0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NCV8730ASN500T1G

NCV8730ASN500T1G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TSOT23-5

  • 描述:

  • 数据手册
  • 价格&库存
NCV8730ASN500T1G 数据手册
DATA SHEET www.onsemi.com LDO Regulator, 150 mA, 38V, 1 mA IQ, with PG MARKING DIAGRAMS 5 NCV8730 1 XXX = Specific Device Code A = Assembly Location Y = Year W = Work Week G = Pb−Free Package (Note: Microdot may be in either location) WDFNW6 (2x2) CASE 511DW MTW SUFFIX 1 XX M XX = Specific Device Code M = Date Code Features PIN ASSIGNMENTS • Operating Input Voltage Range: 2.7 V to 38 V • Output Voltage: TSOP−5 1.2 V to 24 V (FIX) ♦ 1.2 V to 37 V (ADJ) Capable of Sourcing 200 mA Peak Output Current Very Low Quiescent Current: 1 mA typ. Low Dropout: 290 mV typ. at 150 mA, 3.3 V Version Output Voltage Accuracy ±1% Power Good Circuit (Version B) Stable with Small 1 mF Ceramic Capacitors Built−in Soft Start Circuit to Suppress Inrush Current Over−Current and Thermal Shutdown Protections Available in Small TSOP−5 and WDFNW6 (2x2) Packages NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable These Devices are Pb−Free and are RoHS Compliant ♦ • XXXAYWG G 1 The NCV8730 device is based on unique combination of features − very low quiescent current, fast transient response and high input and output voltage ranges. The NCV8730 is CMOS LDO regulator designed for up to 38 V input voltage and 150 mA output current. Quiescent current of only 1 mA makes this device ideal solution for battery− powered, always−on systems. Several fixed output voltage versions are available as well as the adjustable version. The device (version B) implements power good circuit (PG) which indicates that output voltage is in regulation. This signal could be used for power sequencing or as a microcontroller reset. Internal short circuit and over temperature protections saves the device against overload conditions. • • • • • • • • • • 5 TSOP−5 CASE 483 SN SUFFIX IN 1 GND 2 EN 3 5 OUT 4 NC/ADJ/PG CASE 483 WDFNW6 (2x2) 6 IN OUT 1 NC/ADJ 2 GND 3 EP 5 NC/PG 4 EN CASE511DW (Top Views) ORDERING INFORMATION See detailed ordering and shipping information on page 29 of this data sheet. Typical Applications • • • • Body Control Modules LED Lighting On Board Charger General Purpose Automotive © Semiconductor Components Industries, LLC, 2019 July, 2022 − Rev. 5 1 Publication Order Number: NCV8730/D NCV8730 TYPICAL APPLICATION SCHEMATICS VIN=6−38V IN C IN 1mF ON COUT 1mF NCV8730A 5.0V TSOP−5 / WDFN−6 EN OFF GND VIN=6−38V VOUT=5.0V OUT C IN 1mF IN C IN 1mF GND ADJ GND R1 2M4 COUT 1mF R PG 100k 1.2V R2 750k IN C IN 1mF ON PG C OUT 1mF C FF 1nF Figure 2. Adjustable Output Voltage Application (No PG) VIN=6−38V VOUT=5.0V NC EN NCV8730A ADJ TSOP−5 / WDFN−6 OFF NCV8730B 5.0V TSOP−5 / WDFN−6 OFF VOUT=5V OUT EN OUT ON ON NC Figure 1. Fixed Output Voltage Application (No PG) VIN=6−38V