ON Semiconductor
Is Now
To learn more about onsemi™, please visit our website at
www.onsemi.com
onsemi and and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.
NL17SGU04
Unbuffered Inverter
The NL17SGU04 MiniGatet is an advanced high−speed CMOS
unbuffered inverter in ultra−small footprint.
The NL17SGU04 input structures provides protection when
voltages up to 3.6 V are applied.
www.onsemi.com
Features
MARKING
DIAGRAMS
High Speed: tPD = 1.9 ns (Typ) at VCC = 3.0 V, CL = 15 pF
Low Power Dissipation: ICC = 0.5 mA (Max) at TA = 25°C
3.6 V Overvoltage Tolerant (OVT) Input Pins
SC−88A
DF SUFFIX
CASE 419A
Ultra−Small Packages
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
5
1
GND
2
NC
3
4
NC
VCC
OUT Y
IN A
2
GND
3
Figure 1. SOT−953
(Top Thru View)
NC
IN A
GND
1
5
4
Figure 2. SC−88A
(Top View)
1
6
5
2
4
3
SOT−953
CASE 527AE
4M
1
UDFN6
1.0 x 1.0
CASE 517BX
Q
IN A
AY M G
G
UDFN6
1.45 x 1.0
CASE 517AQ
3
•
Wide Operating VCC Range: 0.9 V to 3.6 V
M
•
•
•
•
•
•
M
VCC
OUT Y
M
G
M
= Date Code*
= Pb−Free Package
(Note: Microdot may be in either location)
*Date Code orientation and/or position may vary
depending upon manufacturing location.
PIN ASSIGNMENT
VCC
NC
OUT Y
Figure 3. UDFN
(Top View)
SOT−953
SC−88A
UDFN6
1
IN A
NC
NC
2
GND
IN A
IN A
3
NC
GND
GND
4
OUT Y
OUT Y
OUT Y
5
VCC
VCC
NC
6
VCC
FUNCTION TABLE
IN A
1
OUT Y
Figure 4. Logic Symbol
A Input
Y Output
L
H
H
L
ORDERING INFORMATION
See detailed ordering and shipping information on page 5 of
this data sheet.
© Semiconductor Components Industries, LLC, 2014
November, 2017 − Rev. 5
1
Publication Order Number:
NL17SGU04/D
NL17SGU04
MAXIMUM RATINGS
Symbol
Parameter
VCC
DC Supply Voltage
VIN
DC Input Voltage
VOUT
DC Output Voltage
IIK
DC Input Diode Current
Value
Unit
−0.5 to +4.6
V
−0.5 to +4.6
V
−0.5 to VCC +0.5
−0.5 to +4.6
V
VIN < GND
−20
mA
VOUT < GND
Output at High or Low State
Power−Down Mode (VCC = 0 V)
IOK
DC Output Diode Current
−20
mA
IOUT
DC Output Source/Sink Current
±20
mA
ICC
DC Supply Current per Supply Pin
±20
mA
IGND
DC Ground Current per Ground Pin
±20
mA
TSTG
Storage Temperature Range
−65 to +150
°C
260
°C
+150
°C
TL
Lead Temperature, 1 mm from Case for 10 Seconds
TJ
Junction Temperature Under Bias
MSL
Moisture Sensitivity
FR
Flammability Rating
VESD
ILATCHUP
Level 1
Oxygen Index: 28 to 34
ESD Withstand Voltage
Latchup Performance
UL 94 V−0 @ 0.125 in
Human Body Model (Note 2)
Machine Model (Note 3)
>2000
>150
V
Above VCC and Below GND at 125°C (Note 4)
±100
mA
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. Measured with minimum pad spacing on an FR4 board, using 10 mm−by−1 inch, 2−ounce copper trace with no air flow.
2. Tested to EIA/JESD22−A114−A.
3. Tested to EIA/JESD22−A115−A.
4. Tested to EIA/JESD78.
RECOMMENDED OPERATING CONDITIONS
Symbol
Min
Max
Unit
VCC
Positive DC Supply Voltage
0.9
3.6
V
VIN
Digital Input Voltage
0.0
3.6
V
0.0
0.0
VCC
3.6
V
−55
+125
°C
0
10
ns/V
VOUT
TA
Dt / DV
Characteristics
Output Voltage
Output at High or Low State
Power−Down Mode (VCC = 0 V)
Operating Temperature Range
VCC = 3.3 V ± 0.3 V
Input Transition Rise or Fail Rate
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond
the Recommended Operating Ranges limits may affect device reliability.
