT1 = 220 nF VIN VOUT1 Full Load Overheating IOUT1 VOUT1 500 mV/div VOUT2 VIN = 5.5 V VOUT1 = 1.2 V VOUT2 = 3.0 V CIN = COUT1 = COUT1 = 220 nF Thermal Shutdown TSD Cycling 10 ms/div Figure 52. Turn−on/off − Slow Rising VIN Figure 53. Short−Circuit and Thermal Shutdown 500 mV/div 20 ms/div 1 V/div 1 V/div tFALL = 1 ms 50 mV/div tRISE = 1 ms IOUT1 20 mV/div IOUT1 50 mA/div 20 mV/div 50 mV/div 50 mA/div TYPICAL CHARACTERISTICS VEN VIN = 3.8 V VOUT1 = 2.8 V VOUT2 = 1.2 V tFALL = 1 ms VOUT1 COUT = 4.7 mF COUT = 1 mF COUT = 220 nF 100 ms/div Figure 54. Enable Turn−off www.onsemi.com 14 NCV8152 APPLICATIONS INFORMATION General disable state the device consumes as low as typ. 10 nA from the VIN. If the EN pin voltage >0.9 V the device is guaranteed to be enabled. The NCV8152 regulates the output voltage and the active discharge transistor is turned−off. The both EN pin has internal pull−down current source with typ. value of 300 nA which assures that the device is turned−off when the EN pin is not connected. In the case where the EN function isn’t required the EN should be tied directly to IN. The NCV8152 is a dual output high performance 150 mA Low Dropout Linear Regulator. This device delivers very high PSRR (75 dB at 1 kHz) and excellent dynamic performance as load/line transients. In connection with low quiescent current this device is very suitable for various battery powered applications such as tablets, cellular phones, wireless and many others. Each output is fully protected in case of output overload, output short circuit condition and overheating, assuring a very robust design. The NCV8152 device is housed in XDFN−6 1.2 mm x 1.2 mm package which is useful for space constrains application. Output Current Limit Output Current is internally limited within the IC to a typical 280 mA. The NCV8152 will source this amount of current measured with a voltage drops on the 90% of the nominal VOUT. If the Output Voltage is directly shorted to ground (VOUT = 0 V), the short circuit protection will limit the output current to 300 mA (typ). The current limit and short circuit protection will work properly over whole temperature range and also input voltage range. There is no limitation for the short circuit duration. This protection works separately for each channel. Short circuit on the one channel do not influence second channel which will work according to specification. Input Capacitor Selection (CIN) It is recommended to connect at least a 0.22 mF Ceramic X5R or X7R capacitor as close as possible to the IN pin of the device. This capacitor will provide a low impedance path for unwanted AC signals or noise modulated onto constant input voltage. There is no requirement for the min. or max. ESR of the input capacitor but it is recommended to use ceramic capacitors for their low ESR and ESL. A good input capacitor will limit the influence of input trace inductance and source resistance during sudden load current changes. Larger input capacitor may be necessary if fast and large load transients are encountered in the application. Thermal Shutdown When the die temperature exceeds the Thermal Shutdown threshold (TSD − 160°C typical), Thermal Shutdown event is detected and the affected channel is turn−off. Second channel still working. The channel which is overheated will remain in this state until the die temperature decreases below the Thermal Shutdown Reset threshold (TSDU − 140°C typical). Once the device temperature falls below the 140°C the appropriate channel is enabled again. The thermal shutdown feature provides the protection from a catastrophic device failure due to accidental overheating. This protection is not intended to be used as a substitute for proper heat sinking. The long duration of the short circuit condition to some output channel could cause turn−off other output when heat sinking is not enough and temperature of the other output reach TSD temperature. Output Decoupling (COUT) The NCV8152 requires an output capacitor for each output connected as close as possible to the output pin of the regulator. The recommended capacitor value is 0.22 mF and X7R or X5R dielectric due to its low capacitance variations over the specified temperature range. The NCV8152 is designed