IN NCV8730B ADJ Only WDFN−6 1.2V ADJ EN PG VOUT=5V OUT GND PG OFF R1 2M4 C FF 1nF R2 750k COUT 1mF R PG 100k PG Figure 3. Fixed Output Voltage Application with PG Figure 4. Adjustable Output Voltage Application with PG ǒ V OUT + V ADJ @ 1 ) Ǔ R1 ) I ADJ @ R 1 R2 SIMPLIFIED BLOCK DIAGRAM IN Current limit OUT UVLO Comparator UVLO IEN−PU = 300nA 1.95 V V CCEN V−REFERENCE AND SOFT−START V REF 1.2V EA RADJ1 V FB =1.2V EN ADJ Enable RADJ2 EN Comparator GND THERMAL SHUTDOWN 0.9 V PG Comparator DEGLITCH DELAY TMR 93% of VREF Note:Blue objects are valid for ADJ version Green objects are valid for FIX version Brown objects are valid for B version (with PG) Figure 5. Internal Block Diagram www.onsemi.com 2 PG NC NCV8730 PIN DESCRIPTION − TSOP−5 package Pin No. Pin Name 1 IN 2 GND 3 EN 4 ADJ/PG/NC 5 OUT Description Power supply input pin. Ground pin. Enable input pin (high − enabled, low − disabled). If this pin is connected to IN pin or if it is left unconnected (pull−up resistor is not required) the device is enabled. ADJ (ADJ device version only): • Adjust input pin. Could be connected to the output resistor divider or to the output pin directly. PG (FIX device versions with PG functionality): • Power good output pin. High level for power ok, low level for fail. If not used, could be left unconnected or shorted to GND. NC (FIX device versions without PG functionality): • Not internally connected. This pin can be tied to the ground plane to improve thermal dissipation. Output pin. PIN DESCRIPTION − WDFN−6 package Pin No. Pin Name 1 OUT 2 NC/ADJ 3 GND 4 EN 5 NC/PG 6 IN EP EPAD Description Output pin. ADJ (ADJ device version only): • Adjust input pin. Could be connected to the output resistor divider or to the output pin directly. NC (all FIX device versions): • Not internally connected. This pin can be tied to the ground plane to improve thermal dissipation. Ground pin. Enable input pin (high − enabled, low − disabled). If this pin is connected to IN pin or if it is left unconnected (pull−up resistor is not required) the device is enabled. PG (ADJ/FIX device versions with PG functionality): • Power good output pin. High level for power ok, low level for fail. If not used, could be left unconnected or shorted to GND. NC (ADJ/FIX device versions without PG functionality): • Not internally connected. This pin can be tied to the ground plane to improve thermal dissipation. Power supply input pin. Exposed pad pin. Should be connected to the GND plane. www.onsemi.com 3 NCV8730 MAXIMUM RATINGS Rating VIN Voltage (Note 1) Symbol Value Unit VIN −0.3 to 40 V VOUT Voltage VOUT EN Voltage VEN −0.3 to (VIN + 0.3) V ADJ Voltage VFB/ADJ −0.3 to 5.5 V PG Voltage VPG −0.3 to (VIN + 0.3) V Output Current IOUT Internally limited mA PG Current IPG 3 mA TJ(MAX) 150 °C TSTG −55 to 150 °C ESD Capability, Human Body Model (Note 2) ESDHBM 2000 V ESD Capability, Charged Device Model (Note 2) ESDCDM 1000 V Maximum Junction Temperature Storage Temperature ADJ version & FIX versions VOUT−NOM > 5.0 V: −0.3 to [(VIN + 0.3) or 40 V; whichever is lower] FIX versions VOUT−NOM ≤ 5.0 V: −0.3 to [(VIN + 0.3) or 6.0 V; whichever is lower] V Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area. 2. