0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NGTB40N120FLWG

NGTB40N120FLWG

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    TO247

  • 描述:

    IGBT Trench Field Stop 1200V 80A 260W Through Hole TO-247

  • 详情介绍
  • 数据手册
  • 价格&库存
NGTB40N120FLWG 数据手册
NGTB40N120FLWG IGBT This Insulated Gate Bipolar Transistor (IGBT) features a robust and cost effective Field Stop (FS) Trench construction, and provides superior performance in demanding switching applications, offering both low on state voltage and minimal switching loss. The IGBT is well suited for UPS and solar applications. Incorporated into the device is a soft and fast co−packaged free wheeling diode with a low forward voltage. http://onsemi.com 40 A, 1200 V VCEsat = 2.0 V Eoff = 1.6 mJ Features • Low Saturation Voltage using NPT Trench with Field Stop • • • • • Technology Low Switching Loss Reduces System Power Dissipation 10 ms Short Circuit Capability Low Gate Charge Soft, Fast Free Wheeling Diode These are Pb−Free Devices C G Typical Applications • Solar Inverter • UPS Inverter E ABSOLUTE MAXIMUM RATINGS Rating Symbol Value Unit Collector−emitter voltage VCES 1200 V Collector current @ TC = 25°C @ TC = 100°C IC Pulsed collector current, Tpulse limited by TJmax ICM Diode forward current @ TC = 25°C @ TC = 100°C IF Diode pulsed current, Tpulse limited by TJmax IFM 160 A Gate−emitter voltage Transient gate−emitter voltage (Tpulse = 5 ms, D < 0.10) VGE $20 ±25 V Power Dissipation @ TC = 25°C @ TC = 100°C PD Short Circuit Withstand Time VGE = 15 V, VCE = 500 V, TJ ≤ 150°C A 80 40 160 A 80 40 TO−247 CASE 340L STYLE 4 E MARKING DIAGRAM 40N120FL AYWWG W 260 104 10 ms Operating junction temperature range TJ −55 to +150 °C Storage temperature range Tstg −55 to +150 °C Lead temperature for soldering, 1/8” from case for 5 seconds TSLD 260 °C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. June, 2013 − Rev. 2 C A TSC © Semiconductor Components Industries, LLC, 2013 G 1 A Y WW G = Assembly Location = Year = Work Week = Pb−Free Package ORDERING INFORMATION Device NGTB40N120FLWG Package Shipping TO−247 30 Units / Rail (Pb−Free) Publication Order Number: NGTB40N120FLW/D NGTB40N120FLWG THERMAL CHARACTERISTICS Symbol Value Unit Thermal resistance junction−to−case, for IGBT Rating RqJC 0.48 °C/W Thermal resistance junction−to−case, for Diode RqJC 1.5 °C/W Thermal resistance junction−to−ambient RqJA 40 °C/W ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise specified) Parameter Test Conditions Symbol Min Typ Max Unit VGE = 0 V, IC = 500 mA V(BR)CES 1200 − − V VGE = 15 V, IC = 40 A VGE = 15 V, IC = 40 A, TJ = 150°C VCEsat 1.50 − 2.0 2.2 2.2 − V VGE = VCE, IC = 400 mA VGE(th) 4.5 5.5 6.5 V Collector−emitter cut−off current, gate− emitter short−circuited VGE = 0 V, VCE = 1200 V VGE = 0 V, VCE = 1200 V, TJ = 150°C ICES − − − − 1.0 2 mA Gate leakage current, collector−emitter short−circuited VGE = 20 V , VCE = 0 V IGES − − 200 nA Cies − 10,000 − pF Coes − 240 − Cres − 180 − Qg − 415 − Qge − 80 − Qgc − 170 − td(on) − 130 − tr − 41 − td(off) − 385 − tf − 140 − Eon − 2.6 − Turn−off switching loss Eoff − 1.6 − Total switching loss Ets − 4.2 − Turn−on delay time td(on) − 130 − STATIC CHARACTERISTIC Collector−emitter breakdown voltage, gate−emitter short−circuited Collector−emitter saturation voltage Gate−emitter threshold voltage DYNAMIC CHARACTERISTIC Input capacitance Output capacitance VCE = 20 V, VGE = 0 V, f = 1 MHz