0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NE592N14

NE592N14

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    DIP-14

  • 描述:

    IC AMP VIDEO 2STAGE DIFF 14-DIP

  • 数据手册
  • 价格&库存
NE592N14 数据手册
NE592 Video Amplifier The NE592 is a monolithic, two-stage, differential output, wideband video amplifier. It offers fixed gains of 100 and 400 without external components and adjustable gains from 400 to 0 with one external resistor. The input stage has been designed so that with the addition of a few external reactive elements between the gain select terminals, the circuit can function as a high-pass, low-pass, or band-pass filter. This feature makes the circuit ideal for use as a video or pulse amplifier in communications, magnetic memories, display, video recorder systems, and floppy disk head amplifiers. Now available in an 8-pin version with fixed gain of 400 without external components and adjustable gain from 400 to 0 with one external resistor. www.onsemi.com MARKING DIAGRAMS 8 1 SOIC−8 D SUFFIX CASE 751 NE592 ALYW G Features • • • • • • • 1 120 MHz Unity Gain Bandwidth Adjustable Gains from 0 to 400 Adjustable Pass Band No Frequency Compensation Required Wave Shaping with Minimal External Components MIL-STD Processing Available These Devices are Pb−Free and are RoHS Compliant 14 1 NE592D14G AWLYWW 1 A L, WL Y W, WW G or G Applications • • • • • SOIC−14 D SUFFIX CASE 751A Floppy Disk Head Amplifier Video Amplifier Pulse Amplifier in Communications Magnetic Memory Video Recorder Systems = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet. +V R1 R2 R8 R10 R9 Q6 Q5 Q4 Q3 OUTPUT 1 R11 INPUT 1 INPUT 2 Q1 Q2 G1A R12 G1B R3 OUTPUT 2 R5 G2A G2B Q7B Q8 Q9 Q10 Q11 Q7A R7A R7B R15 R16 R13 R14 ‐V Figure 1. Block Diagram © Semiconductor Components Industries, LLC, 2016 March, 2016 − Rev. 5 1 Publication Order Number: NE592/D NE592 PIN CONNECTIONS SOIC-14 INPUT 2 NC 1 SOIC-8 14 2 13 INPUT 2 1 8 INPUT 1 G1B GAIN SELECT INPUT 1 NC G2B GAIN SELECT 3 12 G2A GAIN SELECT G1B GAIN SELECT 4 11 G1A GAIN SELECT V‐ 5 10 V+ NC 6 9 NC OUTPUT 2 7 8 OUTPUT 1 2 7 G1A GAIN SELECT V‐ 3 6 V+ 4 5 OUTPUT 1 OUTPUT 2 (Top View) (Top View) MAXIMUM RATINGS (TA = +25°C, unless otherwise noted.) Symbol Value Unit Supply Voltage Rating VCC "8.0 V Differential Input Voltage VIN "5.0 V Common-Mode Input Voltage VCM "6.0 V Output Current IOUT 10 mA Operating Ambient Temperature Range TA 0 to +70 °C Operating Junction Temperature TJ 150 °C TSTG 65 to +150 °C Storage Temperature Range Maximum Power Dissipation, TA = 25°C (Still Air) (Note 1) PD MAX SOIC-14 Package SOIC-8 Package Thermal Resistance, Junction−to−Ambient SOIC-14 Package SOIC-8 Package W 0.98 0.79 RqJA °C/W 145 182 Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Derate above 25°C at the following rates: SOIC-14 package at 6.9 mW/°C SOIC-8 package at 5.5 mW/°C www.onsemi.com 2 NE592 DC ELECTRICAL CHARACTERISTICS (VSS = "6.0 V, VCM = 0, typicals at TA = +25°C, min and max at 0°C v TA v 70°C, unless otherwise noted. Recommended operating supply voltages VS = "6.0 V.) Characteristic Differential Voltage Gain Gain 1 (Note 2) Gain 2 (Notes 3 and 4) Input Resistance Gain 1 (Note 2) Gain 2 (Notes 3 and 4) Input Capacitance