0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
STK541UC60C-E

STK541UC60C-E

  • 厂商:

    ONSEMI(安森美)

  • 封装:

    SIP18

  • 描述:

    MODULE IPM INVERTER 3PH 23SIP

  • 数据手册
  • 价格&库存
STK541UC60C-E 数据手册
ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and       and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others. STK541UC60C-E Intelligent Power Module (IPM) 600 V, 10 A Overview This “Inverter IPM” is highly integrated device containing all High Voltage (HV) control from HV-DC to 3-phase outputs in a single SIP module (Single-In line Package). Output stage uses IGBT / FRD technology and implements Under Voltage Protection (UVP) and Over Current Protection (OCP) with a Fault Detection output flag. Internal Boost diodes are provided for high side gate boost drive. www.onsemi.com Function  Single control power supply due to Internal bootstrap circuit for high side pre-driver circuit  All control input and status output are at low voltage levels directly compatible with microcontrollers  Built-in cross conduction prevention Certification  UL Recognized (File Number : E339285) Specifications Absolute Maximum Ratings at Tc = 25C Parameter Symbol Supply voltage VCC Collector-emitter voltage VCE Output current Io Conditions P to N, surge < 500 V *1 Ratings Unit 450 V P to U,V,W or U,V,W to N 600 V P, N, U,V,W terminal current ±10 A P, N, U,V,W terminal current at Tc = 100C ±5 A Output peak current Iop P, N, U,V,W terminal current for a Pulse width of 1ms ±20 A Pre-driver voltage VD1, 2, 3, 4 VB1 to U, VB2 to V, VB3 to W, VDD to VSS 20 V Input signal voltage VIN HIN1, 2, 3, LIN1, 2, 3 0.3 to 7 V *2 FAULT terminal voltage VFAULT FAULT terminal 0.3 to VDD V Maximum power dissipation Pd IGBT per channel 22 W Junction temperature Tj IGBT,FRD 150 C Storage temperature Tstg 40 to +125 C Operating substrate temperature Tc Tightening torque IPM case temperature Case mounting screws *3 40 to +100 C 0.9 Nm Isolation Voltage Vis 50 Hz sine wave AC 1 minute *4 2000 Reference voltage is “VSS” terminal voltage unless otherwise specified. *1 : Surge voltage developed by the switching operation due to the wiring inductance between “P” and “N” terminal. *2 : VD1 = VB1 to U, VD2 = VB2 to V, VD3 = VB3 to W, VD4 = VDD to VSS terminal voltage. *3 : Flatness of the heat-sink should be less than 0.15 mm. *4 : Test conditions : AC 2500 V, 1 second. VRMS Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. ORDERING INFORMATION See detailed ordering and shipping information on page 12 of this data sheet. © Semiconductor Components Industries, LLC, 2016 December 2016 - Rev. 2 1 Publication Order Number : STK541UC60C-E/D STK541UC60C-E Electrical Characteristics at Tc  25C, VD1, VD2, VD3, VD4 = 15 V Parameter Symbol Conditions Test circuit min typ max Unit - - 0.1 mA mA Power output section Collector-emitter cut-off current ICE VCE = 600 V Bootstrap diode reverse current IR(BD) VR(BD) Collector to emitter saturation voltage VCE(SAT) Fig.1 Ic = 10 A Tj = 25C Upper side Ic = 5 A Tj = 100C Upper side IF = 10 A Tj = 25C IF = 5 A Tj = 100C Upper side Diode forward voltage VF Junction to case thermal resistance θj-c(T) IGBT θj-c(D) FRD Lower side *1 - - 0.1 - 1.4 2.3 - 1.7 2.6 - 1.3 - Lower side *1 - 1.5 - Upper side - 1.3 2.2 Lower side *1 Fig.2 Fig.3 Lower side *1 - 1.6 2.5 - 1.2 - - 1.4 - - - 5.5 - - 6.5 V V C/W Control (Pre-driver) section VD1, 2, 3 = 15 V Pre-driver power dissipation ID High level Input voltage Vin H Low level Input voltage Vin L Input threshold