Analog Multiplexers/
Demultiplexers
High−Performance Silicon−Gate CMOS
MC74HC4051A,
MC74HC4052A,
MC74HC4053A
www.onsemi.com
The MC74HC4051A, MC74HC4052A and MC74HC4053A utilize
silicon−gate CMOS technology to achieve fast propagation delays,
low ON resistances, and low OFF leakage currents. These analog
multiplexers/demultiplexers control analog voltages that may vary
across the complete power supply range (from VCC to VEE).
The HC4051A, HC4052A and HC4053A are identical in pinout to
the metal−gate MC14051AB, MC14052AB and MC14053AB. The
Channel−Select inputs determine which one of the Analog
Inputs/Outputs is to be connected, by means of an analog switch, to the
Common Output/Input. When the Enable pin is HIGH, all analog
switches are turned off.
The Channel−Select and Enable inputs are compatible with standard
CMOS outputs; with pullup resistors they are compatible with LSTTL
outputs.
These devices have been designed so that the ON resistance (Ron) is
more linear over input voltage than Ron of metal−gate CMOS analog
switches.
For a multiplexer/demultiplexer with injection current protection,
see HC4851A and HC4852A.
•
•
•
•
•
SOIC−16
D SUFFIX
CASE 751B
TSSOP−16
DT SUFFIX
CASE 948F
1
QFN16
MN SUFFIX
CASE 485AW
MARKING DIAGRAMS
16
16
HC405xAG
AWLYWW
HC405xA
AWLYWWG
1
Features
•
•
•
•
•
•
SOIC−16 WIDE
DW SUFFIX
CASE 751G
Fast Switching and Propagation Speeds
Low Crosstalk Between Switches
Diode Protection on All Inputs/Outputs
Analog Power Supply Range (VCC − VEE) = 2.0 to 12.0 V
Digital (Control) Power Supply Range (VCC − GND) = 2.0 to 6.0 V
Improved Linearity and Lower ON Resistance Than Metal−Gate
Counterparts
Low Noise
In Compliance with the Requirements of JEDEC Standard No. 7A
Chip Complexity: HC4051A − 184 FETs or 46 Equivalent Gates
HC4052A − 168 FETs or 42 Equivalent Gates
HC4053A − 156 FETs or 39 Equivalent Gates
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
These Devices are Pb−Free, Halogen Free/BFR−Free and are RoHS
Compliant
SOIC−16
1
SOIC−16 WIDE
16
HC40
5xA
ALYWG
G
1
4051
ALYWG
G
QFN16
TSSOP−16
x
A
WL, L
YY, Y
WW, W
G or G
= 1, 2 or 3
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information on page 13 of
this data sheet.
This document contains information on some products that are still under development.
ON Semiconductor reserves the right to change or discontinue these products without
notice.
© Semiconductor Components Industries, LLC, 2017
July, 2021 − Rev. 12
1
Publication Order Number:
MC74HC4051A/D
MC74HC4051A, MC74HC4052A, MC74HC4053A
FUNCTION TABLE − MC74HC4051A
LOGIC DIAGRAM
MC74HC4051A
Single−Pole, 8−Position Plus Common Off
Control Inputs
Enable
C
L
L
L
L
L
L
L
L
H
L
L
L
L
H
H
H
H
X
13
X0
14
X1
15
X2
ANALOG
12
MULTIPLEXER/
INPUTS/ X3
DEMULTIPLEXER
OUTPUTS X4 1
5
X5
2
X6
4
X7
11
A
CHANNEL
10
B
SELECT
9
INPUTS
C
6
ENABLE
PIN 16 = VCC
PIN 7 = VEE
PIN 8 = GND
3
X
COMMON
OUTPUT/
INPUT
Select
B
A
L
L
H
H
L
L
H
H
X
ON Channels
L
H
L
H
L
H
L
H
X
X0
X1
X2
X3
X4
X5
X6
X7
NONE
X = Don’t Care
Pinout: MC74HC4051A (Top View)
VCC
X2
X1
X0
X3
A
B
C
16
15
14
13
12
11
10
9
1
X4
2
X6
3
X