Reverse transfer capacitance Gate charge total Gate to emitter charge VCE = 600 V, IC = 40 A, VGE = 15 V Gate to collector charge nC SWITCHING CHARACTERISTIC, INDUCTIVE LOAD Turn−on delay time Rise time Turn−off delay time Fall time Turn−on switching loss TJ = 25°C VCC = 600 V, IC = 40 A Rg = 10 W VGE = 0 V/ 15V Rise time tr − 42 − td(off) − 400 − tf − 230 − Eon − 3.0 − Turn−off switching loss Eoff − 2.8 − Total switching loss Ets − 5.8 − Turn−off delay time Fall time Turn−on switching loss TJ = 125°C VCC = 600 V, IC = 40 A Rg = 10 W VGE = 0 V/ 15V http://onsemi.com 2 ns mJ ns mJ NGTB40N120FLWG ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise specified) Parameter Test Conditions Symbol Min Typ Max Unit VGE = 0 V, IF = 40 A VGE = 0 V, IF = 40 A, TJ = 150°C VF − − 2.7 3.5 3.5 V TJ = 25°C IF = 40 A, VR = 400 V diF/dt = 200 A/ms trr − 200 − ns Qrr − 1.5 − mc Irrm − 15 − A trr − 260 − ns Qrr − 2.0 − mc Irrm − 22 − A DIODE CHARACTERISTIC Forward voltage Reverse recovery time Reverse recovery charge Reverse recovery current Reverse recovery time Reverse recovery charge TJ = 125°C IF = 40 A, VR = 400 V diF/dt = 200 A/ms Reverse recovery current http://onsemi.com 3 NGTB40N120FLWG TYPICAL CHARACTERISTICS TJ = 25°C 10 V 120 100 80 9V 60 40 8V 20 7V 0 1 2 3 4 5 6 7 11 V VGE = 20 to 13 V 120 10 V 100 9V 80 60 8V 40 7V 20 0 8 TJ = 150°C 140 0 1 2 3 4 5 6 7 VCE, COLLECTOR−EMITTER VOLTAGE (V) VCE, COLLECTOR−EMITTER VOLTAGE (V) Figure 1. Output Characteristics Figure 2. Output Characteristics 8 200 VGE = 20 to 11 V TJ = −40°C 140 10 V IC, COLLECTOR CURRENT (A) 160 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 140 0 120 100 80 9V 60 40 20 8V 0 7V 0 VCE, COLLECTOR−EMITTER VOLTAGE (V) 160 VGE = 20 to 11 V 1 2 3 4 5 6 7 180 160 TJ = 150°C 140 120 100 80 60 40 TJ = 25°C 20 0 0 8 8 4 VCE, COLLECTOR−EMITTER VOLTAGE (V) VGE, GATE−EMITTER VOLTAGE (V) Figure 3. Output Characteristics Figure 4. Typical Transfer Characteristics 3.0 IC = 80 A 2.5 IC = 40 A 2.0 1.5 IC = 10 A 1.0 IC = 5 A Cies 10000 1000 Coes 100 Cres 0.5 0.0 −50 12 100000 3.5 CAPACITANCE (pF) IC, COLLECTOR CURRENT (A) 160 −20 10 40 70 100 130 160 10 0 20 40 60 80 100 120 140 160 180 200 TJ, JUNCTION TEMPERATURE (°C) VCE, COLLECTOR−EMITTER VOLTAGE (V) Figure 5. VCE(sat) vs. TJ Figure 6. Typical Capacitance http://onsemi.com 4 NGTB40N120FLWG TYPICAL CHARACTERISTICS 20 VGE, GATE−EMITTER VOLTAGE (V) IF, FORWARD CURRENT (A) 120 100 80 60 TJ = 25°C TJ = 150°C 40 20 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 10 5 0 0 60 240 300 360 Figure 8. Typical Gate Charge 420 480 1000 td(off) SWITCHING TIME (ns) Eon 2 Eoff 1.5 1 VCE = 600 V VGE = 15 V IC = 40 A Rg = 10 W 0.5 0 20 40 60 80 100 120 140 tf td(on) 100 tr 10 1 160 VCE = 600 V VGE = 15 V IC = 40 A Rg = 10 W 0 20 40 60 80 100 120 140 TJ, JUNCTION TEMPERATURE (°C) TJ, JUNCTION TEMPERATURE (°C) Figure 9. Switching Loss vs. Temperature Figure 10. Switching Time vs. Temperature 160 1000 8 td(off) 7 Eoff 6 5 SWITCHING TIME (ns) SWITCHING LOSS (mJ) 180 Figure 7. Diode Forward Characteristics 2.5 Eon 4 3 VCE = 600 V VGE = 15 V TJ = 150°C Rg = 10 W 2 1 0 120 QG, GATE CHARGE (nC) 3 SWITCHING LOSS (mJ) VCE = 600 V VF, FORWARD VOLTAGE (V) 3.5 0 15 5 15 25 35 45 55 65 75 100 tr 10 1 85 tf td(on) VCE = 600 V VGE = 15 V TJ = 150°C Rg = 10 W 5 15 25 35 45 55 65 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) Figure 11. Switching Loss vs. IC Figure 12. Switching Time vs. IC