voltage hysteresis Vinth(hys) Logic 0 input leakage current IIN+ Logic 1 input leakage current IIN- FAULT terminal sink current IoSD FAULT : ON/VFAULT = 0.1 V FAULT clear time FLTCLR Fault output latch time VCC and VS undervoltage positive going threshold VCC and VS undervoltage negative going threshold VCC and VS undervoltage hysteresis Over current protection level VCCUP VSUP VCCUVH VSUVHISD PW = 100 μs Output level for current monitor ISO Io = 10 A VD4 = 15 V Fig.4 HIN1, HIN2, HIN3, LIN1, LIN2, LIN3 to VSS - 0.08 0.4 - 1.6 4.0 2.5 - - mA V - - 0.8 V 0.5 0.8 - V VIN = +3.3 V 76 118 160 A VIN = 0 V 97 150 203 A - 2 - mA 6 9 12 ms 10.5 11.1 11.7 V 10.3 10.9 11.5 V 0.14 0.2 - V 10 - 17 A 0.30 0.33 0.36 V Unit VCCUN VSUN Fig.5 Reference voltage is “VSS” terminal voltage unless otherwise specified. *1 : The lower side’s VCE(SAT) and VF include a loss by the shunt resistance Electrical Characteristics at Tc  25C, VD1, VD2, VD3, VD4 = 15 V, VCC = 300 V, L = 3.9 mH Parameter Symbol Conditions Test circuit min typ max 0.3 0.6 1.3 - 1.0 1.8 - 240 - J - 220 - J - 460 - J Switching Character Switching time tON tOFF Turn-on switching loss Eon Turn-off switching loss Eoff Total switching loss Etot Io = 10 A Fig.6 Io = 5 A Fig.6 Turn-on switching loss Eon Turn-off switching loss Eoff Total switching loss Etot Diode reverse recovery energy Erec Diode reverse recovery time trr IF = 5 A, P = 400 V, Tc = 100C Reverse bias safe operating area RBSOA Io = 20 A, VCE = 450 V Short circuit safe operating area SCSOA VCE = 400 V, Tc = 100C Io = 5 A, Tc = 100C Fig.6 s - 300 - J - 260 - J - 560 - J - 17 - J - 62 - ns - s Full square 4 - Reference voltage is “VSS” terminal voltage unless otherwise specified. Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. www.onsemi.com 2 STK541UC60C-E Notes 1. The pre-drive power supply low voltage protection has approximately 0.2 V of hysteresis and operates as follows. Upper side : The gate is turned off and will return to regular operation when recovering to the normal voltage, but the latch will continue till the input signal will turn ‘high’. Lower side : The gate is turned off and will automatically reset when recovering to normal voltage. It does not depend on input signal voltage. 2. The pre-drive low voltage protection is the feature to protect devices when the pre-driver supply voltage falls due to an operating malfunction. www.onsemi.com 3 STK541UC60C-E Equivalent Block Diagram VB1(8) U(9) VB2(5) V(6) VB3(2) W(3) P(11) U.V. U.V. U.V. Shunt Resistor N (13) Level Level Level Shifter Shifter Shifter HIN1(14) HIN2(15) HIN3(16) LIN1(17) Logic Logic Logic LIN2(18) LIN3(19) FAULT(20) ISO(21) VDD(22) VSS(23) Latch Over-Current VDD-Under Voltage www.onsemi.com 4 Latch Time About 9ms ( Automatic Reset ) STK541UC60C-E Module Pin-Out Description Pin Name Description 1  Without Pin 2 VB3 High Side Floating Supply Voltage 3 3 W,VS3 Output 3 - High Side Floating Supply Offset Voltage 4  Without Pin 5 VB2 High Side Floating Supply voltage 2 6 V,VS2 Output 2 - High Side Floating Supply Offset Voltage 7  Without Pin 8 VB1 High Side Floating Supply voltage 1 9 U,VS1 Output 1 - High Side Floating Supply Offset Voltage 10  Without Pin 11 P Positive Bus Input Voltage 12  Without Pin 13 N Negative Bus Input Voltage 14 HIN1 Logic Input High Side Gate Driver - Phase U 15 HIN2 Logic Input High Side Gate Driver - Phase V 16 HIN3 Logic Input High Side Gate Driver - Phase W 17 LIN1 Logic Input Low Side Gate Driver - Phase U 18 LIN2 Logic Input Low Side Gate