www.onsemi.com
2
NL17SGU04
DC ELECTRICAL CHARACTERISTICS
TA = 255C
Symbol
Parameter
VIH
High-Level Input
Voltage
VIL
VOH
VOL
Conditions
Low-Level Input
Voltage
High-Level
Output Voltage
Low-Level
Output Voltage
VIN =
VIH or
VIL
VIN =
VIH or
VIL
Min
VCC (V)
Max
TA =
-555C to +1255C
Min
0.9
VCC
VCC
1.1 to 1.3
0.7xVCC
0.7xVCC
1.4 to 1.6
0.65xVCC
0.65xVCC
1.65 to 1.95
0.65xVCC
0.65xVCC
2.3 to 2.7
1.7
1.7
3.0 to 3.6
2.0
2.0
Max
V
0.9
GND
GND
1.1 to 1.3
0.3xVCC
0.3xVCC
1.4 to 1.6
0.35xVCC
0.35xVCC
1.65 to 1.95
0.35xVCC
0.35xVCC
2.3 to 2.7
0.7
0.7
3.0 to 3.6
0.8
0.8
IOH = −20 mA
0.9
0.75
0.75
IOH = -0.3 mA
1.1 to 1.3
0.75xVCC
0.75xVCC
IOH = -1.7 mA
1.4 to 1.6
0.75xVCC
0.75xVCC
IOH = -3.0 mA
1.65 to 1.95
Vcc-0.45
Vcc-0.45
IOH = -4.0 mA
2.3 to 2.7
2.0
2.0
IOH = -8.0 mA
3.0 to 3.6
2.48
2.48
Unit
V
V
IOL = 20 mA
0.9
0.1
0.1
IOL = 0.3 mA
1.1 to 1.3
0.25xVCC
0.25xVCC
IOL = 1.7 mA
1.4 to 1.6
0.25xVCC
0.25xVCC
IOL = 3.0 mA
1.65 to 1.95
0.45
0.45
IOL = 4.0 mA
2.3 to 2.7
0.4
0.4
IOL = 8.0 mA
3.0 to 3.6
0.4
0.4
V
IIN
Input Leakage
Current
0 ≤ VIN ≤ 3.6 V
0 to 3.6
$0.1
$1.0
mA
ICC
Quiescent
Supply Current
VIN = VCC or GND
3.6
0.5
10.0
mA
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
www.onsemi.com
3
NL17SGU04
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
AC ELECTRICAL CHARACTERISTICS Input tr = tf = 3.0 ns
Symbol
tPLH,
tPHL
Parameter
Propagation Delay,
A to Y
Test Condition
CL = 10 pF,
RL = 1 MW
CL = 15 pF,
RL = 1 MW
CL = 30 pF,
RL = 1 MW
TA =
-555C to +1255C
TA = 255 C
VCC (V)
Min
Typ
Max
Min
Max
Unit
0.9
-
8.0
10.3
-
13.3
ns
1.1 to 1.3
-
6.0
9.4
-
12.2
1.4 to 1.6
-
3.2
8.5
-
10.0
1.65 to 1.95
-
2.6
6.2
-
6.7
2.3 to 2.7
-
2.0
3.9
-
4.4
3.0 to 3.6
-
1.7
3.1
-
3.7
0.9
-
19.5
11.7
-
14.5
1.1 to 1.3
-
7.0
9.2
-
12.2
ns
1.4 to 1.6
-
3.5
6.3
-
10.2
1.65 to 1.95
-
3.0
5.9
-
7.1
2.3 to 2.7
-
2.3
4.4
-
5.0
3.0 to 3.6
-
1.9
3.4
-
3.9
0.9
-
10.0
12.5
-
15.6
1.1 to 1.3
-
9.0
11.6
-
13.8
1.4 to 1.6
-
6.0
9.1
-
12.9
1.65 to 1.95
-
4.5
8.2
-
9.6
2.3 to 2.7
-
3.2
5.7
-
6.1
3.0 to 3.6
-
2.5
4.4
-
4.8
0 to 3.6
3
-
-
-
pF
3
-
-
-
pF
4
-
-
-
pF
CIN
Input Capacitance
CO
Output Capacitance
VO = GND
0
CPD
Power Dissipation
Capacitance (Note 5)
f = 10 MHz
0.9 to 3.6
-
ns
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
5. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.
Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC. CPD is used to determine the no−load dynamic
power consumption; PD = CPD VCC2 fin + ICC VCC.
www.onsemi.com
4
NL17SGU04
VCC
A or B
50%
50%
GND
tPLH
Y
tPHL
50% VCC
Figure 5. Switching Waveforms
OUTPUT
INPUT
CL *
*Includes all probe and jig capacitances
A 1−MHz square input wave is recommended
for propagation delay tests.
Figure 6. Test Circuit
ORDERING INFORMATION
Package
Shipping†
NL17SGU04P5T5G
SOT−953
(Pb−Free)
8000 / Tape & Reel
NL17SGU04DFT2G
SC−88A
(Pb−Free)
3000 / Tape & Reel
NLV17SGU04DFT2G*
SC−88A
(Pb−Free)
3000 / Tape & Reel
NL17SGU04AMUTCG
(In Development)
UDFN6 1.45x1 mm
(Pb−Free)
3000 / Tape & Reel
NL17SGU04CMUTCG
(In Development)
UDFN6 1x1 mm
(Pb−Free)
3000 / Tape & Reel
NLV17SGU04AMUTCG*
(In Development)
UDFN6 1.45x1 mm
(Pb−Free)
3000 / Tape & Reel
NLV17SGU04CMUTCG*
(In Development)
UDFN6 1x1 mm
(Pb−Free)
3000 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable.