4
X7
5
X5
6
7
Enable VEE
8
GND
FUNCTION TABLE − MC74HC4052A
LOGIC DIAGRAM
MC74HC4052A
Double−Pole, 4−Position Plus Common Off
Control Inputs
Enable
B
Select
A
L
L
L
L
H
L
L
H
H
X
L
H
L
H
X
12
ANALOG
INPUTS/OUTPUTS
CHANNEL‐SELECT
INPUTS
X0
14
X1
15
X2
11
X3
Y0
Y1
Y2
Y3
A
B
ENABLE
X SWITCH
13
X
COMMON
OUTPUTS/INPUTS
1
5
2
Y SWITCH
3
X0
X1
X2
X3
NONE
X = Don’t Care
4
6
Y0
Y1
Y2
Y3
Y
Pinout: MC74HC4052A (Top View)
10
9
ON Channels
PIN 16 = VCC
PIN 7 = VEE
PIN 8 = GND
www.onsemi.com
2
VCC
X2
X1
X
X0
X3
A
B
16
15
14
13
12
11
10
9
6
7
1
2
3
4
5
Y0
Y2
Y
Y3
Y1
Enable VEE
8
GND
MC74HC4051A, MC74HC4052A, MC74HC4053A
FUNCTION TABLE − MC74HC4053A
Control Inputs
LOGIC DIAGRAM
MC74HC4053A
Triple Single−Pole, Double−Position Plus Common Off
12
X0
13
X1
14
X SWITCH
2
ANALOG
INPUTS/OUTPUTS
Y0
1
Y1
15
Y SWITCH
5
Z0
3
Z1
4
Z SWITCH
Enable
C
L
L
L
L
L
L
L
L
H
L
L
L
L
H
H
H
H
X
X
Y
COMMON
OUTPUTS/INPUTS
Select
B
A
L
L
H
H
L
L
H
H
X
ON Channels
Z0
Z0
Z0
Z0
Z1
Z1
Z1
Z1
L
H
L
H
L
H
L
H
X
Y0
Y0
Y1
Y1
Y0
Y0
Y1
Y1
NONE
X0
X1
X0
X1
X0
X1
X0
X1
X = Don’t Care
Z
11
A
10
B
9
C
6
ENABLE
PIN 16 = VCC
PIN 7 = VEE
PIN 8 = GND
CHANNEL‐SELECT
INPUTS
Pinout: MC74HC4053A (Top View)
VCC
Y
X
X1
X0
A
B
C
16
15
14
13
12
11
10
9
6
7
NOTE: This device allows independent control of each switch.
Channel−Select Input A controls the X−Switch, Input B controls
the Y−Switch and Input C controls the Z−Switch
1
2
3
4
5
Y1
Y0
Z1
Z
Z0
Enable VEE
8
GND
MAXIMUM RATINGS
Symbol
Parameter
Unit
–0.5 to +7.0
–0.5 to +14.0
V
VCC
Positive DC Supply Voltage
VEE
Negative DC Supply Voltage (Referenced to GND)
–7.0 to +5.0
V
VIS
Analog Input Voltage
VEE − 0.5 to
VCC + 0.5
V
Vin
Digital Input Voltage (Referenced to GND)
–0.5 to VCC + 0.5
V
±25
mA
500
450
mW
–65 to +150
_C
I
(Referenced to GND)
(Referenced to VEE)
Value
DC Current, Into or Out of Any Pin
PD
Power Dissipation in Still Air,
SOIC Package†
TSSOP Package†
Tstg
Storage Temperature Range
TL
Lead Temperature, 1 mm from Case for 10 Seconds
SOIC or TSSOP Package
_C
260
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of
these limits are exceeded, device functionality should not be assumed, damage may occur and
reliability may be affected.
†Derating: SOIC Package: –7 mW/_C from 65_ to 125_C
TSSOP Package: −6.1 mW/_C from 65_ to 125_C
www.onsemi.com
3
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
MC74HC4051A, MC74HC4052A, MC74HC4053A
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
Max
Unit
2.0
2.0
6.0
12.0
V
Negative DC Supply Voltage, Output (Referenced to GND)
−6.0
GND
V
VIS
Analog Input Voltage
VEE
VCC
V
Vin
Digital Input Voltage (Referenced to GND)
GND
VCC
V
VIO*
Static or Dynamic Voltage Across Switch
1.2
V
–55
+125
_C
0
0
0
0
1000
600
500
400
ns
VCC
Positive DC Supply Voltage
VEE
(Referenced to GND)
(Referenced to VEE)
TA
Operating Temperature Range, All Package Types
tr, tf
Input Rise/Fall Time
(Channel Select or Enable Inputs)
VCC = 2.0 V
VCC = 3.0 V
VCC = 4.5 V
VCC = 6.0 V
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond
the Recommended Operating Ranges limits may affect device reliability.