Driver - Phase V 19 LIN3 Logic Input Low Side Gate Driver - Phase W 20 FAULT Fault output 21 ISO Current monitor output 22 VDD +15 V Main Supply 23 VSS Negative Main Supply www.onsemi.com 5 STK541UC60C-E Test Circuit The tested phase U+ shows the upper side of the U phase and U shows the lower side of the U phase. ■ ICE / IR(BD) ICE U+ V+ W+ U- V- W- M 11 11 11 9 6 3 N 9 6 3 13 13 13 8 M A VD1=15V 9 5 VD2=15V 6 VCE 2 U(BD) V(BD) W(BD) M 8 5 2 N 23 23 23 VD3=15V 3 22 VD4=15V 23 N Fig.1 8 ■ VCE(SAT) (test by pulse) M VD1=15V 9 U+ V+ W+ U- V- W- M 11 11 11 9 6 3 N 9 6 3 13 13 13 m 14 15 16 17 18 19 5 VD2=15V 6 V Ic 2 VD3=15V VCE(SAT) 3 22 VD4=15V m 23 N Fig.2 ■ VF (test by pulse) M U+ V+ W+ U- V- W- M 11 11 11 9 6 3 N 9 6 3 13 13 13 V N Fig.3 ■ ID VD1 VD2 VD3 VD4 M 8 5 2 22 N 9 6 3 23 ID A M VD* N Fig.4 www.onsemi.com 6 VF IF STK541UC60C-E ■ ISD 8 9 VD1=15V 9 Input signal (0 to 5 V) 5 VD2=15V 6 Io 2 VD3=15V Io 3 22 ISD VD4=15V Input signal 100 μs 17 23 13 Fig.5 ■ Switching time (The circuit is a representative example of the lower side U phase.) 8 11 VD1=15V 9 Input signal (0 to 5 V) 5 VD2=15V 6 9 2 90% VCC CS VD3=15V 3 22 Io VD4=15V Io 10% Input signal tON 17 23 13 tOFF Fig.6 www.onsemi.com 7 STK541UC60C-E Input / Output Timing Chart VBS undervoltage protection reset signal OFF HIN1,2,3 ON LIN1,2,3 *2 VDD VDD undervoltage protection reset voltage *3 VBS undervoltage protection reset voltage VB1,2,3 *4 -------------------------------------------------------ISD operation current level------------------------------------------------------- N terminal (BUS line) Current FAULT terminal Voltage (at pulled-up) ON *1 Upper U, V, W OFF *1 Lower U ,V, W Automatically reset after protection (typ.9ms) Fig.7 Notes *1 : Diagram shows the prevention of shoot-through via control logic. More deadtime to account for switching delay needs to be added externally. *2 : If lower VDD drops all gate output signals will go low and cut off all of 6 IGBT outputs. part. When VDD rises the operation will resume immediately. *3 : When the upper side gate voltage at VB1, VB2 and VB3 drops only the corresponding upper side output is turned off. The outputs return to normal operation immediately after the upper side gat voltage rises. *4 : In case of over current detection all IGBT’s are turned off and the FAULT output is asserted. Normal operation resumes in 6 to 12 ms after the over current condition is removed. www.onsemi.com 8 STK541UC60C-E Logic level table P(11) INPUT Upper IGBT HIN1,2,3 (14,15,16) IC Driver HIN LIN OCP H L OFF OFF ON N OFF L H OFF ON OFF P OFF L L OFF OFF OFF High Impedance OFF H H OFF OFF OFF High Impedance OFF X X ON OFF OFF High Impedance ON U,V,W (9,6,3) LIN1,2,3 (17,18,19) OUTPUT Upper IGBT Lower IGBT Lower IGBT U,V,W FAULT N(13) Fig. 8 Sample Application Circuit CB 8 9 CB CB 11 13 14 15 16 17 18 19 20 21 22 23 CS CD Control Logic VCC VSS VDD ISO FAULT LIN3 LIN2 LIN1 HIN3 HIN2 HIN1 N U VB1 V 5 6 P 2 3 VB2 W VB3 STK541UC60C-E VDD=15V CI Fig. 9 Recommended Operating Conditions at Ta = 25C Item Supply voltage Pre-driver supply voltage Symbol Conditions VCC P to N VD1,2,3 VB1 to U,VB2 to V,VB3 to W VD4 VDD to VSS *1 min typ max Unit V 0 280 450 12.5 15 17.5 13.5 15 16.5 V PWM frequency fPWM  1 - 20 kHz Dead time DT Turn-off to turn-on 2 - - μs Allowable input pulse width PWIN ON and OFF 1 - - μs Tightening torque  ‘M3’ type screw 0.6 - 0.9 Nm *1 : Pre-drive power supply (VD4 = 15 ±1.5 V) must have the capacity of Io = 20 mA (DC), 0.5A (Peak). Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. www.onsemi.com 9 STK541UC60C-E Usage Precaution 1. This IPM includes bootstrap diode and resistors. Therefore, by adding a capacitor “CB”, a high side drive voltage is generated; each phase requires an individual bootstrap capacitor. The recommended value of CB is in the range of 1 to 47 μF, however this value needs to be verified prior to production. If selecting the capacitance more than 47 μF (±20%), connect a resistor (about 20 Ω) in series between each 3-phase upper side power supply terminals (VB1, 2, 3) and each bootstrap capacitor. When not using the bootstrap circuit, each upper side pre-drive power supply requires an external independent power supply. 2. It is essential that wiring length between terminals in the snubber circuit be kept as short as possible to reduce the effect of surge voltages. Recommended value of “CS” is in the range of 0.1 to 10 μF. 3. “ISO” (pin 21) is terminal for current monitor. High current may flow into that course when short-circuiting the “ISO” terminal and “VSS” terminal. Please do not connect them. 4. “FAULT” (pin 20) is open DRAIN output terminal (Active Low). Pull up resistor is recommended more than 6.8 kΩ. 5. Pull up resistor of 100 kΩ is provided internally at the signal input terminals. 6. The over-current protection feature is not intended to protect in exceptional fault condition. An external fuse is recommended for safety. 7. When input pulse width is less than 1.0 μs, an output may not react to the pulse (Both ON signal and OFF signal). This data shows the example of the application circuit, does not guarantee a design as the mass production set. Maximum RMS Output Current / Phase (A) The characteristic of PWM switching frequency 14 12 10 8 6 4 2 0 0 2 4 6 8 10 12 14 16 18 PWM Switching Frequency (kHz) Fig. 10 Maximum sinusoidal phase current as function of switching frequency at Tc = 100C, VCC = 400 V www.onsemi.com 10 20 STK541UC60C-E CB capacitor value calculation for bootstrap circuit Calculate conditions Parameter Symbol Value Unit Upper side power supply VBS 15 V Total gate charge of output power IGBT at 15 V QG 89 nC Upper limit power supply low voltage protection UVLO 12 V Upper side power dissipation IDMAX 400 μA ON time required for CB voltage to fall from 15V to UVLO TONMAX - s Capacitance calculation formula Thus, the following formula are true VBS  CB  QG  IDMAX  TONMAX = UVLO  CB therefore, CB = (QG + IDMAX  TONMAX) / (VBS  UVLO) The relationship between TONMAX and CB becomes as follows. CB is recommended to be approximately 3 times the value calculated above. The recommended value of CB is in the range of 1 to 47 μF, however, this value needs to be verified prior to production. CB vs Tonmax Bootstrap Capacitance CB [uF] 100 10 1 0.1 0.01 0.1 1 10 Tonmax [ms] Fig. 11 Tonmax - CB characteristic www.onsemi.com 11 100 1000 STK541UC60C-E PACKAGE DIMENSIONS unit : mm The tolerances of length are +/ 0.5 mm unless otherwise specified. missing pin : 1, 4, 7, 10, 12 note2 note3 4DB00 note1 1 23 note 1 : Mark for No.1 pin identification. note 2 : The form of a character in this drawing differs from that of IPM. note 3 : This indicates the lot code. The form of a character in this drawing differs from that of IPM. ORDERING INFORMATION Device STK541UC60C-E Package Shipping (Qty / Packing) SIP23 56x21.8 (Pb-Free) 8 / Tube ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. www.onsemi.com 12
STK541UC60C-E 价格&库存

很抱歉,暂时无法提供与“STK541UC60C-E”相匹配的价格&库存,您可以联系我们找货

免费人工找货