http://onsemi.com 5 75 85 NGTB40N120FLWG TYPICAL CHARACTERISTICS 100000 12 VCE = 600 V VGE = 15 V IC = 40 A TJ = 150°C 8 td(off) SWITCHING TIME (ns) SWITCHING LOSS (mJ) 10 Eon 6 Eoff 4 10000 td(on) tf 1000 tr VCE = 600 V VGE = 15 V IC = 40 A TJ = 150°C 10 2 0 5 15 25 35 45 55 65 75 1 85 45 55 65 75 Figure 14. Switching Time vs. Rg 85 10000 td(off) Eon SWITCHING TIME (ns) SWITCHING LOSS (mJ) 35 Figure 13. Switching Loss vs. Rg Eoff 3.2 2.4 1.6 VGE = 15 V IC = 40 A TJ = 150°C Rg = 10 W 0.8 375 425 475 525 575 625 675 725 tf td(on) 1000 tr 10 VGE = 15 V IC = 40 A TJ = 150°C Rg = 10 W 1 375 425 775 475 525 575 625 675 725 VCE, COLLECTOR−EMITTER VOLTAGE (V) VCE, COLLECTOR−EMITTER VOLTAGE (V) Figure 15. Switching Loss vs. VCE Figure 16. Switching Time vs. VCE 1000 1000 50 ms 100 100 ms IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 25 Rg, GATE RESISTOR (W) 4 1 ms 10 dc operation 1 Single Nonrepetitive Pulse TC = 25°C Curves must be derated linearly with increase in temperature 0.1 0.01 15 Rg, GATE RESISTOR (W) 4.8 0 5 1 10 100 100 10 1 1000 VGE = 15 V, TC = 125°C 1 10 100 1000 VCE, COLLECTOR−EMITTER VOLTAGE (V) VCE, COLLECTOR−EMITTER VOLTAGE (V) Figure 17. Safe Operating Area Figure 18. Reverse Bias Safe Operating Area http://onsemi.com 6 775 NGTB40N120FLWG TYPICAL CHARACTERISTICS 180 VCE = 400 V, TJ ≤ 150°C Rgate = 10 W, VGE = 0/15 V, Tcase = 80 or 110°C (as noted), D = 0.5 160 80°C 140 80°C Ipk (A) 120 100 110°C 110°C 80 60 40 20 0 0.01 0.1 1 10 100 1000 FREQUENCY (kHz) Figure 19. Collector Current vs. Switching Frequency THERMAL RESPONSE (ZqJC) 1 RqJC = 0.48 50% Duty Cycle 0.1 20% Junction R1 10% 5% 0.01 Rn C2 Cn Case Ci = ti/Ri 2% C1 1% 0.001 0.000001 R2 Ri (°C/W) 0.01616 0.04030 0.060 0.090 0.176 0.093 ti (sec) 1.0E−4 1.76E−4 0.002 0.03 0.1 2.0 Duty Factor = t1/t2 Peak TJ = PDM x ZqJC + TC Single Pulse 0.00001 0.0001 0.001 0.01 0.1 1 10 100 1000 PULSE TIME (sec) Figure 20. IGBT Transient Thermal Impedance THERMAL RESPONSE (ZqJC) 10 1 0.1 RqJC = 1.5 50% Duty Cycle 20% 10% 5% Junction R1 2% 0.01 Rn Case C1 Single Pulse 0.00001 C2 Ri (°C/W) 0.19655 0.414 0.5 0.345 0.0934 Ci = ti/Ri 1% 0.001 0.000001 R2 Cn ti (sec) 1.48E−4 0.002 0.03 0.1 2.0 Duty Factor = t1/t2 Peak TJ = PDM x ZqJC + TC 0.0001 0.001 0.01 0.1 PULSE TIME (sec) 1 Figure 21. Diode Transient Thermal Impedance http://onsemi.com 7 10 100 1000 NGTB40N120FLWG Figure 22. Test Circuit for Switching Characteristics http://onsemi.com 8 NGTB40N120FLWG Figure 23. Definition of Turn On Waveform http://onsemi.com 9 NGTB40N120FLWG Figure 24. Definition of Turn Off Waveform http://onsemi.com 10 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS TO−247 CASE 340L ISSUE G DATE 06 OCT 2021 SCALE 1:1 GENERIC MARKING DIAGRAM* XXXXXXXXX AYWWG STYLE 1: PIN 1. 2. 3. 4. GATE DRAIN SOURCE DRAIN STYLE 2: PIN 1. 2. 3. 4. ANODE CATHODE (S) ANODE 2 CATHODES (S) STYLE 5: PIN 1. 2. 3. 4. CATHODE ANODE GATE ANODE STYLE 6: PIN 1. 2. 3. 4. MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2 DOCUMENT NUMBER: DESCRIPTION: STYLE 3: PIN 1. 2. 3. 4. 98ASB15080C TO−247 BASE COLLECTOR EMITTER COLLECTOR STYLE 4: PIN 1. 2. 3. 4. GATE COLLECTOR EMITTER COLLECTOR XXXXX A Y WW G = Specific Device Code = Assembly Location = Year = Work Week = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 1 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2021 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
NGTB40N120FLWG
物料型号为NGTB40N120FLWG,是一款绝缘栅双极晶体管(IGBT)。