*For voltage drops across switch greater than 1.2 V (switch on), excessive VCC current may be drawn; i.e., the current out of the switch may
contain both VCC and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded.
DC CHARACTERISTICS — Digital Section (Voltages Referenced to GND) VEE = GND, Except Where Noted
Symbol
Parameter
Condition
Guaranteed Limit
VCC
V
−55 to 25°C
≤85°C
≤125°C
Unit
VIH
Minimum High−Level Input Voltage,
Channel−Select or Enable Inputs
Ron = Per Spec
2.0
3.0
4.5
6.0
1.50
2.10
3.15
4.20
1.50
2.10
3.15
4.20
1.50
2.10
3.15
4.20
V
VIL
Maximum Low−Level Input Voltage,
Channel−Select or Enable Inputs
Ron = Per Spec
2.0
3.0
4.5
6.0
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
V
Iin
Maximum Input Leakage Current,
Channel−Select or Enable Inputs
Vin = VCC or GND,
VEE = − 6.0 V
6.0
± 0.1
± 1.0
± 1.0
mA
ICC
Maximum Quiescent Supply
Current (per Package)
Channel Select, Enable and
VEE = GND
VIS = VCC or GND;
VIO = 0 V
VEE = − 6.0
6.0
6.0
1
4
10
40
20
80
www.onsemi.com
4
mA
MC74HC4051A, MC74HC4052A, MC74HC4053A
DC CHARACTERISTICS — Analog Section
Guaranteed Limit
Symbol
Ron
VCC
VEE
−55 to 25°C
Vin = VIL or VIH; VIS = VCC to
VEE; IS ≤ 2.0 mA
(Figures 1, 2)
4.5
4.5
6.0
0.0
− 4.5
− 6.0
190
120
100
240
150
125
280
170
140
Vin = VIL or VIH; VIS = VCC or
VEE (Endpoints); IS ≤ 2.0 mA
(Figures 1, 2)
4.5
4.5
6.0
0.0
− 4.5
− 6.0
150
100
80
190
125
100
230
140
115
Parameter
Condition
Maximum “ON” Resistance
≤85°C
≤125°C
Unit
W
DRon
Maximum Difference in “ON”
Resistance Between Any Two
Channels in the Same Package
Vin = VIL or VIH;
VIS = 1/2 (VCC − VEE);
IS ≤ 2.0 mA
4.5
4.5
6.0
0.0
− 4.5
− 6.0
30
12
10
35
15
12
40
18
14
Ioff
Maximum Off−Channel Leakage
Current, Any One Channel
Vin = VIL or VIH;
VIO = VCC − VEE;
Switch Off (Figure 3)
6.0
− 6.0
0.1
0.5
1.0
Maximum Off−ChannelHC4051A Vin = VIL or VIH;
Leakage Current,
HC4052A VIO = VCC − VEE;
Common Channel
HC4053A Switch Off (Figure 4)
6.0
6.0
6.0
− 6.0
− 6.0
− 6.0
0.2
0.1
0.1
2.0
1.0
1.0
4.0
2.0
2.0
Maximum On−ChannelHC4051A Vin = VIL or VIH;
Leakage Current,
HC4052A Switch−to−Switch =
Channel−to−Channel HC4053A VCC − VEE; (Figure 5)
6.0
6.0
6.0
− 6.0
− 6.0
− 6.0
0.2
0.1
0.1
2.0
1.0
1.0
4.0
2.0
2.0
mA
Ion
W
mA
AC CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6 ns)
VCC
V
Guaranteed Limit
−55 to 25°C
≤85°C
≤125°C
Unit
tPLH,
tPHL
Maximum Propagation Delay, Channel−Select to Analog Output
(Figure 9)
2.0
3.0
4.5
6.0
270
90
59
45
320
110
79
65
350
125
85
75
ns
tPLH,
tPHL
Maximum Propagation Delay, Analog Input to Analog Output
(Figure 10)
2.0
3.0
4.5
6.0
40
25
12
10
60
30
15
13
70
32
18
15
ns
tPLZ,
tPHZ
Maximum Propagation Delay, Enable to Analog Output
(Figure 11)
2.0
3.0
4.5
6.0
160
70
48
39
200
95
63
55
220
110
76
63
ns
tPZL,
tPZH
Maximum Propagation Delay, Enable to Analog Output
(Figure 11)
2.0
3.0
4.5
6.0
245
115
49
39
315
145
69
58
345
155
83
67
ns
Symbol
Parameter
Cin
Maximum Input Capacitance, Channel−Select or Enable Inputs
10
10
10
pF
CI/O
Maximum Capacitance
Analog I/O
35
35
35
pF
Common O/I: HC4051A
HC4052A
HC4053A
130
80
50
130
80
50
130
80
50
Feed−through
1.0
1.0
1.0
(All Switches Off)
Typical @ 25°C, VCC = 5.0 V, VEE = 0 V
CPD
Power Dissipation Capacitance (Figure 13)*
HC4051A
HC4052A
HC4053A
* Used to determine the no−load dynamic power consumption: P D = CPD VCC2 f + ICC VCC .