Test Conditions Symbol Min Typ Max 250 80 400 100 600 120 − 10 8.0 4.0 30 − − − − AVOL RL = 2.0 kW, VOUT = 3.0 VP-P Unit V/V RIN − TA = 25°C 0°C v TA v 70°C kW Gain 2 (Note 4) CIN − 2.0 − pF Input Offset Current TA = 25°C 0°C v TA v 70°C IOS − − 0.4 − 5.0 6.0 mA Input Bias Current TA = 25°C 0°C v TA v 70°C IBIAS − − 9.0 − 30 40 mA Input Noise Voltage BW 1.0 kHz to 10 MHz VNOISE − 12 − mVRMS Input Voltage Range − VIN "1.0 − − V VCM "1.0 V, f < 100 kHz, TA = 25°C VCM "1.0 V, f < 100 kHz, 0°C v TA v 70°C VCM "1.0 V, f < 5.0 MHz CMRR 60 50 86 − − − dB − 60 − DVS = "0.5 V PSRR 50 70 − − − − − − − 0.35 − 1.5 1.5 0.75 1.0 Common-Mode Rejection Ratio Gain 2 (Note 4) Supply Voltage Rejection Ratio Gain 2 (Note 4) Output Offset Voltage Gain 1 Gain 2 (Note 4) Gain 3 (Note 5) Gain 3 (Note 5) Output Common-Mode Voltage Output Voltage Swing Differential RL = R RL = R RL = R, TA = 25°C RL = R, 0°C v TA v 70°C VOS V RL = R, TA = 25°C VCM 2.4 2.9 3.4 V RL = 2.0 kW, TA = 25°C RL = 2.0 kW, 0°C v TA v 70°C VOUT 3.0 2.8 4.0 − − − V − ROUT − 20 − W RL = R, TA = 25°C RL = R, 0°C v TA v 70°C ICC − − 18 − 24 27 mA Output Resistance Power Supply Current dB Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. AC ELECTRICAL CHARACTERISTICS (TA = +25°C VSS = "6.0 V, VCM = 0, unless otherwise noted. Recommended operating supply voltages VS = "6.0 V.) Characteristic Test Conditions Symbol − BW Bandwidth Gain 1 (Note 2) Gain 2 (Notes 3 and 4) Rise Time Gain 1 (Note 2) Gain 2 (Notes 3 and 4) VOUT = 1.0 VP−P Propagation Delay Gain 1 (Note 2) Gain 2 (Notes 3 and 4) VOUT = 1.0 VP−P 2. 3. 4. 5. Min Typ Max − − 40 90 − − − − 10.5 4.5 12 − − − 7.5 6.0 10 − MHz tR ns tPD Gain select Pins G1A and G1B connected together. Gain select Pins G2A and G2B connected together. Applies to 14-pin version only. All gain select pins open. www.onsemi.com 3 Unit ns NE592 100 7.0 GAIN 2 VS = +6V TA = 25oC 90 80 OUTPUT VOLTAGE SWING − Vpp 70 60 50 40 30 20 10 0 10k 1.6 VS = +6V TA = 25oC RL = 1kW 6.0 5.0 0.8 1M 10M 0.4 0 1.0 -0.2 1 5 10 50 100 -0.4 -15 -10 -5 500 1000 Figure 4. Pulse Response 1.6 GAIN 2 TA = 25oC RL = 1kW 12 8 3 4 5 6 7 8 VS = +6V 0.8 VS = +3V 0.6 0.4 0.2 1.06 1.04 1.02 1.00 GAIN 2 0.98 0.96 0.94 GAIN 1 0.92 0.90 10 20 30 40 50 60 70 TEMPERATURE − oC Figure 8. Voltage Gain as a Function of Temperature TA = 25oC 0.6 0.4 TA = 70oC 0.2 0 -0.4 0 -15 -10 -5 5 10 15 20 25 30 35 TIME − ns 0 5 10 15 20 25 30 35 TIME − ns Figure 6. Pulse Response as a Function of Supply Voltage Figure 7. Pulse Response as a Function of Temperature 1.4 60 GAIN 2 VS = +6V RL = 1kW 50 40 30 TA = −55oC 20 TA = 25oC 10 TA = 125oC 0 Tamb = 25oC 1.3 1.2 1.1 GAIN 2 1.0 0.9 0.8 GAIN 1 0.7 0.6 0.5 0.4 -10 0 Tamb = 0oC 0.8 -0.2 SINGLE ENDED VOLTAGE GAIN − dB VS = +6V 1.0 0 Figure 5. Supply Current as a Function of Temperature 1.08 1.2 -0.2 SUPPLY VOLTAGE − +V 1.10 VS = +8V 1.0 -0.4 -15 -10 -5 GAIN 2 VS = +6V RL = 1kW 1.4 OUTPUT VOLTAGE − V OUTPUT VOLTAGE − V 16 10 15 20 25 30 35 Figure 3. Output Voltage Swing as a Function of Frequency 1.2 20 5 TIME − ns 1.4 24 0 FREQUENCY − MHz 1.6 TA = 25oC GAIN 1 0.2 2.0 100M 28 GAIN 2 0.6 3.0 Figure 2. Common−Mode Rejection Ratio as a Function of Frequency SUPPLY CURRENT − mA 1.0 4.0 FREQUENCY − Hz RELATIVE