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per ANSI/ESDA/JEDEC JS−001, EIA/JESD22−A114 (AEC−Q100−002) ESD Charged Device Model tested per ANSI/ESDA/JEDEC JS−002, EIA/JESD22−C101 (AEC Q100−011D) THERMAL CHARACTERISTICS (Note 3) Symbol WDFNW6 2x2 TSOP−5 Unit Thermal Resistance, Junction−to−Air RthJA 61 142 °C/W Thermal Resistance, Junction−to−Case (top) RthJCt 200 80 °C/W Thermal Resistance, Junction−to−Case (bottom) RthJCb 14 N/A °C/W Thermal Resistance, Junction−to−Board (top) RthJBt 46 110 °C/W Thermal Characterization Parameter, Junction−to−Case (top) PsiJCt 3 21 °C/W Thermal Characterization Parameter, Junction−to−Board [FEM] PsiJB 46 113 °C/W Characteristic 3. Measured according to JEDEC board specification (board 1S2P, Cu of the board can be found in JESD51−7. layer thickness 1 oz, Cu area 650 mm2, no airflow). Detailed description ELECTRICAL CHARACTERISTICS (VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, CIN = COUT = 1.0 mF (effective capacitance – Note 4), TJ = −40°C to 125°C, ADJ tied to OUT, unless otherwise specified) (Note 5) Test Conditions Parameter Recommended Input Voltage Output Voltage Accuracy TJ = 25°C Symbol Min Typ Max Unit VIN 2.7 − 38 V VOUT −1 − 1 % −1 − 2 ADJ Reference Voltage TJ = −40°C to +125°C ADJ version only VADJ − 1.2 − V ADJ Input Current VADJ = 1.2 V IADJ −0.1 0.01 0.1 mA Line Regulation VIN = VOUT−NOM + 1 V to 38 V and VIN ≥ 2.7 V DVO(DVI) − − 0.2 %VOUT Load Regulation IOUT = 0.1 mA to 150 mA DVO(DIO) − − 0.4 %VOUT Quiescent Current (version A) VIN = VOUT−NOM + 1 V to 38 V, IOUT = 0 mA IQ − 1.3 2.5 mA Quiescent Current (version B) VIN = VOUT−NOM + 1 V to 38 V, IOUT = 0 mA − 1.8 3.0 Ground Current IOUT = 150 mA IGND − 325 450 mA Shutdown Current (Note 9) VEN = 0 V, IOUT = 0 mA, VIN = 38 V ISHDN − 0.35 1.5 mA Output Current Limit VOUT = VOUT−NOM − 100 mV IOLIM 200 280 450 mA www.onsemi.com 4 NCV8730 ELECTRICAL CHARACTERISTICS (VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, CIN = COUT = 1.0 mF (effective capacitance – Note 4), TJ = −40°C to 125°C, ADJ tied to OUT, unless otherwise specified) (Note 5) (continued) Symbol Min Typ Max Unit Short Circuit Current Parameter VOUT = 0 V IOSC 200 280 450 mA Dropout Voltage (Note 6) IOUT = 150 mA VDO − 290 480 mV PSRR − 80 − dB 10 kHz − 70 − 100 kHz − 42 − − 48 − − 195 − FIX−5.0 V − 240 − FIX−15.0 V − 460 − ADJ set to 5.0 V CFF = 100 pF − 132 − ADJ set to 5.0 V CFF = 10 nF − 82 − Power Supply Ripple Rejection Test Conditions VIN = VOUT−NOM + 2 V IOUT = 10 mA 10 Hz 1 MHz Output Voltage Noise f = 10 Hz