MC74HC240A
Octal 3-State Inverting
Buffer/Line Driver/Line
Receiver
High−Performance Silicon−Gate CMOS
http://onsemi.com
The MC74HC240A is identical in pinout to the LS240. The device
inputs are compatible with standard CMOS outputs; with pullup
resistors, they are compatible with LSTTL outputs.
This octal noninverting buffer/line driver/line receiver is designed
to be used with 3−state memory address drivers, clock drivers, and
other sub−oriented systems. The device has inverting outputs and two
active−low output enables.
The HC240A is similar in function to the HC244A.
SOIC−20
DW SUFFIX
CASE 751D
PIN ASSIGNMENT
Features
•
•
•
•
•
•
•
•
•
Output Drive Capability: 15 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS, and TTL
Operating Voltage Range: 2.0 to 6.0 V
Low Input Current: 1 mA
High Noise Immunity Characteristic of CMOS Devices
In Compliance with the Requirements Defined by JEDEC Standard
No. 7 A
Chip Complexity: 120 FETs or 30 Equivalent Gates
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
These Devices are Pb−Free, Halogen Free and are RoHS Compliant
ENABLE A
1
20
VCC
A1
2
19
ENABLE B
YB4
3
18
YA1
A2
4
17
B4
YB3
5
16
YA2
A3
6
15
B3
YB2
7
14
YA3
A4
8
13
B2
YB1
9
12
YA4
GND
10
11
B1
MARKING DIAGRAMS
20
20
LOGIC DIAGRAM
A1
TSSOP−20
DT SUFFIX
CASE 948E
HC
240A
ALYWG
G
HC240A
AWLYYWWG
2
18
4
16
6
14
8
12
11
9
13
7
YA1
1
A2
A3
A4
DATA
NPUTS
B1
YA2
YA3
YA4
YB1
INVERTING
OUTPUTS
1
SOIC−20
TSSOP−20
A
= Assembly Location
WL, L
= Wafer Lot
YY, Y
= Year
WW, W = Work Week
G or G
= Pb−Free Package
(Note: Microdot may be in either location)
FUNCTION TABLE
B2
B3
B4
15
5
17
3
Inputs
YB2
YB3
YB4
Outputs
Enable A,
Enable B
A, B
YA, YB
L
L
H
L
H
X
H
L
Z
Z = high impedance
OUTPUT
ENABLES
ENABLE A
ENABLE B
1
19
© Semiconductor Components Industries, LLC, 2014
August, 2014 − Rev. 13
ORDERING INFORMATION
PIN 20 = VCC
PIN 10 = GND
See detailed ordering and shipping information in the package
dimensions section on page 5 of this data sheet.
1
Publication Order Number:
MC74HC240A/D
MC74HC240A
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
–0.5 to +7.0
V
DC Input Voltage (Referenced to GND)
–0.5 to VCC + 0.5
V
DC Output Voltage (Referenced to GND)
–0.5 to VCC + 0.5
V
VCC
DC Supply Voltage (Referenced to GND)
Vin
Vout
Iin
DC Input Current, per Pin
±20
mA
Iout
DC Output Current, per Pin
±35
mA
ICC
DC Supply Current, VCC and GND Pins
±75
mA
PD
Power Dissipation in Still Air,
500
450
mW
Tstg
Storage Temperature
– 65 to + 150
_C
TL
Lead Temperature, 1 mm from Case for 10 Seconds
(SOIC or TSSOP Package)
SOIC Package†
TSSOP Package†
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
_C
260
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of
these limits are exceeded, device functionality should not be assumed, damage may occur and
reliability may be affected.
