0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
NSV40300MDR2G

NSV40300MDR2G

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SOT96-1

  • 描述:

    TRANS 2PNP 40V 3A 8SOIC

  • 数据手册
  • 价格&库存
NSV40300MDR2G 数据手册
NSS40300MDR2G, NSV40300MDR2G Dual Matched 40 V, 6.0 A, Low VCE(sat) PNP Transistor These transistors are part of the ON Semiconductor e2PowerEdge family of Low VCE(sat) transistors. They are assembled to create a pair of devices highly matched in all parameters, including ultra low saturation voltage VCE(sat), high current gain and Base/Emitter turn on voltage. Typical applications are current mirrors, differential amplifiers, DC−DC converters and power management in portable and battery powered products such as cellular and cordless phones, PDAs, computers, printers, digital cameras and MP3 players. Other applications are low voltage motor controls in mass storage products such as disc drives and tape drives. In the automotive industry they can be used in air bag deployment and in the instrument cluster. The high current gain allows e2PowerEdge devices to be driven directly from PMU’s control outputs, and the Linear Gain (Beta) makes them ideal components in analog amplifiers. Features      Current Gain Matching to 10% Base Emitter Voltage Matched to 2 mV AEC−Q101 Qualified and PPAP Capable NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements These are Pb−Free Devices* http://onsemi.com 40 VOLTS 6.0 AMPS PNP LOW VCE(sat) TRANSISTOR EQUIVALENT RDS(on) 80 mW SOIC−8 CASE 751 STYLE 29 COLLECTOR 7,8 1 BASE COLLECTOR 5,6 3 BASE 2 EMITTER 4 EMITTER MARKING DIAGRAM 8 MAXIMUM RATINGS (TA = 25C) Symbol Max Unit Collector-Emitter Voltage VCEO −40 Vdc Collector-Base Voltage VCBO −40 Vdc Emitter-Base Voltage VEBO −7.0 Vdc IC −3.0 A Collector Current − Peak ICM −6.0 A Electrostatic Discharge ESD Rating Collector Current − Continuous HBM Class 3B MM Class C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  Semiconductor Components Industries, LLC, 2011 November, 2011 − Rev. 2 1 1 P40300 A Y WW G P40300 AYWWG G = Specific Device Code = Assembly Location = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION Package Shipping† NSS40300MDR2G SOIC−8 (Pb−Free) 2,500 / Tape & Reel NSV40300MDR2G SOIC−8 (Pb−Free) 2,500 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. Publication Order Number: NSS40300MD/D NSS40300MDR2G, NSV40300MDR2G THERMAL CHARACTERISTICS Characteristic Symbol Max Unit 576 4.6 mW mW/C SINGLE HEATED Total Device Dissipation (Note 1) TA = 25C Derate above 25C PD Thermal Resistance Junction−to−Ambient (Note 1) RqJA Total Device Dissipation (Note 2) TA = 25C Derate above 25C PD Thermal Resistance Junction−to−Ambient (Note 2) RqJA 217 676 5.4 185 C/W mW mW/C C/W DUAL HEATED (Note 3) Total Device Dissipation (Note 1) TA = 25C Derate above 25C PD Thermal Resistance Junction−to−Ambient (Note 1) RqJA Total Device Dissipation (Note 2) TA = 25C Derate above 25C PD Thermal Resistance Junction−to−Ambient (Note 2) RqJA Junction and Storage Temperature Range TJ, Tstg 1. FR−4 @ 10 mm2, 1 oz. copper traces, still air. 2. FR−4 @ 100 mm2, 1 oz. copper traces, still air. 3. Dual heated values assume total power is the sum of two equally powered devices. http://onsemi.com 2 653 5.2 191 783 6.3 160 −55 to +150 mW mW/C C/W mW mW/C C/W C NSS40300MDR2G, NSV40300MDR2G ELECTRICAL CHARACTERISTICS (TA = 25C unless otherwise noted) Characteristic Symbol Min Typ Max −40 − − −40 − − −7.0 − − − − −0.1 − − −0.1 250 220 180 150 0.9 380 340 300 230 0.99 − − − − − − − − − −0.013 −0.075 −0.130 −0.135 −0.017 −0.095 −0.170 −0.170 − −0.780 −0.900 − − −0.660 0.3 −0.750 2.0 100 − − Unit OFF CHARACTERISTICS Collector −Emitter Breakdown Voltage (IC = −10 mAdc, IB = 0) V(BR)CEO Collector −Base Breakdown Voltage (IC = −0.1 mAdc, IE = 0) V(BR)CBO Emitter −Base Breakdown Voltage (IE = −0.1 mAdc, IC = 0) V(BR)EBO Collector Cutoff Current (VCB = −40 Vdc, IE = 0) ICBO Emitter Cutoff Current (VEB = −6.0 Vdc) IEBO Vdc Vdc Vdc mAdc mAdc ON CHARACTERISTICS DC Current Gain (Note 4) (IC = −10 mA, VCE = −2.0 V) (IC = −500 mA, VCE = −2.0 V) (IC = −1.0 A, VCE = −2.0 V) (IC = −2.0 A, VCE = −2.0 V) (IC = −2.0 A, VCE = −2.0 V) (Note 5) hFE hFE(1)/hFE(2) Collector −Emitter Saturation Voltage (Note 4) (IC = −0.1 A, IB = −0.010 A) (IC = −1.0 A, IB = −0.100 A) (IC = −1.0 A, IB = −0.010 A) (IC = −2.0 A, IB = −0.200 A) VCE(sat) Base −Emitter Saturation Voltage (Note 4) (IC = −1.0 A, IB = −0.01 A) VBE(sat) Base −Emitter Turn−on Voltage (Note 4) (IC = −0.1 A, VCE = −2.0 V) (IC = −0.1 A, VCE = −2.0 V) (Note 6) VBE(on) VBE(1) − VBE(2) V V V mV Cutoff Frequency (IC = −100 mA, VCE = −5.0 V, f = 100 MHz) fT MHz Input Capacitance (VEB = −0.5 V, f = 1.0 MHz) Cibo − 250 300 pF Output Capacitance (VCB = −3.0 V, f = 1.0 MHz) Cobo − 50 65 pF td − − 60 ns Rise (VCC = −30 V, IC = −750 mA, IB1 = −15 mA) tr − − 120 ns Storage (VCC = −30 V, IC = −750 mA, IB1 = −15 mA) ts − − 400 ns Fall (VCC = −30 V, IC = −750 mA, IB1 = −15 mA) tf − − 130 ns SWITCHING CHARACTERISTICS Delay (VCC = −30 V, IC = −750 mA, IB1 = −15 mA) 4. Pulsed Condition: Pulse Width = 300 msec, Duty Cycle  2%. 5. hFE(1)/hFE(2) is the ratio of one transistor compared to the other transistor within the same package. The smaller hFE is used as numerator. 6. VBE(1) − VBE(2) is the absolute difference of one transistor compared to the other transistor within the same package. http://onsemi.com 3 NSS40300MDR2G, NSV40300MDR2G TYPICAL CHARACTERISTICS 0.30 150C 0.20 −55C 0.15 25C 0.10 0.05 0 0.001 0.01 0.1 1 10 300 −55C (5.0 V) 200 −55C (2.0 V) 100 0 0.001 0.01 0.1 1 0 0.001 0.01 0.1 1 10 IC/IB = 10 1.0 0.9 −55C 0.8 25C 0.7 0.6 150C 0.5 0.4 0.001 0.01 0.1 1 IC, COLLECTOR CURRENT (A) Figure 3. DC Current Gain vs. Collector Current Figure 4. Base Emitter Saturation Voltage vs. Collector Current 10 2.0 VCE = −2.0 V 0.7 VCE(sat), COLLECTOR−EMITTER VOLTAGE (V) VBE(on), BASE−EMITTER TURN−ON VOLTAGE (V) 0.05 IC, COLLECTOR CURRENT (A) 0.8 −55C 25C 0.6 0.5 150C 0.4 0.3 0.2 0.10 0.3 10 1.0 0.9 0.15 1.1 25C (2.0 V) 400 0.20 150C Figure 2. Collector Emitter Saturation Voltage vs. Collector Current 25C (5.0 V) 500 25C Figure 1. Collector Emitter Saturation Voltage vs. Collector Current 150C (2.0 V) 600 −55C IC, COLLECTOR CURRENT (A) 150C (5.0 V) 700 IC/IB = 100 0.25 IC, COLLECTOR CURRENT (A) 800 hFE, DC CURRENT GAIN VCE(sat), COLLECTOR−EMITTER SATURATION VOLTAGE (V) IC/IB = 10 VBE(sat), BASE−EMITTER SATURATION VOLTAGE (V) VCE(sat), COLLECTOR−EMITTER SATURATION VOLTAGE (V) 0.25 0.001 0.01 0.1 1 10 1.8 100 mA 1.6 1A 3A 2A 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 0.0001 0.001 0.01 IC, COLLECTOR CURRENT (A) Ib, BASE CURRENT (A) Figure 5. Base Emitter Turn−On Voltage vs. Collector Current Figure 6. Saturation Region http://onsemi.com 4 0.1 NSS40300MDR2G, NSV40300MDR2G TYPICAL CHARACTERISTICS 100 Cobo, OUTPUT CAPACITANCE (pF) 300 250 200 Cibo (pF) 150 100 0 1 2 3 4 5 90 80 70 60 50 Cobo (pF) 40 30 6 0 5 10 15 20 25 30 VEB, EMITTER BASE VOLTAGE (V) Vcb, COLLECTOR BASE VOLTAGE (V) Figure 7. Input Capacitance Figure 8. Output Capacitance 10 1 ms 1s 10 ms 100 ms 1.0 IC (A) Cibo, INPUT CAPACITANCE (pF) 350 0.1 Thermal Limit 0.01 0.001 Single Pulse Test at TA = 25C 0.01 0.1 1.0 10 VCE (Vdc) Figure 9. Safe Operating Area http://onsemi.com 5 100 35 40 MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS SOIC−8 NB CASE 751−07 ISSUE AK 8 1 SCALE 1:1 −X− DATE 16 FEB 2011 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751−01 THRU 751−06 ARE OBSOLETE. NEW STANDARD IS 751−07. A 8 5 S B 0.25 (0.010) M Y M 1 4 −Y− K G C N X 45 _ SEATING PLANE −Z− 0.10 (0.004) H M D 0.25 (0.010) M Z Y S X J S 8 8 1 1 IC 4.0 0.155 XXXXX A L Y W G IC (Pb−Free) = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package XXXXXX AYWW 1 1 Discrete XXXXXX AYWW G Discrete (Pb−Free) XXXXXX = Specific Device Code A = Assembly Location Y = Year WW = Work Week G = Pb−Free Package *This information is generic. Please refer to device data sheet for actual part marking. Pb−Free indicator, “G” or microdot “G”, may or may not be present. Some products may not follow the Generic Marking. 1.270 0.050 SCALE 6:1 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 8 8 XXXXX ALYWX G XXXXX ALYWX 1.52 0.060 0.6 0.024 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 GENERIC MARKING DIAGRAM* SOLDERING FOOTPRINT* 7.0 0.275 DIM A B C D G H J K M N S mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. STYLES ON PAGE 2 DOCUMENT NUMBER: DESCRIPTION: 98ASB42564B SOIC−8 NB Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 1 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com SOIC−8 NB CASE 751−07 ISSUE AK DATE 16 FEB 2011 STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. COLLECTOR 4. EMITTER 5. EMITTER 6. BASE 7. BASE 8. EMITTER STYLE 2: PIN 1. COLLECTOR, DIE, #1 2. COLLECTOR, #1 3. COLLECTOR, #2 4. COLLECTOR, #2 5. BASE, #2 6. EMITTER, #2 7. BASE, #1 8. EMITTER, #1 STYLE 3: PIN 1. DRAIN, DIE #1 2. DRAIN, #1 3. DRAIN, #2 4. DRAIN, #2 5. GATE, #2 6. SOURCE, #2 7. GATE, #1 8. SOURCE, #1 STYLE 4: PIN 1. ANODE 2. ANODE 3. ANODE 4. ANODE 5. ANODE 6. ANODE 7. ANODE 8. COMMON CATHODE STYLE 5: PIN 1. DRAIN 2. DRAIN 3. DRAIN 4. DRAIN 5. GATE 6. GATE 7. SOURCE 8. SOURCE STYLE 6: PIN 1. SOURCE 2. DRAIN 3. DRAIN 4. SOURCE 5. SOURCE 6. GATE 7. GATE 8. SOURCE STYLE 7: PIN 1. INPUT 2. EXTERNAL BYPASS 3. THIRD STAGE SOURCE 4. GROUND 5. DRAIN 6. GATE 3 7. SECOND STAGE Vd 8. FIRST STAGE Vd STYLE 8: PIN 1. COLLECTOR, DIE #1 2. BASE, #1 3. BASE, #2 4. COLLECTOR, #2 5. COLLECTOR, #2 6. EMITTER, #2 7. EMITTER, #1 8. COLLECTOR, #1 STYLE 9: PIN 1. EMITTER, COMMON 2. COLLECTOR, DIE #1 3. COLLECTOR, DIE #2 4. EMITTER, COMMON 5. EMITTER, COMMON 6. BASE, DIE #2 7. BASE, DIE #1 8. EMITTER, COMMON STYLE 10: PIN 1. GROUND 2. BIAS 1 3. OUTPUT 4. GROUND 5. GROUND 6. BIAS 2 7. INPUT 8. GROUND STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1 STYLE 12: PIN 1. SOURCE 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 13: PIN 1. N.C. 2. SOURCE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 14: PIN 1. N−SOURCE 2. N−GATE 3. P−SOURCE 4. P−GATE 5. P−DRAIN 6. P−DRAIN 7. N−DRAIN 8. N−DRAIN STYLE 15: PIN 1. ANODE 1 2. ANODE 1 3. ANODE 1 4. ANODE 1 5. CATHODE, COMMON 6. CATHODE, COMMON 7. CATHODE, COMMON 8. CATHODE, COMMON STYLE 16: PIN 1. EMITTER, DIE #1 2. BASE, DIE #1 3. EMITTER, DIE #2 4. BASE, DIE #2 5. COLLECTOR, DIE #2 6. COLLECTOR, DIE #2 7. COLLECTOR, DIE #1 8. COLLECTOR, DIE #1 STYLE 17: PIN 1. VCC 2. V2OUT 3. V1OUT 4. TXE 5. RXE 6. VEE 7. GND 8. ACC STYLE 18: PIN 1. ANODE 2. ANODE 3. SOURCE 4. GATE 5. DRAIN 6. DRAIN 7. CATHODE 8. CATHODE STYLE 19: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. MIRROR 2 7. DRAIN 1 8. MIRROR 1 STYLE 20: PIN 1. SOURCE (N) 2. GATE (N) 3. SOURCE (P) 4. GATE (P) 5. DRAIN 6. DRAIN 7. DRAIN 8. DRAIN STYLE 21: PIN 1. CATHODE 1 2. CATHODE 2 3. CATHODE 3 4. CATHODE 4 5. CATHODE 5 6. COMMON ANODE 7. COMMON ANODE 8. CATHODE 6 STYLE 22: PIN 1. I/O LINE 1 2. COMMON CATHODE/VCC 3. COMMON CATHODE/VCC 4. I/O LINE 3 5. COMMON ANODE/GND 6. I/O LINE 4 7. I/O LINE 5 8. COMMON ANODE/GND STYLE 23: PIN 1. LINE 1 IN 2. COMMON ANODE/GND 3. COMMON ANODE/GND 4. LINE 2 IN 5. LINE 2 OUT 6. COMMON ANODE/GND 7. COMMON ANODE/GND 8. LINE 1 OUT STYLE 24: PIN 1. BASE 2. EMITTER 3. COLLECTOR/ANODE 4. COLLECTOR/ANODE 5. CATHODE 6. CATHODE 7. COLLECTOR/ANODE 8. COLLECTOR/ANODE STYLE 25: PIN 1. VIN 2. N/C 3. REXT 4. GND 5. IOUT 6. IOUT 7. IOUT 8. IOUT STYLE 26: PIN 1. GND 2. dv/dt 3. ENABLE 4. ILIMIT 5. SOURCE 6. SOURCE 7. SOURCE 8. VCC STYLE 29: PIN 1. BASE, DIE #1 2. EMITTER, #1 3. BASE, #2 4. EMITTER, #2 5. COLLECTOR, #2 6. COLLECTOR, #2 7. COLLECTOR, #1 8. COLLECTOR, #1 STYLE 30: PIN 1. DRAIN 1 2. DRAIN 1 3. GATE 2 4. SOURCE 2 5. SOURCE 1/DRAIN 2 6. SOURCE 1/DRAIN 2 7. SOURCE 1/DRAIN 2 8. GATE 1 DOCUMENT NUMBER: DESCRIPTION: 98ASB42564B SOIC−8 NB STYLE 27: PIN 1. ILIMIT 2. OVLO 3. UVLO 4. INPUT+ 5. SOURCE 6. SOURCE 7. SOURCE 8. DRAIN STYLE 28: PIN 1. SW_TO_GND 2. DASIC_OFF 3. DASIC_SW_DET 4. GND 5. V_MON 6. VBULK 7. VBULK 8. VIN Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red. PAGE 2 OF 2 onsemi and are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others. © Semiconductor Components Industries, LLC, 2019 www.onsemi.com onsemi, , and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com ◊ TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800−282−9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative
NSV40300MDR2G 价格&库存

很抱歉,暂时无法提供与“NSV40300MDR2G”相匹配的价格&库存,您可以联系我们找货

免费人工找货
NSV40300MDR2G
  •  国内价格 香港价格
  • 2500+3.025822500+0.37536
  • 5000+2.828315000+0.35085

库存:2478

NSV40300MDR2G
  •  国内价格 香港价格
  • 1+9.733671+1.20746
  • 10+6.5590810+0.81365
  • 100+4.55003100+0.56443
  • 500+3.64644500+0.45234
  • 1000+3.349981000+0.41557

库存:2478