to 100 kHz FIX−3.3 V VN mVRMS EN Threshold VEN rising VEN−TH 0.7 0.9 1.05 V EN Hysteresis VEN falling VEN−HY 0.01 0.1 0.2 V EN Internal Pull−up Current VEN = 1 V, VIN = 5.5 V IEN−PU 0.01 0.3 1.0 mA EN Input Leakage Current VEN = 30 V, VIN = 30 V IEN−LK −1.0 0.05 1.0 mA Start−up time (Note 7) VOUT−NOM ≤ 3.3 V tSTART 100 250 500 ms 300 600 1000 VOUT−NOM > 3.3 V Internal UVLO Threshold Ramp VIN up until output is turned on VIUL−TH 1.6 1.95 2.6 V Internal UVLO Hysteresis Ramp VIN down until output is turned off VIUL−HY 0.05 0.2 0.3 V PG Threshold (Note 8) VOUT falling VPG−TH 90 93 96 % PG Hysteresis (Note 8) VOUT rising VPG−HY 0.1 2.5 4.0 % PG Deglitch Time (Note 8) tPG−DG 75 160 270 ms PG Delay Time (Note 8) tPG−DLY 120 320 600 ms PG Output Low Level Voltage (Note 8) IPG = 1 mA VPG−OL − 0.2 0.4 V PG Output Leakage Current (Note 8) VPG = 30 V IPG−LK − 0.01 1.0 mA Thermal Shutdown Temperature Temperature rising from TJ = +25°C TSD − 165 − °C Thermal Shutdown Hysteresis Temperature falling from TSD TSDH − 20 − °C Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Effective capacitance, including the effect of DC bias, tolerance and temperature. See the Application Information section for more information. 5. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at TA = 25°C. Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible. 6. Dropout measured when the output voltage falls 100 mV below the nominal output voltage. Limits are valid for all voltage versions with nominal output voltage higher than or equal to 2.5 V. For lower output voltage versions the dropout test is not applied because the input voltage during the test would fall below the minimum input voltage 2.7 V. 7. Startup time is the time from EN assertion to point when output voltage is equal to 95% of VOUT−NOM. 8. Applicable only to version B (device option with power good output). PG threshold and PG hysteresis are expressed in percentage of nominal output voltage. 9. Shutdown current includes EN Internal Pull−up Current. www.onsemi.com 5 NCV8730 TYPICAL CHARACTERISTICS VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, COUT = 1.0 mF, ADJ tied to OUT, TJ = 25°C, unless otherwise specified 2.0% VIN = (VOUT-NOM + 1 V) to 38 V, VIN ≥ 2.7 V I OUT = 1 to 150 mA OUTPUT VOLTAGE, V OUT (V) 1.5% High limit 1.0% VOUT-NOM = 15 V 0.5% VOUT-NOM = 5 V 0.0% VOUT-NOM = 1.2 V -0.5% Low limit -1.0% -1.5% -2.0% -40 -20 0 20 40 60 80 120 100 JUNCTION TEMPERATURE, T J ( °C) Figure 6. Output Voltage vs. Temperature Figure 7. Ground Current vs. Load (NCP730−5.0V, Version−B) Figure 8. Quiescent Current vs. Temperature (Version−A) Figure 9. Quiescent Current vs. Temperature (Version−B) 1.6 1.10 SHUTDOWN CURRENT, I SHDN ( μA) 1.4 ENABLE THRESHOLD VOLTAGE, VEN -TH (V) High limit Note: Shutdown current is measured at IN pin and includes EN pin pull-up current. 