†Derating: SOIC Package: –7 mW/_C from 65_ to 125_C
TSSOP Package: −6.1 mW/_C from 65_ to 125_C
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Vin, Vout
Parameter
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time
(Figure 1)
VCC = 2.0 V
VCC = 4.5 V
VCC = 6.0 V
Min
Max
Unit
2.0
6.0
V
0
VCC
V
–55
+125
_C
0
0
0
1000
500
400
ns
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond
the Recommended Operating Ranges limits may affect device reliability.
http://onsemi.com
2
MC74HC240A
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Guaranteed Limit
VCC
V
–55 to
25_C
v 85_C
v 125_C
Unit
Vout = VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
V
Maximum Low−Level Input Voltage
Vout = 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
V
Minimum High−Level Output
Voltage
Vin = VIH
|Iout| v 20 mA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
3.0
4.5
6.0
2.48
3.98
5.48
2.34
3.84
5.34
2.2
3.7
5.2
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
3.0
4.5
6.0
0.26
0.26
0.26
0.33
0.33
0.33
0.4
0.4
0.4
Symbol
Parameter
Test Conditions
VIH
Minimum High−Level Input Voltage
VIL
VOH
Vin = VIH
VOL
|Iout| v 2.4 mA
|Iout| v 6.0 mA
|Iout| v 7.8 mA
Vin = VIL
|Iout| v 20 mA
Maximum Low−Level Output
Voltage
|Iout| v 2.4 mA
|Iout| v 6.0 mA
|Iout| v 7.8 mA
Vin = VIL
V
Iin
Maximum Input Leakage Current
Vin = VCC or GND
6.0
±0.1
±1.0
±1.0
mA
IOZ
Maximum Three−State Leakage
Current
Output in High−Impedance State
Vin = VIL or VIH
Vout = VCC or GND
6.0
± 0.5
± 5.0
± 10
mA
ICC
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
Iout = 0 mA
6.0
4.0
40
160
mA
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6 ns)
Guaranteed Limit
Symbol
Parameter
VCC
V
–55 to
25_C
v 85_C
v 125_C
Unit
tPLH,
tPHL
Maximum Propagation Delay, A to YA or B to YB
(Figures 1 and 3)
2.0
3.0
4.5
6.0
80
40
16
14
100
50
20
17
120
60
24
20
ns
tPLZ,
tPHZ
Maximum Propagation Delay, Output Enable to YA or YB
(Figures 2 and 4)
2.0
3.0
4.5
6.0
110
60
22
19
140
70
28
24
165
80
33
28
ns
tPZL,
tPZH
Maximum Propagation Delay, Output Enable to YA or YB
(Figures 2 and 4)
2.0
3.0
4.5
6.0
110
60
22
19
140
70
28
24
165
80
33
28
ns
tTLH,
tTHL
Maximum Output Transition Time, Any Output
(Figures 1 and 3)
2.0
3.0
4.5
6.0
60
23
12
10
75
27
15
13
90
32
18
15
ns
Cin
Maximum Input Capacitance
−
10
10
10
pF
Cout
Maximum Three−State Output Capacitance
(Output in High−Impedance State)
−
15
15
15
pF
Typical @ 25°C, VCC = 5.0 V
CPD
32
Power Dissipation Capacitance (Per Transceiver Channel)*
* Used to determine the no−load dynamic power consumption: P D = CPD VCC
http://onsemi.com
3
2f
+ ICC VCC .
pF
MC74HC240A
SWITCHING WAVEFORMS
VCC
tr
DATA INPUT
A OR B
ENABLE
tf
GND
VCC
90%
50%
10%
tPZL
tPLZ
HIGH
IMPEDANCE
GND
tPHL
tPLH
OUTPUT Y
90%
50%
10%
OUTPUT
YA OR YB
50%
50%
tPZH
OUTPUT Y
tTHL
tPHZ
10%
VOL
90%
VOH
50%
HIGH
IMPEDANCE
tTLH
Figure 1.
Figure 2.
TEST POINT
TEST POINT
OUTPUT
DEVICE
UNDER
TEST
OUTPUT
DEVICE
UNDER
TEST
CL*
*Includes all probe and jig capacitance
1 kW
CL*
CONNECT TO VCC WHEN
TESTING tPLZ AND tPZL.
CONNECT TO GND WHEN
TESTING tPHZ AND tPZH.
*Includes all probe and jig capacitance
Figure 3. Test Circuit
Figure 4. Test Circuit
PIN DESCRIPTIONS
INPUTS
function as inverters. When a high level is applied, the
outputs assume the high−impedance state.