www.onsemi.com
5
45
80
45
pF
MC74HC4051A, MC74HC4052A, MC74HC4053A
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)
Symbol
BW
−
−
Parameter
Condition
Maximum On−Channel Bandwidth
or Minimum Frequency Response
(Figure 6)
fin = 1MHz Sine Wave; Adjust fin Voltage
to Obtain 0dBm at VOS; Increase fin
Frequency Until dB Meter Reads −3dB;
RL = 50W, CL = 10pF
Off−Channel Feed−through
Isolation (Figure 7)
Feedthrough Noise.
Channel−Select Input to Common
I/O (Figure 8)
−
Crosstalk Between Any Two
Switches (Figure 12)
(Test does not apply to HC4051A)
THD
VCC
V
Total Harmonic Distortion
(Figure 14)
Limit*
VEE
V
25°C
‘52
‘53
80
80
80
95
95
95
120
120
120
2.25
4.50
6.00
−2.25
−4.50
−6.00
fin = Sine Wave; Adjust fin Voltage to
Obtain 0dBm at VIS
fin = 10kHz, RL = 600W, CL = 50pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
−50
−50
−50
fin = 1.0MHz, RL = 50W, CL = 10pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
−40
−40
−40
Vin ≤ 1MHz Square Wave (tr = tf = 6ns);
Adjust RL at Setup so that IS = 0A;
Enable = GND
RL = 600W, CL = 50pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
25
105
135
RL = 10kW, CL = 10pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
35
145
190
fin = Sine Wave; Adjust fin Voltage to
Obtain 0dBm at VIS
fin = 10kHz, RL = 600W, CL = 50pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
−50
−50
−50
fin = 1.0MHz, RL = 50W, CL = 10pF
2.25
4.50
6.00
−2.25
−4.50
−6.00
−60
−60
−60
fin = 1kHz, RL = 10kW, CL = 50pF
THD = THDmeasured − THDsource
VIS = 4.0VPP sine wave
VIS = 8.0VPP sine wave
VIS = 11.0VPP sine wave
Unit
‘51
MHz
dB
mVPP
dB
%
2.25
4.50
6.00
−2.25
−4.50
−6.00
0.10
0.08
0.05
*Limits not tested. Determined by design and verified by qualification.