VOLTAGE GAIN 1.2 0 100k VS = +6V TA = 25oC RL = 1k 1.4 RELATIVE VOLTAGE GAIN COMMON-MODE REJECTION RATIO − dB TYPICAL PERFORMANCE CHARACTERISTICS 1 5 10 50 100 500 1000 FREQUENCY − MHz Figure 9. Gain vs. Frequency as a Function of Temperature www.onsemi.com 4 3 4 5 6 7 8 SUPPLY VOLTAGE − +V Figure 10. Voltage Gain as a Function of Supply Voltage NE592 1000 60 0.2mF GAIN 2 TA = 25oC RL = 1kW 50 DIFFERENTIAL VOLTAGE GAIN − V/V SINGLE ENDED VOLTAGE GAIN − dB TYPICAL PERFORMANCE CHARACTERISTICS 14 40 12 1 3 30 11 8 592 4 0.2mF 7 VS = +8V 20 51W VS = +6V 10 0 51W VS = +3V 5 10 1kW 1kW VS = +6V TA = 25oC -10 1 RADJ 50 100 VS = +6V f = 100kHz TA = 25oC FIGURE 2 100 10 1 .1 .01 1 500 1000 10 Figure 11. Gain vs. Frequency as a Function of Supply Voltage VS = +6V 19 18 17 16 15 -20 20 60 50 40 30 20 10 100 140 5.0 VOLTAGE 4.0 3.0 CURRENT 2.0 1.0 3.0 4.0 3.0 2.0 60 50 40 30 20 1.0 10 0 0 5K 10K Figure 17. Output Voltage Swing as a Function of Load Resistance 8.0 100 GAIN 2 VS = +6V INPUT NOISE VOLTAGE −μ Vrms 5.0 4.0 5.0 6.0 7.0 SUPPLY VOLTAGE − +V Figure 16. Output Voltage and Current Swing as a Function of Supply Voltage 70 VS = +6V TA = 25oC INPUT RESISTANCE − KΩ OUTPUT VOLTAGE SWING − Vpp 20 40 60 80 100 120 140 160 180 200 Figure 15. Differential Overdrive Recovery Time 7.0 50 100 500 1K LOAD RESISTANCE − W TA = 25oC 6.0 DIFFERENTIAL INPUT VOLTAGE − mV Figure 14. Supply Current as a Function of Temperature 10 1M 0 0 TEMPERATURE − oC 6.0 10K 100K 7.0 VS = +6V TA = 25oC GAIN 2 60 0 14 -60 1K Figure 13. Voltage Gain as a Function of RADJ (Figure 2) OUTPUT VOLTAGE SWING − V OR OUTPUT SINK CURRENT − mA OVERDRIVE RECOVERY TIME − ns SUPPLY CURRENT − mA Figure 12. Voltage Gain Adjust Circuit 70 21 20 100 RADJ − W FREQUENCY − MHz GAIN 2 VS = +6V TA = 25oC BW = 10MHz 90 80 70 60 50 40 30 20 10 0 -60 -20 0 20 60 100 TEMPERATURE − oC 140 Figure 18. Input Resistance as a Function of Temperature www.onsemi.com 5 1 10 100 1K SOURCE RESISTANCE − W 10K Figure 19. Input Noise Voltage as a Function of Source Resistance NE592 TYPICAL PERFORMANCE CHARACTERISTICS 0 GAIN 2 VS = +6V TA = 25oC -5 VS = +6V TA = 25oC -50 PHASE SHIFT − DEGREES PHASE SHIFT − DEGREES 0 -10 -15 -20 -100 -150 GAIN 2 -200 GAIN 1 -250 -300 -350 -25 0 1 2 3 4 5 6 7 8 9 1 10 10 100 FREQUENCY − MHz 1000 FREQUENCY − MHz Figure 20. Phase Shift as a Function of Frequency Figure 21. Phase Shift as a Function of Frequency 60 VOLTAGE GAIN − dB 40 VS = +6V Tamb = 25oC RL = 1KW VS = +6V TA = 25oC GAIN 3 40 30 VOLTAGE GAIN − dB GAIN 1 50 GAIN 2 30 20 10 20 10 0 -10 -20 -30 0 -40 1 10 100 -50 .01 1000 FREQUENCY − MHz .1 1 10 100 FREQUENCY − MHz Figure 23. Voltage Gain as a Function of Frequency Figure 22. Voltage Gain as a Function of Frequency TEST CIRCUITS (TA = 25°C, unless otherwise noted.) VIN 592 51W RL VOUT 51W 0.2mF ein 592 0.2mF eout eout 51W 1000 51W 1kW 1kW Figure 24. Test Circuits www.onsemi.com 6 NE592 +6 2re 11 14 NOTE: V 0(s) v 1(s) V1 [ [ 10 V0 592 1 7 1.4 @ 10 4 Z(S) ) 2re 5 4 Z 1.4 @ 104 Z(S) ) 32 -6 +6 Basic Configuration 0.2mF +5 +6 14 10 9 4 V1 7 592 Q 7 0.2mF 4 7 2 C 5 2KW Q -6 3 AMPLITUDE: 1‐10 mV p‐p FREQUENCY: 1‐4 MHz NOTE: 6 For frequency F1
NE592N14 价格&库存

很抱歉,暂时无法提供与“NE592N14”相匹配的价格&库存,您可以联系我们找货

免费人工找货