以下是该器件的详细信息:

器件简介: - 该IGBT采用坚固且成本效益高的场截止(FS)沟槽结构。

- 在要求严格的开关应用中提供卓越的性能,具有低导通电压和最小的开关损耗。

- 适用于不间断电源(UPS)和太阳能应用。

- 内置软且快速的共封装续流二极管,具有低正向电压。


引脚分配: - G(栅极) - C(集电极) - E(发射极)

参数特性: - 集电极-发射极电压(VCES):1200V - 集电极电流(Ic):25°C时为80A,100°C时为40A - 脉冲集电极电流(ICM):160A - 二极管正向电流(IF):25°C时为80A,100°C时为40A - 二极管脉冲电流(IFM):160A - 栅极-发射极电压(VoE):±20V(瞬态±25V) - 功率损耗(Po):25°C时为260W,100°C时为104W - 短路承受时间(Tsc):10秒 - 工作结温范围(TJ):-55至+150°C - 存储温度范围(Tstg):-55至+150°C - 焊接时引脚温度(TSLD):260°C

功能详解: - 低饱和电压:使用NPT沟槽和场截止技术 - 低开关损耗:减少系统功耗 - 10微秒短路能力 - 低栅极电荷 - 软、快续流二极管

应用信息: - 典型应用包括太阳能逆变器和UPS逆变器。


封装信息: - 封装类型:TO-247(无铅) - 封装风格:4 - 标记图示:40N120FL - 订购信息:NGTB40N120FLWG,TO-247(无铅),每轨30个单位。


热特性: - IGBT的结到壳热阻(ROJC):0.48°C/W - 二极管的结到壳热阻(ROJC):1.5°C/W - 结到环境热阻(ROJA):40°C/W

电气特性: - 静态特性:包括集电极-发射极击穿电压、集电极-发射极饱和电压、栅极-发射极阈值电压等。

- 动态特性:包括输入电容、输出电容、反向传输电容、栅极电荷等。

- 开关特性:包括开通延迟时间、上升时间、关断延迟时间、下降时间、开通损耗、关断损耗和总开关损耗。


典型特性: - 输出特性、转移特性、电容特性、开关损耗与温度、开关时间与温度、开关损耗与集电极电流、开关时间与集电极电流、开关损耗与栅极电阻、开关时间与栅极电阻、开关损耗与集电极-发射极电压等。


机械案例轮廓和封装尺寸: - 提供了TO-247封装的详细机械尺寸和标记图示。


测试电路: - 提供了用于开关特性测试的电路图。


热响应: - 提供了IGBT和二极管的瞬态热阻抗图表。


安全操作区域: - 提供了直流操作和反向偏置安全操作区域的图表。


以上信息摘自PDF文档,详细描述了NGTB40N120FLWG IGBT的主要特性和应用。
NGTB40N120FLWG 价格&库存

很抱歉,暂时无法提供与“NGTB40N120FLWG”相匹配的价格&库存,您可以联系我们找货

免费人工找货