180
160
250
Ron , ON RESISTANCE (OHMS)
Ron , ON RESISTANCE (OHMS)
300
200
125°C
150
25°C
-55°C
100
50
140
120
125°C
100
80
25°C
60
-55°C
40
20
0
0
0.25
0.5
0.75
1.0
1.25
1.5
1.75
2.0
0
2.25
0
0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 1a. Typical On Resistance, VCC − VEE = 2.0 V
Figure 1b. Typical On Resistance, VCC − VEE = 3.0 V
www.onsemi.com
6
120
105
100
90
80
Ron , ON RESISTANCE (OHMS)
Ron , ON RESISTANCE (OHMS)
MC74HC4051A, MC74HC4052A, MC74HC4053A
125°C
60
25°C
40
-55°C
20
0
75
125°C
60
25°C
45
-55°C
30
15
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
0
4.5
0
0.5
Figure 1c. Typical On Resistance, VCC − VEE = 4.5 V
3.0 3.5
4.0
4.5 5.0 5.5 6.0
60
70
Ron , ON RESISTANCE (OHMS)
Ron , ON RESISTANCE (OHMS)
2.0 2.5
Figure 1d. Typical On Resistance, VCC − VEE = 6.0 V
80
60
50
125°C
40
30
25°C
20
-55°C
10
0
1.0 1.5
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
0
1
2
3
4
5
6
7
8
50
125°C
40
25°C
30
-55°C
20
10
0
0
9
1
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
2
3
4
5
8
9
10
11
12
Figure 1f. Typical On Resistance, VCC − VEE = 12.0 V
PLOTTER
-
7
VIS, INPUT VOLTAGE (VOLTS), REFERENCED TO VEE
Figure 1e. Typical On Resistance, VCC − VEE = 9.0 V
PROGRAMMABLE
POWER
SUPPLY
6
MINI COMPUTER
DC ANALYZER
+
VCC
DEVICE
UNDER TEST
ANALOG IN
COMMON OUT
VEE
GND
Figure 2. On Resistance Test Set−Up
www.onsemi.com
7
MC74HC4051A, MC74HC4052A, MC74HC4053A
VCC
VCC
VCC
16
VEE
ANALOG I/O
OFF
A
VCC
VIH
OFF
VCC
COMMON O/I
OFF
NC
OFF
VIH
6
7
8
VEE
COMMON O/I
6
7
8
VEE
Figure 3. Maximum Off Channel Leakage Current,
Any One Channel, Test Set−Up
Figure 4. Maximum Off Channel Leakage Current,
Common Channel, Test Set−Up
VCC
VCC
VCC
16
A
VEE
fin
dB
METER
ON
N/C
COMMON O/I
OFF
VOS
16
0.1mF
ON
VCC
VCC
16
VEE
RL
CL*
ANALOG I/O
VIL
6
7
8
6
7
8
VEE
VEE
Figure 5. Maximum On Channel Leakage Current,
Channel to Channel, Test Set−Up
VCC
VIS
fin
VCC
dB
METER
OFF
RL
Figure 6. Maximum On Channel Bandwidth,
Test Set−Up
VOS
16
0.1mF
*Includes all probe and jig capacitance
CL*
16
RL
ON/OFF
COMMON O/I
ANALOG I/O
RL
OFF/ON
RL
RL
6
7
8
VEE
VIL or VIH
VCC
GND
CHANNEL SELECT
Vin ≤ 1 MHz
tr = tf = 6 ns
6
7
8
VEE
TEST
POINT
CL*
VCC
11
CHANNEL SELECT
*Includes all probe and jig capacitance
*Includes all probe and jig capacitance
Figure 7. Off Channel Feedthrough Isolation,
Test Set−Up
Figure 8. Feedthrough Noise, Channel Select to
Common Out, Test Set−Up
www.onsemi.com
8
MC74HC4051A, MC74HC4052A, MC74HC4053A
VCC
VCC
16
VCC
CHANNEL
SELECT
ON/OFF
50%
COMMON O/I
ANALOG I/O
OFF/ON
GND
tPLH
TEST
POINT
CL*
tPHL
ANALOG
OUT
6
7
8
50%
CHANNEL SELECT
*Includes all probe and jig capacitance
Figure 9a. Propagation Delays, Channel Select
to Analog Out
Figure 9b. Propagation Delay, Test Set−Up Channel
Select to Analog Out
VCC
16
VCC
ANALOG
IN
COMMON O/I
ANALOG I/O
ON
50%
TEST
POINT
CL*
GND
tPHL
tPLH
ANALOG
OUT
6
7
8
50%
*Includes all probe and jig capacitance
Figure 10a. Propagation Delays, Analog In
to Analog Out
tf
tr
90%
50%
10%
ENABLE
tPZL
ANALOG
OUT
tPLZ
1
VCC
GND
VCC
VCC
HIGH
IMPEDANCE
10%
POSITION 1 WHEN TESTING tPHZ AND tPZH
POSITION 2 WHEN TESTING tPLZ AND tPZL
2
16
1
TEST
POINT
ON/OFF
CL*
VOL
tPHZ
ENABLE
90%
1kW
ANALOG I/O
2
50%
tPZH
ANALOG
OUT
Figure 10b. Propagation Delay, Test Set−Up
Analog In to Analog Out
VOH
50%
6
7
8
HIGH
IMPEDANCE
Figure 11a. Propagation Delays, Enable to
Analog Out
Figure 11b. Propagation Delay, Test Set−Up
Enable to Analog Out
www.onsemi.com
9
MC74HC4051A, MC74HC4052A, MC74HC4053A
VCC
VIS
A
VCC
16
RL
fin
16
VOS
ON/OFF
ON
COMMON O/I
NC
ANALOG I/O
0.1mF
OFF/ON
OFF
VEE
RL
RL
CL*
RL
CL*
6
7
8
VEE
VCC
6
7
8
11
CHANNEL SELECT
*Includes all probe and jig capacitance
Figure 12. Crosstalk Between Any Two
Switches, Test Set−Up
Figure 13. Power Dissipation Capacitance,
Test Set−Up
0
VIS
VCC
0.1mF
fin
ON
CL*
-20
TO
DISTORTION
METER
-30
-40
dB
RL
FUNDAMENTAL FREQUENCY
-10
VOS
16
-50
DEVICE
-60
6
7
8
VEE
SOURCE
-70
-80
*Includes all probe and jig capacitance
-90
- 100
1.0
2.0
3.125
FREQUENCY (kHz)
Figure 14a. Total Harmonic Distortion, Test Set−Up
Figure 14b. Plot, Harmonic Distortion
APPLICATIONS INFORMATION
outputs to VCC or GND through a low value resistor helps
minimize crosstalk and feed−through noise that may be
picked up by an unused switch.
