DATA SHEET
www.onsemi.com
LDO Regulator, 150 mA,
38V, 1 mA IQ, with PG
MARKING DIAGRAMS
5
NCV8730
1
XXX = Specific Device Code
A
= Assembly Location
Y
= Year
W = Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
WDFNW6 (2x2)
CASE 511DW
MTW SUFFIX
1
XX M
XX = Specific Device Code
M = Date Code
Features
PIN ASSIGNMENTS
• Operating Input Voltage Range: 2.7 V to 38 V
• Output Voltage:
TSOP−5
1.2 V to 24 V (FIX)
♦ 1.2 V to 37 V (ADJ)
Capable of Sourcing 200 mA Peak Output Current
Very Low Quiescent Current: 1 mA typ.
Low Dropout: 290 mV typ. at 150 mA, 3.3 V Version
Output Voltage Accuracy ±1%
Power Good Circuit (Version B)
Stable with Small 1 mF Ceramic Capacitors
Built−in Soft Start Circuit to Suppress Inrush Current
Over−Current and Thermal Shutdown Protections
Available in Small TSOP−5 and WDFNW6 (2x2) Packages
NCV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
These Devices are Pb−Free and are RoHS Compliant
♦
•
XXXAYWG
G
1
The NCV8730 device is based on unique combination of features −
very low quiescent current, fast transient response and high input and
output voltage ranges. The NCV8730 is CMOS LDO regulator
designed for up to 38 V input voltage and 150 mA output current.
Quiescent current of only 1 mA makes this device ideal solution for
battery− powered, always−on systems. Several fixed output voltage
versions are available as well as the adjustable version.
The device (version B) implements power good circuit (PG) which
indicates that output voltage is in regulation. This signal could be used
for power sequencing or as a microcontroller reset.
Internal short circuit and over temperature protections saves the
device against overload conditions.
•
•
•
•
•
•
•
•
•
•
5
TSOP−5
CASE 483
SN SUFFIX
IN
1
GND
2
EN
3
5
OUT
4
NC/ADJ/PG
CASE 483
WDFNW6 (2x2)
6 IN
OUT 1
NC/ADJ 2
GND 3
EP
5 NC/PG
4 EN
CASE511DW
(Top Views)
ORDERING INFORMATION
See detailed ordering and shipping information on page 29 of
this data sheet.
Typical Applications
•
•
•
•
Body Control Modules
LED Lighting
On Board Charger
General Purpose Automotive
© Semiconductor Components Industries, LLC, 2019
July, 2022 − Rev. 5
1
Publication Order Number:
NCV8730/D
NCV8730
TYPICAL APPLICATION SCHEMATICS
VIN=6−38V
IN
C IN
1mF
ON
COUT
1mF
NCV8730A 5.0V
TSOP−5 / WDFN−6
EN
OFF
GND
VIN=6−38V
VOUT=5.0V
OUT
C IN
1mF
IN
C IN
1mF
GND
ADJ
GND
R1
2M4
COUT
1mF
R PG
100k
1.2V
R2
750k
IN
C IN
1mF
ON
PG
C OUT
1mF
C FF
1nF
Figure 2. Adjustable Output Voltage Application (No PG)
VIN=6−38V
VOUT=5.0V
NC
EN
NCV8730A ADJ
TSOP−5 / WDFN−6
OFF
NCV8730B 5.0V
TSOP−5 / WDFN−6
OFF
VOUT=5V
OUT
EN
OUT
ON
ON
NC
Figure 1. Fixed Output Voltage Application (No PG)
VIN=6−38V
IN
NCV8730B ADJ
Only WDFN−6
1.2V
ADJ
EN
PG
VOUT=5V
OUT
GND
PG
OFF
R1
2M4
C FF
1nF
R2
750k
COUT
1mF
R PG
100k
PG
Figure 3. Fixed Output Voltage Application with PG
Figure 4. Adjustable Output Voltage Application with PG
ǒ
V OUT + V ADJ @ 1 )
Ǔ
R1
) I ADJ @ R 1
R2
SIMPLIFIED BLOCK DIAGRAM
IN
Current limit
OUT
UVLO Comparator
UVLO
IEN−PU = 300nA
1.95 V
V CCEN
V−REFERENCE
AND SOFT−START
V REF
1.2V
EA
RADJ1
V FB =1.2V
EN
ADJ
Enable
RADJ2
EN Comparator
GND
THERMAL
SHUTDOWN
0.9 V
PG Comparator
DEGLITCH
DELAY TMR
93% of VREF
Note:Blue objects are valid for ADJ version
Green objects are valid for FIX version
Brown objects are valid for B version (with PG)
Figure 5. Internal Block Diagram
www.onsemi.com
2
PG
NC
NCV8730
PIN DESCRIPTION − TSOP−5 package
Pin No.