A1, A2, A3, A4, B1, B2, B3, B4
(Pins 2, 4, 6, 8, 11, 13, 15, 17)
OUTPUTS
Data input pins. Data on these pins appear in inverted form
on the corresponding Y outputs, when the outputs are
enabled.
YA1, YA2, YA3, YA4, YB1, YB2, YB3, YB4
(Pins 18, 16, 14, 12, 9, 7, 5, 3)
Device outputs. Depending upon the state of the
output−enable pins, these outputs are either inverting
outputs or high−impedance outputs.
CONTROLS
Enable A, Enable B (Pins 1, 19)
Output enables (active−low). When a low level is applied
to these pins, the outputs are enabled and the devices
http://onsemi.com
4
MC74HC240A
LOGIC DETAIL
TO THREE OTHER
A OR B INVERTERS
ONE OF 8
INVERTERS
VCC
DATA
INPUT
A OR B
YA
OR
YB
ENABLE A
OR ENABLE B
ORDERING INFORMATION
Package
Shipping†
MC74HC240ADWG
SOIC−20 WIDE
(Pb−Free)
38 Units / Rail
NVL74HC240ADWG*
SOIC−20 WIDE
(Pb−Free)
38 Units / Rail
MC74HC240ADWR2G
SOIC−20 WIDE
(Pb−Free)
1000 Tape & Reel
NVL74HC240ADWR2G*
SOIC−20 WIDE
(Pb−Free)
1000 Tape & Reel
TSSOP−20
(Pb−Free)
2500 Tape & Reel
Device
MC74HC240ADTR2G
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable
http://onsemi.com
5
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOIC−20 WB
CASE 751D−05
ISSUE H
DATE 22 APR 2015
SCALE 1:1
A
20
q
X 45 _
M
E
h
0.25
H
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
11
B
M
D
1
10
20X
B
b
0.25
M
T A
S
B
DIM
A
A1
b
c
D
E
e
H
h
L
q
S
L
A
18X
e
SEATING
PLANE
A1
c
T
GENERIC
MARKING DIAGRAM*
RECOMMENDED
SOLDERING FOOTPRINT*
20
20X
20X
1.30
0.52
20
XXXXXXXXXXX
XXXXXXXXXXX
AWLYYWWG
11
1
11.00
1
XXXXX
A
WL
YY
WW
G
10
1.27
PITCH
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
DOCUMENT NUMBER:
DESCRIPTION:
MILLIMETERS
MIN
MAX
2.35
2.65
0.10
0.25
0.35
0.49
0.23
0.32
12.65
12.95
7.40
7.60
1.27 BSC
10.05
10.55
0.25
0.75
0.50
0.90
0_
7_
98ASB42343B
SOIC−20 WB
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “G”, may
or may not be present. Some products may
not follow the Generic Marking.
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
TSSOP−20 WB
CASE 948E
ISSUE D
DATE 17 FEB 2016
SCALE 2:1
20X
0.15 (0.006) T U
2X
L
K REF
0.10 (0.004)
S
L/2
20
M
T U
S
V
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
K
K1
S
J J1
11
B
SECTION N−N
−U−
PIN 1
IDENT
0.25 (0.010)
N
1
10
M
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
N
F
DETAIL E
−W−
C
G
D
H
DETAIL E
0.100 (0.004)
−T− SEATING
PLANE
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
6.40
6.60
4.30
4.50
--1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.27
0.37
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.252
0.260
0.169
0.177
--0.047
0.002
0.006
0.020
0.030
0.026 BSC
0.011
0.015
0.004
0.008
0.004
0.006
0.007
0.012
0.007
0.010
0.252 BSC
0_
8_
GENERIC
MARKING DIAGRAM*
SOLDERING FOOTPRINT
7.06
XXXX
XXXX
ALYWG
G
1
0.65
PITCH
16X
0.36
16X
1.26
DOCUMENT NUMBER:
98ASH70169A
DESCRIPTION:
TSSOP−20 WB
A
L
Y
W
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
DIMENSIONS: MILLIMETERS
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative