0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NLVVHC1G00DFT2G

NLVVHC1G00DFT2G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SC70-5

  • 描述:

    IC GATE NAND 1CH 2-INP SC-70

  • 数据手册
  • 价格&库存
NLVVHC1G00DFT2G 数据手册
MC74VHC1G00 Single 2-Input NAND Gate The MC74VHC1G00 is an advanced high speed CMOS 2−input NAND gate fabricated with silicon gate CMOS technology. The internal circuit is composed of multiple stages, including a buffer output which provides high noise immunity and stable output. The MC74VHC1G00 input structure provides protection when voltages up to 7.0 V are applied, regardless of the supply voltage. This allows the MC74VHC1G00 to be used to interface 5.0 V circuits to 3.0 V circuits. http://onsemi.com MARKING DIAGRAMS Features • 5 High Speed: tPD = 3.0 ns (Typ) at VCC = 5.0 V Low Power Dissipation: ICC = 1 mA (Max) at TA = 25°C Power Down Protection Provided on Inputs Balanced Propagation Delays Pin and Function Compatible with Other Standard Logic Families Chip Complexity: FETs = 56 NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable These Devices are Pb−Free and are RoHS Compliant M • • • • • • • SC−88A / SOT−353 / SC−70 DF SUFFIX CASE 419A V1M G G 1 5 V1 M G G TSOP−5 / SOT−23 / SC−59 DT SUFFIX CASE 483 V1 M G 1 = Device Code = Date Code* = Pb−Free Package (Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location. 5 1 IN B VCC PIN ASSIGNMENT 1 2 IN A 3 GND 4 OUT Y IN B 2 IN A 3 GND 4 OUT Y 5 VCC Figure 1. Pinout (Top View) FUNCTION TABLE Inputs IN A & IN B OUT Y Output A B Y L L H H L H L H H H H L Figure 2. Logic Symbol ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. © Semiconductor Components Industries, LLC, 2014 May, 2014 − Rev. 21 1 Publication Order Number: MC74VHC1G00/D MC74VHC1G00 MAXIMUM RATINGS Symbol Parameter Value Unit VCC DC Supply Voltage *0.5 to +7.0 V VIN DC Input Voltage −0.5 to +7.0 V *0.5 to VCC +0.5 V VOUT DC Output Voltage IIK DC Input Diode Current −20 mA IOK DC Output Diode Current ±20 mA IOUT DC Output Sink Current ±12.5 mA ICC DC Supply Current per Supply Pin ±25 mA *65 to +150 °C TSTG Storage Temperature Range TL Lead Temperature, 1 mm from Case for 10 Seconds 260 °C TJ Junction Temperature Under Bias +150 °C qJA Thermal Resistance SC70−5/SC−88A (Note 1) TSOP−5 350 230 °C/W PD Power Dissipation in Still Air at 85°C SC70−5/SC−88A TSOP−5 150 200 mW MSL Moisture Sensitivity FR Flammability Rating VESD ILATCHUP Level 1 Oxygen Index: 28 to 34 ESD Withstand Voltage UL 94 V−0 @ 0.125 in Human Body Model (Note 2) Machine Model (Note 3) Charged Device Model (Note 4) Latchup Performance Above VCC and Below GND at 125°C (Note 5) > 2000 > 200 N/A V ±500 mA Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Measured with minimum pad spacing on an FR4 board, using 10 mm−by−1 inch, 2−ounce copper trace with no air flow. 2. Tested to EIA/JESD22−A114−A. 3. Tested to EIA/JESD22−A115−A. 4. Tested to JESD22−C101−A. 5. Tested to EIA/JESD78. RECOMMENDED OPERATING CONDITIONS Min Max Unit VCC DC Supply Voltage 2.0 5.5 V VIN DC Input Voltage 0.0 5.5 V DC Output Voltage 0.0 VCC V *55 +125 °C 0 0 100 20 ns/V Operating Temperature Range VCC = 3.3 V $ 0.3 V VCC = 5.0 V $ 0.5 V Time, Hours Time, Years 80 1,032,200 117.8 90 419,300 47.9 100 178,700 20.4 110 79,600 9.4 120 37,000 4.2 130 17,800 2.0 140 8,900 1.0 FAILURE RATE OF PLASTIC = CERAMIC UNTIL INTERMETALLICS OCCUR TJ = 80°C Junction Temperature °C NORMALIZED FAILURE RATE DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES TJ = 110°C Input Rise and Fall Time TJ = 120°C tr , tf TJ = 130°C TA TJ = 90°C VOUT Parameter TJ = 100°C Symbol 1 1 10 100 1000 TIME, YEARS Figure 3. Failure Rate vs. Time Junction Temperature http://onsemi.com 2 MC74VHC1G00 DC ELECTRICAL CHARACTERISTICS Symbol Parameter Test Conditions (V) Min 1.5 2.1 3.15 3.85 VIH Minimum High−Level Input Voltage 2.0 3.0 4.5 5.5 VIL Maximum Low−Level Input Voltage 2.0 3.0 4.5 5.5 VOH Minimum High−Level Output Voltage VIN = VIH or VIL VOL Maximum Low−Level Output Voltage VIN = VIH or VIL TA v 855C TA = 255C VCC Typ Max Min 1.5 2.1 3.15 3.85 0.5 0.9 1.35 1.65 VIN = VIH or VIL IOH = −50 mA 2.0 3.0 4.5 1.9 2.9 4.4 VIN = VIH or VIL IOH = −4 mA IOH = −8 mA 3.0 4.5 2.58 3.94 VIN = VIH or VIL IOL = 50 mA 2.0 3.0 4.5 VIN = VIH or VIL IOL = 4 mA IOL = 8 mA Max 2.0 3.0 4.5 0.0 0.0 0.0 *555C to 1255C Min Max 1.5 2.1 3.15 3.85 0.5 0.9 1.35 1.65 V 0.5 0.9 1.35 1.65 1.9 2.9 4.4 1.9 2.9 4.4 2.48 3.80 2.34 3.66 Unit V V 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.0 4.5 0.36 0.36 0.44 0.44 0.52 0.52 V IIN Maximum Input Leakage Current VIN = 5.5 V or GND 0 to 5.5 ±0.1 ±1.0 ±1.0 mA ICC Maximum Quiescent Supply Current VIN = VCC or GND 5.5 1.0 10 40 mA AC ELECTRICAL CHARACTERISTICS Input tr = tf = 3.0 ns TA v 855C TA = 255C *555C to 1255C ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ Typ Max VCC = 3.3 $ 0.3 V CL = 15 pF CL = 50 pF 4.5 5.6 7.9 11.4 VCC = 5.0 $ 0.5 V CL = 15 pF CL = 50 pF 3.0 3.8 5.5 Symbol Parameter Test Conditions tPLH, tPHL Maximum Propagation Delay, Input A or B to Y CIN Min Maximum Input Capacitance Min Max Min Max Unit 9.5 13.0 11.0 15.5 ns 5.5 7.5 6.5 8.5 8.0 10.0 10 10 10 pF Typical @ 25°C, VCC = 5.0 V CPD 10 Power Dissipation Capacitance (Note 6) pF 6. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD  VCC  fin + ICC. CPD is used to determine the no−load dynamic power consumption; PD = CPD  VCC2  fin + ICC  VCC. http://onsemi.com 3 MC74VHC1G00 VCC A or B 50% GND tPLH Y tPHL 50% VCC Figure 4. Switching Waveforms VCC OUTPUT INPUT CL* *Includes all probe and jig capacitance. A 1−MHz square input wave is recommended for propagation delay tests. Figure 5. Test Circuit ORDERING INFORMATION Device Package Shipping† MC74VHC1G00DFT1G MC74VHC1G00DFT2G SC70−5/SC−88A/SOT−353 (Pb−Free) 3000 / Tape & Reel NLVVHC1G00DFT2G* MC74VHC1G00DTT1G NLVVHC1G00DTT1G* SOT23−5/TSOP−5/SC59−5 (Pb−Free) †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. http://onsemi.com 4 MC74VHC1G00 PACKAGE DIMENSIONS SC−88A (SC−70−5/SOT−353) CASE 419A−02 ISSUE L A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A−01 OBSOLETE. NEW STANDARD 419A−02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. G 5 4 −B− S 1 2 DIM A B C D G H J K N S 3 D 5 PL 0.2 (0.008) M B M N INCHES MIN MAX 0.071 0.087 0.045 0.053 0.031 0.043 0.004 0.012 0.026 BSC --0.004 0.004 0.010 0.004 0.012 0.008 REF 0.079 0.087 MILLIMETERS MIN MAX 1.80 2.20 1.15 1.35 0.80 1.10 0.10 0.30 0.65 BSC --0.10 0.10 0.25 0.10 0.30 0.20 REF 2.00 2.20 J C SOLDER FOOTPRINT H 0.50 0.0197 K 0.65 0.025 0.65 0.025 0.40 0.0157 1.9 0.0748 http://onsemi.com 5 SCALE 20:1 mm Ǔ ǒinches MC74VHC1G00 PACKAGE DIMENSIONS TSOP−5 CASE 483−02 ISSUE K NOTE 5 2X NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. 5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY. D 5X 0.20 C A B 0.10 T M 2X 0.20 T B 5 1 4 2 S 3 K B DETAIL Z G A A TOP VIEW DIM A B C D G H J K M S DETAIL Z J C 0.05 H SIDE VIEW C SEATING PLANE END VIEW MILLIMETERS MIN MAX 3.00 BSC 1.50 BSC 0.90 1.10 0.25 0.50 0.95 BSC 0.01 0.10 0.10 0.26 0.20 0.60 0_ 10 _ 2.50 3.00 SOLDERING FOOTPRINT* 0.95 0.037 1.9 0.074 2.4 0.094 1.0 0.039 0.7 0.028 SCALE 10:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 6 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC74VHC1G00/D
NLVVHC1G00DFT2G 价格&库存

很抱歉,暂时无法提供与“NLVVHC1G00DFT2G”相匹配的价格&库存,您可以联系我们找货

免费人工找货