Pin Name
1
IN
2
GND
3
EN
4
ADJ/PG/NC
5
OUT
Description
Power supply input pin.
Ground pin.
Enable input pin (high − enabled, low − disabled). If this pin is connected to IN pin or if it is left unconnected (pull−up resistor is not required) the device is enabled.
ADJ (ADJ device version only):
• Adjust input pin. Could be connected to the output resistor divider or to the output pin directly.
PG (FIX device versions with PG functionality):
• Power good output pin. High level for power ok, low level for fail. If not used, could be left
unconnected or shorted to GND.
NC (FIX device versions without PG functionality):
• Not internally connected. This pin can be tied to the ground plane to improve thermal dissipation.
Output pin.
PIN DESCRIPTION − WDFN−6 package
Pin No.
Pin Name
1
OUT
2
NC/ADJ
3
GND
4
EN
5
NC/PG
6
IN
EP
EPAD
Description
Output pin.
ADJ (ADJ device version only):
• Adjust input pin. Could be connected to the output resistor divider or to the output pin directly.
NC (all FIX device versions):
• Not internally connected. This pin can be tied to the ground plane to improve thermal dissipation.
Ground pin.
Enable input pin (high − enabled, low − disabled). If this pin is connected to IN pin or if it is left
unconnected (pull−up resistor is not required) the device is enabled.
PG (ADJ/FIX device versions with PG functionality):
• Power good output pin. High level for power ok, low level for fail. If not used, could be left
unconnected or shorted to GND.
NC (ADJ/FIX device versions without PG functionality):
• Not internally connected. This pin can be tied to the ground plane to improve thermal dissipation.
Power supply input pin.
Exposed pad pin. Should be connected to the GND plane.
www.onsemi.com
3
NCV8730
MAXIMUM RATINGS
Rating
VIN Voltage (Note 1)
Symbol
Value
Unit
VIN
−0.3 to 40
V
VOUT Voltage
VOUT
EN Voltage
VEN
−0.3 to (VIN + 0.3)
V
ADJ Voltage
VFB/ADJ
−0.3 to 5.5
V
PG Voltage
VPG
−0.3 to (VIN + 0.3)
V
Output Current
IOUT
Internally limited
mA
PG Current
IPG
3
mA
TJ(MAX)
150
°C
TSTG
−55 to 150
°C
ESD Capability, Human Body Model (Note 2)
ESDHBM
2000
V
ESD Capability, Charged Device Model (Note 2)
ESDCDM
1000
V
Maximum Junction Temperature
Storage Temperature
ADJ version & FIX versions VOUT−NOM > 5.0 V:
−0.3 to [(VIN + 0.3) or 40 V; whichever is lower]
FIX versions VOUT−NOM ≤ 5.0 V:
−0.3 to [(VIN + 0.3) or 6.0 V; whichever is lower]
V
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.
2. This device series incorporates ESD protection and is tested by the following methods:
ESD Human Body Model tested per ANSI/ESDA/JEDEC JS−001, EIA/JESD22−A114 (AEC−Q100−002)
ESD Charged Device Model tested per ANSI/ESDA/JEDEC JS−002, EIA/JESD22−C101 (AEC Q100−011D)
THERMAL CHARACTERISTICS (Note 3)
Symbol
WDFNW6 2x2
TSOP−5
Unit
Thermal Resistance, Junction−to−Air
RthJA
61
142
°C/W
Thermal Resistance, Junction−to−Case (top)
RthJCt
200
80
°C/W
Thermal Resistance, Junction−to−Case (bottom)
RthJCb
14
N/A
°C/W
Thermal Resistance, Junction−to−Board (top)
RthJBt
46
110
°C/W
Thermal Characterization Parameter, Junction−to−Case (top)
PsiJCt
3
21
°C/W
Thermal Characterization Parameter, Junction−to−Board [FEM]
PsiJB
46
113
°C/W
Characteristic
3. Measured according to JEDEC board specification (board 1S2P, Cu
of the board can be found in JESD51−7.