1.2 1.0 0.8 0.6 0.4 VIN = 38 V VEN = 0 V 0.2 0.0 -40 -20 0 20 40 60 80 100 1.05 High limit 1.00 0.95 0.90 0.85 0.80 0.75 Low limit 0.70 0.65 0.60 -40 120 JUNCTION TEMPERATURE, T J ( °C) -20 0 20 40 60 80 100 JUNCTION TEMPERATURE, TJ (°C) Figure 10. Shutdown Current vs. Temperature Figure 11. Enable Threshold Voltage vs. Temperature www.onsemi.com 6 120 NCV8730 TYPICAL CHARACTERISTICS VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, COUT = 1.0 mF, ADJ tied to OUT, TJ = 25°C, unless otherwise specified 0.10 1.4 1.2 ADJ INPUT CURRENT, I ADJ (μA) ENABLE PULL-UP CURRENT, I EN-PU ( μA) 1.6 High limit 1.0 0.8 0.6 0.4 0.2 High limit 0.08 0.06 0.04 0.02 VEN = 1 V 0.0 -40 -20 0 20 40 60 80 0.00 -40 120 100 TEMPERATURE (°C) -20 0 20 40 60 80 100 120 TEMPERATURE (°C) Figure 12. Enable Internal Pull−Up Current vs. Temperature Figure 13. ADJ Input Current vs. Temperature 500 High limit 450 DROPOUT VOLTAGE, V DROP (mV) 400 350 VOUT = VOUT-NOM - 100 mV IOUT = 150 mA All output voltage versions 300 250 200 150 100 50 0 -40 -20 0 20 40 60 80 100 120 JUNCTION TEMPERATURE, TJ ( °C) Figure 14. Dropout Voltage vs. Temperature Figure 15. NCV8730ASN330 − Dropout Voltage Figure 16. NCV8730BMT500 − Dropout Voltage Figure 17. NCV8730BMT500 − Dropout Voltage www.onsemi.com 7 NCV8730 TYPICAL CHARACTERISTICS VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, COUT = 1.0 mF, ADJ tied to OUT, TJ = 25°C, unless otherwise specified 4.3V VIN VIN 8.3V 150mA 150mA 1mA IOUT 1mA VOUT 3.3V IOUT +55mV +58mV 3.3V -115mV -120mV C1: VIN C2: VOUT (ac) C4: IOUT VOUT 1.0V/div 50mV/div 100mA/div 20.0ms/div C1: VIN C2: VOUT (ac) C4: IOUT Figure 18. Load Transient − NCV8730−3.3 V, COUT = 1 mF 20.0ms/div Figure 19. Load Transient − NCV8730−3.3 V, COUT = 1 mF VIN 38.0V 2.0V/div 50mV/div 100mA/div VIN 4.3V 150mA 150mA 1mA IOUT 1mA VOUT 3.3V IOUT +58mV +37mV 3.3V VOUT -60mV -120mV C1: VIN C2: VOUT (ac) C4: IOUT 10.0V/div 50mV/div 100mA/div 20.0ms/div C1: VIN C2: VOUT (ac) C4: IOUT 1.0V/div 50mV/div 100mA/div 50.0ms/div Figure 21. Load Transient − NCV8730−3.3 V, COUT = 10 mF Figure 20. Load Transient − NCV8730−3.3 V, COUT = 1 mF VIN 4.3V 150mA VIN 6.0V 150mA IOUT 1mA 1mA +55mV +30mV 3.3V IOUT VOUT VOUT 5.0V -50mV -115mV C1: VIN C2: VOUT (ac) C4: IOUT 1.0V/div 50mV/div 100mA/div 50.0ms/div C1: VIN C2: VOUT (ac) C4: IOUT Figure 22. Load Transient − NCV8730−3.3 V, COUT = 22 mF 5.0V/div 50mV/div 100mA/div 20.0ms/div Figure 23. Load Transient − NCV8730−5.0 V, COUT = 1 mF www.onsemi.com 8 NCV8730 TYPICAL CHARACTERISTICS VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, COUT = 1.0 mF, ADJ tied to OUT, TJ = 25°C, unless otherwise specified VIN 38.0V VIN 6.0V 150mA 150mA 1mA IOUT 1mA VOUT 5.0V IOUT +48mV 5.0V +36mV VOUT -60mV -112mV C1: VIN C2: VOUT (ac) C4: IOUT 10.0V/div 50mV/div 100mA/div 20.0ms/div C1: VIN C2: VOUT (ac) C4: IOUT Figure 24. Load Transient − NCV8730−5.0 V, COUT = 1 mF VIN 15.5V 