www.onsemi.com
5
NL17SGU04
PACKAGE DIMENSIONS
SC−88A (SC−70−5/SOT−353)
CASE 419A−02
ISSUE L
A
G
5
4
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A−01 OBSOLETE. NEW STANDARD
419A−02.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
−B−
S
1
2
DIM
A
B
C
D
G
H
J
K
N
S
3
D 5 PL
0.2 (0.008)
M
B
M
N
INCHES
MIN
MAX
0.071
0.087
0.045
0.053
0.031
0.043
0.004
0.012
0.026 BSC
--0.004
0.004
0.010
0.004
0.012
0.008 REF
0.079
0.087
J
C
K
H
SOLDER FOOTPRINT*
0.50
0.0197
0.65
0.025
0.65
0.025
0.40
0.0157
1.9
0.0748
SCALE 20:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
www.onsemi.com
6
MILLIMETERS
MIN
MAX
1.80
2.20
1.15
1.35
0.80
1.10
0.10
0.30
0.65 BSC
--0.10
0.10
0.25
0.10
0.30
0.20 REF
2.00
2.20
NL17SGU04
PACKAGE DIMENSIONS
SOT−953
CASE 527AE
ISSUE E
X
D
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD
FINISH. MINIMUM LEAD THICKNESS IS THE
MINIMUM THICKNESS OF THE BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR GATE BURRS.
A
Y
5
4
PIN ONE
INDICATOR
HE
E
1
2 3
DIM
A
b
C
D
E
e
HE
L
L2
L3
C
TOP VIEW
SIDE VIEW
e
L
5X
5X
L3
MILLIMETERS
MIN
NOM
MAX
0.34
0.37
0.40
0.10
0.15
0.20
0.07
0.12
0.17
0.95
1.00
1.05
0.75
0.80
0.85
0.35 BSC
0.95
1.00
1.05
0.175 REF
0.05
0.10
0.15
−−−
−−−
0.15
SOLDERING FOOTPRINT*
5X
0.35
5X
0.20
5X
L2
5X
BOTTOM VIEW
b
PACKAGE
OUTLINE
0.08 X Y
1.20
1
0.35
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
www.onsemi.com
7
NL17SGU04
PACKAGE DIMENSIONS
UDFN6 1.0x1.0, 0.35P
CASE 517BX
ISSUE O
PIN ONE
REFERENCE
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.20 MM FROM TERMINAL TIP.
4. PACKAGE DIMENSIONS EXCLUSIVE OF
BURRS AND MOLD FLASH.
A B
D
ÉÉÉ
ÉÉÉ
ÉÉÉ
E
0.10 C
2X
2X
0.10 C
DIM
A
A1
A3
b
D
E
e
L
L1
TOP VIEW
A3
0.05 C
A
MILLIMETERS
MIN
MAX
0.45
0.55
0.00
0.05
0.13 REF
0.12
0.22
1.00 BSC
1.00 BSC
0.35 BSC
0.25
0.35
0.30
0.40
0.05 C
SIDE VIEW
A1
C
RECOMMENDED
SOLDERING FOOTPRINT*
SEATING
PLANE
5X
e
5X
0.48
L
6X
0.22
3
1
L1
1.18
6
4
BOTTOM VIEW
6X
b
0.10
M
C A B
0.05
M
C
0.53
1
PKG
OUTLINE
NOTE 3
0.35
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
www.onsemi.com
8
NL17SGU04
PACKAGE DIMENSIONS
UDFN6 1.45x1.0, 0.5P
CASE 517AQ
ISSUE O
A
B
D
PIN ONE
REFERENCE
0.10 C
L1
ÉÉÉ
ÉÉÉ
DETAIL A
E
DIM
A
A1
A2
b
D
E
e
L
L1
ÉÉ
ÉÉ
EXPOSED Cu
DETAIL B
MOLD CMPD
DETAIL B
0.05 C
6X
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED TERMINAL
AND IS MEASURED BETWEEN 0.15 AND
0.30 mm FROM THE TERMINAL TIP.
OPTIONAL
CONSTRUCTIONS
TOP VIEW
0.10 C
L
L
OPTIONAL
CONSTRUCTIONS
A
MILLIMETERS
MIN
MAX
0.45
0.55
0.00
0.05
0.07 REF
0.20
0.30
1.45 BSC
1.00 BSC
0.50 BSC
0.30
0.40
−−−
0.15
MOUNTING FOOTPRINT
0.05 C
A1
A2
SIDE VIEW
e
6X
C
6X
SEATING
PLANE
L
1.24
3
1
DETAIL A
6X
0.53
6
0.30
PACKAGE
OUTLINE
4
BOTTOM VIEW
6X
0.50
PITCH
DIMENSIONS: MILLIMETERS
b
0.10 C A B
0.05 C
1
NOTE 3
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
MiniGate is a trademark of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
◊
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
9
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NL17SGU04/D