layer thickness 1 oz, Cu area 650 mm2,
no airflow). Detailed description
ELECTRICAL CHARACTERISTICS (VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, CIN = COUT = 1.0 mF
(effective capacitance – Note 4), TJ = −40°C to 125°C, ADJ tied to OUT, unless otherwise specified) (Note 5)
Test Conditions
Parameter
Recommended Input Voltage
Output Voltage Accuracy
TJ = 25°C
Symbol
Min
Typ
Max
Unit
VIN
2.7
−
38
V
VOUT
−1
−
1
%
−1
−
2
ADJ Reference Voltage
TJ = −40°C to +125°C
ADJ version only
VADJ
−
1.2
−
V
ADJ Input Current
VADJ = 1.2 V
IADJ
−0.1
0.01
0.1
mA
Line Regulation
VIN = VOUT−NOM + 1 V to 38 V and VIN ≥ 2.7 V
DVO(DVI)
−
−
0.2
%VOUT
Load Regulation
IOUT = 0.1 mA to 150 mA
DVO(DIO)
−
−
0.4
%VOUT
Quiescent Current (version A)
VIN = VOUT−NOM + 1 V to 38 V, IOUT = 0 mA
IQ
−
1.3
2.5
mA
Quiescent Current (version B)
VIN = VOUT−NOM + 1 V to 38 V, IOUT = 0 mA
−
1.8
3.0
Ground Current
IOUT = 150 mA
IGND
−
325
450
mA
Shutdown Current (Note 9)
VEN = 0 V, IOUT = 0 mA, VIN = 38 V
ISHDN
−
0.35
1.5
mA
Output Current Limit
VOUT = VOUT−NOM − 100 mV
IOLIM
200
280
450
mA
www.onsemi.com
4
NCV8730
ELECTRICAL CHARACTERISTICS (VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, CIN = COUT = 1.0 mF
(effective capacitance – Note 4), TJ = −40°C to 125°C, ADJ tied to OUT, unless otherwise specified) (Note 5) (continued)
Symbol
Min
Typ
Max
Unit
Short Circuit Current
Parameter
VOUT = 0 V
IOSC
200
280
450
mA
Dropout Voltage (Note 6)
IOUT = 150 mA
VDO
−
290
480
mV
PSRR
−
80
−
dB
10 kHz
−
70
−
100 kHz
−
42
−
−
48
−
−
195
−
FIX−5.0 V
−
240
−
FIX−15.0 V
−
460
−
ADJ set to 5.0 V
CFF = 100 pF
−
132
−
ADJ set to 5.0 V
CFF = 10 nF
−
82
−
Power Supply Ripple Rejection
Test Conditions
VIN = VOUT−NOM + 2 V
IOUT = 10 mA
10 Hz
1 MHz
Output Voltage Noise
f = 10 Hz to 100 kHz
FIX−3.3 V
VN
mVRMS
EN Threshold
VEN rising
VEN−TH
0.7
0.9
1.05
V
EN Hysteresis
VEN falling
VEN−HY
0.01
0.1
0.2
V
EN Internal Pull−up Current
VEN = 1 V, VIN = 5.5 V
IEN−PU
0.01
0.3
1.0
mA
EN Input Leakage Current
VEN = 30 V, VIN = 30 V
IEN−LK
−1.0
0.05
1.0
mA
Start−up time (Note 7)
VOUT−NOM ≤ 3.3 V
tSTART
100
250
500
ms
300
600
1000
VOUT−NOM > 3.3 V
Internal UVLO Threshold
Ramp VIN up until output is turned on
VIUL−TH
1.6
1.95
2.6
V
Internal UVLO Hysteresis
Ramp VIN down until output is turned off
VIUL−HY
0.05
0.2
0.3
V
PG Threshold (Note 8)
VOUT falling
VPG−TH
90
93
96
%
PG Hysteresis (Note 8)
VOUT rising
VPG−HY
0.1
2.5
4.0
%
PG Deglitch Time (Note 8)
tPG−DG
75
160
270
ms
PG Delay Time (Note 8)
tPG−DLY
120
320
600
ms
PG Output Low Level Voltage (Note 8) IPG = 1 mA
VPG−OL
−
0.2
0.4
V
PG Output Leakage Current (Note 8)
VPG = 30 V
IPG−LK
−
0.01
1.0
mA
Thermal Shutdown Temperature
Temperature rising from TJ = +25°C
TSD
−
165
−
°C
Thermal Shutdown Hysteresis
Temperature falling from TSD
TSDH
−
20
−
°C
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. Effective capacitance, including the effect of DC bias, tolerance and temperature. See the Application Information section for more
information.
5. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at TA = 25°C.
Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible.
6. Dropout measured when the output voltage falls 100 mV below the nominal output voltage. Limits are valid for all voltage versions with
nominal output voltage higher than or equal to 2.5 V. For lower output voltage versions the dropout test is not applied because the input voltage
during the test would fall below the minimum input voltage 2.7 V.
7. Startup time is the time from EN assertion to point when output voltage is equal to 95% of VOUT−NOM.
8. Applicable only to version B (device option with power good output). PG threshold and PG hysteresis are expressed in percentage of nominal
output voltage.
9. Shutdown current includes EN Internal Pull−up Current.
www.onsemi.com
5
NCV8730
TYPICAL CHARACTERISTICS
VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, COUT = 1.0 mF, ADJ tied to OUT, TJ = 25°C, unless otherwise specified
2.0%
VIN = (VOUT-NOM + 1 V) to 38 V, VIN ≥ 2.7 V
I OUT = 1 to 150 mA
OUTPUT VOLTAGE, V
OUT
(V)
1.5%
High limit
1.0%
VOUT-NOM = 15 V
0.5%
VOUT-NOM = 5 V
0.0%
VOUT-NOM = 1.2 V
-0.5%
Low limit
-1.0%
-1.5%
-2.0%
-40
-20
0
20
40
60
80
120
100
JUNCTION TEMPERATURE, T J ( °C)
Figure 6. Output Voltage vs. Temperature
Figure 7. Ground Current vs. Load
(NCP730−5.0V, Version−B)
Figure 8. Quiescent Current vs. Temperature
(Version−A)
Figure 9. Quiescent Current vs. Temperature
(Version−B)
1.6
1.10
SHUTDOWN CURRENT, I SHDN ( μA)
1.4
ENABLE THRESHOLD VOLTAGE, VEN -TH (V)
High limit
Note:
Shutdown current is measured at IN pin
and includes EN pin pull-up current.
1.2
1.0
0.8
0.6
0.4
VIN = 38 V
VEN = 0 V
0.2
0.0
-40
-20
0
20
40
60
80
100
1.05
High limit
1.00
0.95
0.90
0.85
0.80
0.75
Low limit
0.70
0.65
0.60
-40
120
JUNCTION TEMPERATURE, T J ( °C)
-20
0
20
40
60
80
100
JUNCTION TEMPERATURE, TJ (°C)
Figure 10. Shutdown Current vs. Temperature
Figure 11. Enable Threshold Voltage vs.
Temperature
www.onsemi.com
6
120
NCV8730
TYPICAL CHARACTERISTICS
VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, COUT = 1.0 mF, ADJ tied to OUT, TJ = 25°C, unless otherwise specified
0.10
1.4
1.2
ADJ INPUT CURRENT, I ADJ (μA)
ENABLE PULL-UP CURRENT, I EN-PU ( μA)
1.6
High limit
1.0
0.8
0.6
0.4
0.2
High limit
0.08
0.06
0.04
0.02
VEN = 1 V
0.0
-40
-20
0
20
40
60
80
0.00
-40
120
100
TEMPERATURE (°C)
-20
0
20
40
60
80
100
120
TEMPERATURE (°C)
Figure 12. Enable Internal Pull−Up Current vs.