150mA 150mA 1mA IOUT 1mA VOUT 15.0V IOUT +34mV 5.0V -53mV C1: VIN C2: VOUT (ac) C4: IOUT 50.0ms/div Figure 25. Load Transient − NCV8730−5.0 V, COUT = 10 mF VIN 6.0V 5.0V/div 50mV/div 100mA/div +55mV VOUT -120mV 5.0V/div 50mV/div 100mA/div 50.0ms/div C1: VIN C2: VOUT (ac) C4: IOUT Figure 26. Load Transient − NCV8730−5.0 V, COUT = 22 mF 10.0V/div 100mV/div 100mA/div 20.0ms/div Figure 27. Load Transient − NCV8730−15.0 V, COUT = 1 mF VIN 38.0V VIN 15.5V 150mA 150mA 1mA 1mA VOUT 15.0V IOUT +40mV +50mV 15.0V IOUT VOUT -110mV -105mV C1: VIN C2: VOUT (ac) C4: IOUT 10.0V/div 100mV/div 100mA/div 20.0ms/div C1: VIN C2: VOUT (ac) C4: IOUT Figure 28. Load Transient − NCV8730−15.0 V, COUT = 1 mF 10.0V/div 50mV/div 100mA/div 50.0ms/div Figure 29. Load Transient − NCV8730−15.0 V, COUT = 10 mF www.onsemi.com 9 NCV8730 TYPICAL CHARACTERISTICS VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, COUT = 1.0 mF, ADJ tied to OUT, TJ = 25°C, unless otherwise specified VIN 15.5V VIN 15.5V 150mA 150mA 1mA IOUT 1mA VOUT 15.0V IOUT +45mV +16mV 15.0V -98mV C1: VIN C2: VOUT (ac) C4: IOUT VOUT -44mV 10.0V/div 50mV/div 100mA/div 50.0ms/div C1: VIN C2: VOUT (ac) C4: IOUT Figure 30. Load Transient − NCV8730−15.0 V, COUT = 22 mF 10.0V/div 20mV/div 100mA/div 100.0ms/div Figure 31. Load Transient − NCV8730−15.0 V, COUT = 50 mF I OUT = 1 mA C OUT = 1 μF 5.3 V VIN 4.3 V C1: VIN C2: VOUT (ac) +2 mV VIN +7mV VOUT 3.3 V 3.3V -3 mV -6 mV 5 0.0 μs/div 2.0 V/div 5 mV/div C1: VIN C2: VOUT (ac) Figure 32. Line Transient − NCP730−3.3 V 8.3 V 5.3 V 4.3 V +9.5 mV +3.5 mV -2.5 mV I OUT = 100mA C OUT = 1 μF 9.3 V -8mV 10.0 μs/div 2.0 V/div 10 mV/div Figure 33. Line Transient − NCP730−3.3 V 9.3 V 8.3 V VIN VIN I OUT = 100mA C OUT = 1 μF I OUT = 1 mA C OUT = 1 μF +1 mV -1 mV C1: VIN C2: VOUT (ac) +1 mV 3.3 V +2 mV +2 mV V OUT 50.0 μs/div C1: VIN C2: VOUT (ac) Figure 34. Line Transient − NCP730−3.3 V 3.3 V 2.0 V/div 10 mV/div 10.0 μs/div Figure 35. Line Transient − NCP730−3.3 V www.onsemi.com 10 VOUT -2 mV -2 mV -1 mV 2.0 V/div 5 mV/div VOUT NCV8730 TYPICAL CHARACTERISTICS VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, COUT = 1.0 mF, ADJ tied to OUT, TJ = 25°C, unless otherwise specified I OUT = 1 mA C OUT = 47 μF 5.3 V 4.3 V VIN +0.2 mV +0.2 mV -0.2 mV C1: V IN C2: VOUT (ac) 5.3 V 4.3 V +0.6 mV 3.3 V -0.2 mV -0.5 mV 200.0 μs/div 2.0 V/div 1 mV/div C1: VIN C2: VOUT (ac) Figure 36. Line Transient − NCP730−3.3 V -0.7 mV 50.0 μs/div 2.0 V/div 1 mV/div 9.3 V 8.3 V VIN VIN I OUT= 1 mA C OUT = 47μF +0.2 mV +0.1 mV -0.1 mV C1: VIN C2: VOUT (ac) I OUT = 100mA C OUT = 47 μF -0.1 mV 20 0.0 μs/div C1: VIN C2: VOUT (ac) Figure 38. Line Transient − NCP730−3.3 V 50.0 μs/div 2.0 V/div 1 mV/div VIN = 38 V 0 V Shorted => 0 V C1: VIN C2: VOUT C3: VOUT VOUT Figure 39. Line Transient − NCP730−3.3 V VIN = 38 V
NCV8730ASN500T1G 价格&库存

很抱歉,暂时无法提供与“NCV8730ASN500T1G”相匹配的价格&库存,您可以联系我们找货

免费人工找货