to remain stable with minimum effective capacitance of 0.15 mF to account for changes with temperature, DC bias and package size. Especially for small package size capacitors such as 0201 the effective capacitance drops rapidly with the applied DC bias. There is no requirement for the minimum value of Equivalent Series Resistance (ESR) for the COUT but the maximum value of ESR should be less than 2 W. Larger output capacitors and lower ESR could improve the load transient response or high frequency PSRR. It is not recommended to use tantalum capacitors on the output due to their large ESR. The equivalent series resistance of tantalum capacitors is also strongly dependent on the temperature, increasing at low temperature. Power Dissipation As power dissipated in the NCV8152 increases, it might become necessary to provide some thermal relief. The maximum power dissipation supported by the device is dependent upon board design and layout. Mounting pad configuration on the PCB, the board material, and the ambient temperature affect the rate of junction temperature rise for the part. For reliable operation, junction temperature should be limited to +125°C. The maximum power dissipation the NCV8152 can handle is given by: Enable Operation The NCV8152 uses the dedicated EN pin for each output channel. This feature allows driving outputs separately. If the EN pin voltage is VIN. Due to this fact in cases, where the extended reverse current condition can be anticipated the device may require additional external protection. PCB Layout Recommendations To obtain good transient performance and good regulation characteristics place input and output capacitors close to the device pins and make the PCB traces wide. In order to minimize the solution size, use 0402 capacitors. Larger copper area connected to the pins will also improve the device thermal resistance. The actual power dissipation can be calculated from the equation above (Equation 2). Expose pad should be tied the shortest path to the GND pin. Power Supply Rejection Ratio The NCV8152 features very good Power Supply Rejection ratio. If desired the PSRR at higher frequencies in the range 100 kHz − 10 MHz can be tuned by the selection of COUT capacitor and proper PCB layout. Turn−On Time The turn−on time is defined as the time period from EN assertion to the point in which VOUT will reach 98% of its ORDERING INFORMATION Voltage Option (OUT1/OUT2) Marking Marking Rotation NCV8152MX180150TCG 1.8 V/1.5 V AN 0° NCV8152MX180180TCG (Note 7) 1.8 V/1.8 V AJ 0° NCV8152MX180280TCG (Note 7) 1.8 V/2.8 V 5 180° NCV8152MX280180TCG (Note 7) 2.8 V/1.8 V 6 270° NCV8152MX300180TCG (Note 7) 3.0 V/1.8 V L 90° NCV8152MX330180TCG (Note 7) 3.3 V/1.8 V R 90° Device Package Shipping† XDFN-6 (Pb-Free) 3000 or 5000 / Tape & Reel (Note 7) †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 7. Product processed after October 1, 2022 are shipped with quantity 5000 units / tape & reel. ZigBee is a registered trademark of ZigBee Alliance. Bluetooth is a registered trademark of Bluetooth SIG. www.onsemi.com 16 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS XDFN6 1.20x1.20, 0.40P CASE 711AT ISSUE C SCALE 4:1 D PIN ONE REFERENCE DATE 04 DEC 2015 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO THE PLATED TERMINALS. 4. COPLANARITY APPLIES TO THE PAD AS WELL AS THE TERMINALS. A B ÍÍÍ ÍÍÍ ÍÍÍ E L TOP VIEW DETAIL A OPTIONAL CONSTRUCTION A 0.05 C DIM A A1 b D D2 E E2 e L L1 A1 GENERIC MARKING DIAGRAM* 0.05 C C SIDE VIEW NOTE 4 MILLIMETERS TYP MAX 0.37 0.45 0.03 0.05 0.18 0.23 1.20 1.25 0.94 1.04 1.20 1.25 0.40 0.30 0.40 BSC 0.15 0.20 0.25 0.05 0.00 0.10 MIN 0.30 0.00 0.13 1.15 0.84 1.15 0.20 SEATING PLANE XX M D2 1 3 6X L1 XX = Specific Device Code M = Date Code E2 6X *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “ G”, may or may not be present. L 6 DETAIL A 4 6X e b 0.10 BOTTOM VIEW M C A B NOTE 3 RECOMMENDED MOUNTING FOOTPRINT* 1.08 PACKAGE OUTLINE 6X 0.37 1.40 0.40 1 0.40 PITCH 6X 0.24 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. DOCUMENT NUMBER: DESCRIPTION: 98AON76141F XDFN6, 1.20 X 1.20, 0.40P Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
NCV8152MX330180TCG 价格&库存

很抱歉,暂时无法提供与“NCV8152MX330180TCG”相匹配的价格&库存,您可以联系我们找货

免费人工找货