Although used here, balanced supplies are not a
requirement. The only constraints on the power supplies are
that:
VCC − GND = 2 to 6 volts
VEE − GND = 0 to −6 volts
VCC − VEE = 2 to 12 volts
and VEE ≤ GND
When voltage transients above VCC and/or below VEE are
anticipated on the analog channels, external Germanium or
Schottky diodes (Dx) are recommended as shown in Figure
16. These diodes should be able to absorb the maximum
anticipated current surges during clipping.
The Channel Select and Enable control pins should be at
VCC or GND logic levels. VCC being recognized as a logic
high and GND being recognized as a logic low. In this
example:
VCC = +5V = logic high
GND = 0V = logic low
The maximum analog voltage swings are determined by
the supply voltages VCC and VEE. The positive peak analog
voltage should not exceed VCC. Similarly, the negative peak
analog voltage should not go below VEE. In this example,
the difference between VCC and VEE is ten volts. Therefore,
using the configuration of Figure 15, a maximum analog
signal of ten volts peak−to−peak can be controlled. Unused
analog inputs/outputs may be left floating (i.e., not
connected). However, tying unused analog inputs and
www.onsemi.com
10
MC74HC4051A, MC74HC4052A, MC74HC4053A
VCC
+5V
16
+5V
ANALOG
SIGNAL
-5V
ON
6
7
8
Dx
+5V
ANALOG
SIGNAL
VCC
16
Dx
Dx
VEE
VEE
7
8
-5V
VEE
Figure 15. Application Example
Figure 16. External Germanium or
Schottky Clipping Diodes
+5V
+5V
16
+5V
ANALOG
SIGNAL
VEE
ON/OFF
6
7
8
VEE
Dx
ON/OFF
-5V
TO EXTERNAL CMOS
CIRCUITRY 0 to 5V
DIGITAL SIGNALS
11
10
9
VCC
ANALOG
SIGNAL
+5V
*
R
R
11
10
9
+5V
+5V
VEE
VEE
16
ANALOG
SIGNAL
ON/OFF
+5V
ANALOG
SIGNAL
R
VEE
+5V
6
7
8
LSTTL/NMOS
CIRCUITRY
VEE
* 2K ≤ R ≤ 10K
a. Using Pull−Up Resistors
11
10
9
LSTTL/NMOS
CIRCUITRY
HCT
BUFFER
b. Using HCT Interface
Figure 17. Interfacing LSTTL/NMOS to CMOS Inputs
A
11
13
LEVEL
SHIFTER
14
B
10
15
LEVEL
SHIFTER
12
C
9
1
LEVEL
SHIFTER
5
ENABLE
6
2
LEVEL
SHIFTER
4
3
Figure 18. Function Diagram, HC4051A
www.onsemi.com
11
X0
X1
X2
X3
X4
X5
X6
X7
X
MC74HC4051A, MC74HC4052A, MC74HC4053A
A
10
12
LEVEL
SHIFTER
14
B
9
15
LEVEL
SHIFTER
11
13
ENABLE
6
1
LEVEL
SHIFTER
5
2
4
Figure 19. Function Diagram, HC4052A
A
11
3
13
LEVEL
SHIFTER
12
14
B
10
1
LEVEL
SHIFTER
2
15
C
9
3
LEVEL
SHIFTER
5
4
ENABLE
6
LEVEL
SHIFTER
Figure 20. Function Diagram, HC4053A
www.onsemi.com
12
X0
X1
X2
X3
X
Y0
Y1
Y2
Y3
Y
X1
X0
X
Y1
Y0
Y
Z1
Z0
Z
MC74HC4051A, MC74HC4052A, MC74HC4053A
ORDERING INFORMATION
Device
Package
MC74HC4051ADG
48 Units / Rail
MC74HC4051ADR2G
NLV74HC4051ADR2G*
Shipping†
2500 Units / Tape & Reel
SOIC−16
(Pb−Free)
2500 Units / Tape & Reel
MC74HC4051AADR2G
2500 Units / Tape & Reel
NLV74HC4051AADR2G*
2500 Units / Tape & Reel
MC74HC4051ADWG
MC74HC4051ADWR2G
48 Units / Rail
SOIC−16 WIDE