Temperature
Figure 13. ADJ Input Current vs. Temperature
500
High limit
450
DROPOUT VOLTAGE, V DROP (mV)
400
350
VOUT = VOUT-NOM - 100 mV
IOUT = 150 mA
All output voltage versions
300
250
200
150
100
50
0
-40
-20
0
20
40
60
80
100
120
JUNCTION TEMPERATURE, TJ ( °C)
Figure 14. Dropout Voltage vs. Temperature
Figure 15. NCV8730ASN330 − Dropout Voltage
Figure 16. NCV8730BMT500 − Dropout Voltage
Figure 17. NCV8730BMT500 − Dropout Voltage
www.onsemi.com
7
NCV8730
TYPICAL CHARACTERISTICS
VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, COUT = 1.0 mF, ADJ tied to OUT, TJ = 25°C, unless otherwise specified
4.3V
VIN
VIN
8.3V
150mA
150mA
1mA
IOUT
1mA
VOUT
3.3V
IOUT
+55mV
+58mV
3.3V
-115mV
-120mV
C1: VIN
C2: VOUT (ac)
C4: IOUT
VOUT
1.0V/div
50mV/div
100mA/div
20.0ms/div
C1: VIN
C2: VOUT (ac)
C4: IOUT
Figure 18. Load Transient − NCV8730−3.3 V,
COUT = 1 mF
20.0ms/div
Figure 19. Load Transient − NCV8730−3.3 V,
COUT = 1 mF
VIN
38.0V
2.0V/div
50mV/div
100mA/div
VIN
4.3V
150mA
150mA
1mA
IOUT
1mA
VOUT
3.3V
IOUT
+58mV
+37mV
3.3V
VOUT
-60mV
-120mV
C1: VIN
C2: VOUT (ac)
C4: IOUT
10.0V/div
50mV/div
100mA/div
20.0ms/div
C1: VIN
C2: VOUT (ac)
C4: IOUT
1.0V/div
50mV/div
100mA/div
50.0ms/div
Figure 21. Load Transient − NCV8730−3.3 V,
COUT = 10 mF
Figure 20. Load Transient − NCV8730−3.3 V,
COUT = 1 mF
VIN
4.3V
150mA
VIN
6.0V
150mA
IOUT
1mA
1mA
+55mV
+30mV
3.3V
IOUT
VOUT
VOUT
5.0V
-50mV
-115mV
C1: VIN
C2: VOUT (ac)
C4: IOUT
1.0V/div
50mV/div
100mA/div
50.0ms/div
C1: VIN
C2: VOUT (ac)
C4: IOUT
Figure 22. Load Transient − NCV8730−3.3 V,
COUT = 22 mF
5.0V/div
50mV/div
100mA/div
20.0ms/div
Figure 23. Load Transient − NCV8730−5.0 V,
COUT = 1 mF
www.onsemi.com
8
NCV8730
TYPICAL CHARACTERISTICS
VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, COUT = 1.0 mF, ADJ tied to OUT, TJ = 25°C, unless otherwise specified
VIN
38.0V
VIN
6.0V
150mA
150mA
1mA
IOUT
1mA
VOUT
5.0V
IOUT
+48mV
5.0V
+36mV
VOUT
-60mV
-112mV
C1: VIN
C2: VOUT (ac)
C4: IOUT
10.0V/div
50mV/div
100mA/div
20.0ms/div
C1: VIN
C2: VOUT (ac)
C4: IOUT
Figure 24. Load Transient − NCV8730−5.0 V,
COUT = 1 mF
VIN
15.5V
150mA
150mA
1mA
IOUT
1mA
VOUT
15.0V
IOUT
+34mV
5.0V
-53mV
C1: VIN
C2: VOUT (ac)
C4: IOUT
50.0ms/div
Figure 25. Load Transient − NCV8730−5.0 V,
COUT = 10 mF
VIN
6.0V
5.0V/div
50mV/div
100mA/div
+55mV
VOUT
-120mV
5.0V/div
50mV/div
100mA/div
50.0ms/div
C1: VIN
C2: VOUT (ac)
C4: IOUT
Figure 26. Load Transient − NCV8730−5.0 V,
COUT = 22 mF
10.0V/div
100mV/div