(Pb−Free)
NLVHC4051ADWR2G*
1000 Units / Tape & Reel
MC74HC4051ADTG
MC74HC4051ADTR2G
NLVHC4051ADTR2G*
96 Units / Rail
TSSOP−16
(Pb−Free)
NLVHC4051AADTR2G*
NLVHC4051AMNTWG*
(In Development)
QFN16
(Pb−Free)
MC74HC4052ADWR2G
NLV74HC4052ADTRG*
SOIC−16 WIDE
(Pb−Free)
TSSOP−16
(Pb−Free)
3000 Units / Tape & Reel
2500 Units / Tape & Reel
48 Units / Rail
SOIC−16 WIDE
(Pb−Free)
NLV74HC4053ADWR2G*
1000 Units / Tape & Reel
1000 Units / Tape & Reel
1000 Units / Tape & Reel
MC74HC4053ADTG
MC74HC4053ADTR2G
2500 Units / Tape & Reel
2500 Units / Tape & Reel
MC74HC4053ADWG
MC74HC4053ADWR2G
2500 Units / Tape & Reel
48 Units / Rail
SOIC−16
(Pb−Free)
NLV74HC4053ADR2G*
NLV74HC4053ADWRG*
48 Units / Rail
1000 Units / Tape & Reel
2500 Units / Tape & Reel
QFN16
(Pb−Free)
MC74HC4053ADG
MC74HC4053ADR2G
2500 Units / Tape & Reel
96 Units / Rail
NLVHC4052ADTR2G*
NLVHC4052AMNTWG*
(In Development)
3000 Units / Tape & Reel
2500 Units / Tape & Reel
MC74HC4052ADTG
MC74HC4052ADTR2G
2500 Units / Tape & Reel
48 Units / Rail
SOIC−16
(Pb−Free)
NLV74HC4052ADR2G*
MC74HC4052ADWG
2500 Units / Tape & Reel
2500 Units / Tape & Reel
MC74HC4052ADG
MC74HC4052ADR2G
1000 Units / Tape & Reel
96 Units / Rail
TSSOP−16
(Pb−Free)
NLVHC4053ADTR2G*
2500 Units / Tape & Reel
2500 Units / Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable.
www.onsemi.com
13
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
QFN16, 2.5x3.5, 0.5P
CASE 485AW−01
ISSUE O
1
SCALE 2:1
D
PIN ONE
REFERENCE
A
B
ÉÉÉ
ÉÉÉ
ÉÉÉ
DETAIL A
ALTERNATE TERMINAL
CONSTRUCTIONS
E
TOP VIEW
MOLD CMPD
DETAIL B
ALTERNATE
CONSTRUCTIONS
A
DETAIL B
(A3)
0.10 C
NOTE 4
C
SIDE VIEW
XXXX
ALYWG
G
SEATING
PLANE
0.15 C A B
XXXX = Specific Device Code
A
= Assembly Location
L
= Wafer Lot
Y
= Year
W
= Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
D2
16X
L
K
8
10
DETAIL A
0.15 C A B
E2
16X
2
15
e
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.20 REF
0.20
0.30
2.50 BSC
0.85
1.15
3.50 BSC
1.85
2.15
0.50 BSC
0.20
--0.35
0.45
--0.15
GENERIC MARKING
DIAGRAM*
A1
0.08 C
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSIONS b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.15 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
DIM
A
A1
A3
b
D
D2
E
E2
e
K
L
L1
ÇÇÇ
ÇÇÇ
ÉÉÉ
ÉÉÉ
EXPOSED Cu
0.15 C
2X
L
L1
0.15 C
2X
16X
L
DATE 11 DEC 2008
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
b
0.10 C A B
1
0.05 C
NOTE 3
SOLDERING FOOTPRINT*
e/2
3.80
BOTTOM VIEW
2.10
0.50
PITCH
2.80 1.10
1
16X
0.60
16X
0.30
PACKAGE
OUTLINE
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
DOCUMENT NUMBER:
DESCRIPTION:
98AON36347E
QFN16, 2.5X3.5, 0.5P
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOIC−16
CASE 751B−05
ISSUE K
DATE 29 DEC 2006
SCALE 1:1
−A−
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL CONDITION.