100mA/div
20.0ms/div
Figure 27. Load Transient − NCV8730−15.0 V,
COUT = 1 mF
VIN
38.0V
VIN
15.5V
150mA
150mA
1mA
1mA
VOUT
15.0V
IOUT
+40mV
+50mV
15.0V
IOUT
VOUT
-110mV
-105mV
C1: VIN
C2: VOUT (ac)
C4: IOUT
10.0V/div
100mV/div
100mA/div
20.0ms/div
C1: VIN
C2: VOUT (ac)
C4: IOUT
Figure 28. Load Transient − NCV8730−15.0 V,
COUT = 1 mF
10.0V/div
50mV/div
100mA/div
50.0ms/div
Figure 29. Load Transient − NCV8730−15.0 V,
COUT = 10 mF
www.onsemi.com
9
NCV8730
TYPICAL CHARACTERISTICS
VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, COUT = 1.0 mF, ADJ tied to OUT, TJ = 25°C, unless otherwise specified
VIN
15.5V
VIN
15.5V
150mA
150mA
1mA
IOUT
1mA
VOUT
15.0V
IOUT
+45mV
+16mV
15.0V
-98mV
C1: VIN
C2: VOUT (ac)
C4: IOUT
VOUT
-44mV
10.0V/div
50mV/div
100mA/div
50.0ms/div
C1: VIN
C2: VOUT (ac)
C4: IOUT
Figure 30. Load Transient − NCV8730−15.0 V,
COUT = 22 mF
10.0V/div
20mV/div
100mA/div
100.0ms/div
Figure 31. Load Transient − NCV8730−15.0 V,
COUT = 50 mF
I OUT = 1 mA
C OUT = 1 μF
5.3 V
VIN
4.3 V
C1: VIN
C2: VOUT (ac)
+2 mV
VIN
+7mV
VOUT
3.3 V
3.3V
-3 mV
-6 mV
5 0.0 μs/div
2.0 V/div
5 mV/div
C1: VIN
C2: VOUT (ac)
Figure 32. Line Transient − NCP730−3.3 V
8.3 V
5.3 V
4.3 V
+9.5 mV
+3.5 mV
-2.5 mV
I OUT = 100mA
C OUT = 1 μF
9.3 V
-8mV
10.0 μs/div
2.0 V/div
10 mV/div
Figure 33. Line Transient − NCP730−3.3 V
9.3 V
8.3 V
VIN
VIN
I OUT = 100mA
C OUT = 1 μF
I OUT = 1 mA
C OUT = 1 μF
+1 mV
-1 mV
C1: VIN
C2: VOUT (ac)
+1 mV
3.3 V
+2 mV
+2 mV
V OUT
50.0 μs/div
C1: VIN
C2: VOUT (ac)
Figure 34. Line Transient − NCP730−3.3 V
3.3 V
2.0 V/div
10 mV/div
10.0 μs/div
Figure 35. Line Transient − NCP730−3.3 V
www.onsemi.com
10
VOUT
-2 mV
-2 mV
-1 mV
2.0 V/div
5 mV/div
VOUT
NCV8730
TYPICAL CHARACTERISTICS
VIN = VOUT−NOM + 1 V and VIN ≥ 2.7 V, VEN = 1.2 V, IOUT = 1 mA, COUT = 1.0 mF, ADJ tied to OUT, TJ = 25°C, unless otherwise specified
I OUT = 1 mA
C OUT = 47 μF
5.3 V
4.3 V
VIN
+0.2 mV
+0.2 mV
-0.2 mV
C1: V IN
C2: VOUT (ac)
5.3 V
4.3 V
+0.6 mV
3.3 V
-0.2 mV
-0.5 mV
200.0 μs/div
2.0 V/div
1 mV/div
C1: VIN
C2: VOUT (ac)
Figure 36. Line Transient − NCP730−3.3 V
-0.7 mV
50.0 μs/div
2.0 V/div
1 mV/div
9.3 V
8.3 V
VIN
VIN
I OUT= 1 mA
C OUT = 47μF
+0.2 mV
+0.1 mV
-0.1 mV
C1: VIN
C2: VOUT (ac)
I OUT = 100mA
C OUT = 47 μF
-0.1 mV
20 0.0 μs/div
C1: VIN
C2: VOUT (ac)
Figure 38. Line Transient − NCP730−3.3 V
50.0 μs/div
2.0 V/div
1 mV/div
VIN = 38 V 0 V
Shorted => 0 V
C1: VIN
C2: VOUT
C3: VOUT
VOUT
Figure 39. Line Transient − NCP730−3.3 V
VIN = 38 V