9
−B−
1
P
8 PL
0.25 (0.010)
8
M
B
S
G
R
K
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
16 PL
0.25 (0.010)
M
T B
S
A
S
STYLE 1:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
COLLECTOR
BASE
EMITTER
NO CONNECTION
EMITTER
BASE
COLLECTOR
COLLECTOR
BASE
EMITTER
NO CONNECTION
EMITTER
BASE
COLLECTOR
EMITTER
COLLECTOR
STYLE 2:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
CATHODE
ANODE
NO CONNECTION
CATHODE
CATHODE
NO CONNECTION
ANODE
CATHODE
CATHODE
ANODE
NO CONNECTION
CATHODE
CATHODE
NO CONNECTION
ANODE
CATHODE
STYLE 3:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
COLLECTOR, DYE #1
BASE, #1
EMITTER, #1
COLLECTOR, #1
COLLECTOR, #2
BASE, #2
EMITTER, #2
COLLECTOR, #2
COLLECTOR, #3
BASE, #3
EMITTER, #3
COLLECTOR, #3
COLLECTOR, #4
BASE, #4
EMITTER, #4
COLLECTOR, #4
STYLE 4:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
STYLE 5:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
DRAIN, DYE #1
DRAIN, #1
DRAIN, #2
DRAIN, #2
DRAIN, #3
DRAIN, #3
DRAIN, #4
DRAIN, #4
GATE, #4
SOURCE, #4
GATE, #3
SOURCE, #3
GATE, #2
SOURCE, #2
GATE, #1
SOURCE, #1
STYLE 6:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
CATHODE
ANODE
ANODE
ANODE
ANODE
ANODE
ANODE
ANODE
ANODE
STYLE 7:
PIN 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
SOURCE N‐CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE P‐CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
SOURCE P‐CH
SOURCE P‐CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
GATE N‐CH
COMMON DRAIN (OUTPUT)
COMMON DRAIN (OUTPUT)
SOURCE N‐CH
COLLECTOR, DYE #1
COLLECTOR, #1
COLLECTOR, #2
COLLECTOR, #2
COLLECTOR, #3
COLLECTOR, #3
COLLECTOR, #4
COLLECTOR, #4
BASE, #4
EMITTER, #4
BASE, #3
EMITTER, #3
BASE, #2
EMITTER, #2
BASE, #1
EMITTER, #1
SOLDERING FOOTPRINT
8X
6.40
16X
1
1.12
16
16X
0.58
1.27
PITCH
8
9
DIMENSIONS: MILLIMETERS
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42566B
SOIC−16
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOIC−16 WB
CASE 751G
ISSUE E
1
SCALE 1:1
DATE 08 OCT 2021
GENERIC
MARKING DIAGRAM*
16
XXXXXXXXXXX
XXXXXXXXXXX
AWLYYWWG
1
XXXXX
A
WL
YY
WW
G
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “G”, may
or may not be present. Some products may
not follow the Generic Marking.
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42567B
SOIC−16 WB
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
TSSOP−16
CASE 948F−01
ISSUE B
16
DATE 19 OCT 2006
1
SCALE 2:1
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
S
V
S
K
S
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
N
8
1
0.25 (0.010)
M
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL
IN EXCESS OF THE K DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
D
H
G
DETAIL E
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
GENERIC
MARKING DIAGRAM*
SOLDERING FOOTPRINT
7.06
16
XXXX
XXXX
ALYW
1
1
0.65
PITCH
16X
0.36
DOCUMENT NUMBER:
DESCRIPTION:
16X
1.26
98ASH70247A
TSSOP−16
DIMENSIONS: MILLIMETERS
XXXX
A
L
Y
W
G or G
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative