UC3844B, UC3845B,
UC2844B, UC2845B
High Performance
Current Mode Controllers
The UC3844B, UC3845B series are high performance fixed frequency
current mode controllers. They are specifically designed for Off−Line
and dc−dc converter applications offering the designer a cost−effective
solution with minimal external components. These integrated circuits
feature an oscillator, a temperature compensated reference, high gain
error amplifier, current sensing comparator, and a high current totem pole
output ideally suited for driving a power MOSFET.
Also included are protective features consisting of input and
reference undervoltage lockouts each with hysteresis, cycle−by−cycle
current limiting, a latch for single pulse metering, and a flip−flop
which blanks the output off every other oscillator cycle, allowing
output deadtimes to be programmed from 50% to 70%.
These devices are available in an 8−pin dual−in−line and surface
mount (SOIC−8) plastic package as well as the 14−pin plastic surface
mount (SOIC−14). The SOIC−14 package has separate power and
ground pins for the totem pole output stage.
The UCX844B has UVLO thresholds of 16V (on) and 10V (off), ideally
suited for off−line converters. The UCX845B is tailored for lower voltage
applications having UVLO thresholds of 8.5V (on) and 7.6V (off).
Features
•
•
•
•
•
•
•
•
•
•
•
•
Trimmed Oscillator for Precise Frequency Control
Oscillator Frequency Guaranteed at 250 kHz
Current Mode Operation to 500 kHz Output Switching Frequency
Output Deadtime Adjustable from 50% to 70%
Automatic Feed Forward Compensation
Latching PWM for Cycle−By−Cycle Current Limiting
Internally Trimmed Reference with Undervoltage Lockout
High Current Totem Pole Output
Undervoltage Lockout with Hysteresis
Low Startup and Operating Current
These Devices are Pb−Free and are RoHS Compliant
NCV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
VCC
Vref
8(14)
5.0V
Reference
R
R
Vref
Undervoltage
Lockout
8
1
SOIC−14
D SUFFIX
CASE 751A
14
1
SOIC−8
D1 SUFFIX
CASE 751
8
1
PIN CONNECTIONS
Compensation
Voltage Feedback
Current Sense
RT/CT
1
8
2
7
3
6
4
5
(Top View)
Compensation
NC
Voltage Feedback
NC
Current Sense
NC
RT/CT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
Vref
VCC
Output
GN
D
Vref
NC
VCC
VC
Output
GND
Power Ground
(Top View)
VC
7(11)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 15 of this data sheet.
Oscillator
4(7)
Latching
PWM
Voltage
Feedback
Input
Output/
Compensation
VCC
Undervoltage
Lockout
PDIP−8
N SUFFIX
CASE 626
Output
RT/CT
2(3)
7(12)
http://onsemi.com
6(10)
Power
Ground
5(8)
Current
Sense Input
Error
Amplifier
DEVICE MARKING INFORMATION
See general marking information in the device marking
section on page 16 of this data sheet.
3(5)
1(1)
GND
5(9)
Pin numbers in parenthesis are for the D suffix SOIC-14 package.
Figure 1. Simplified Block Diagram
© Semiconductor Components Industries, LLC, 2013
August, 2013 − Rev. 11
1
Publication Order Number:
UC3844B/D
UC3844B, UC3845B, UC2844B, UC2845B
MAXIMUM RATINGS
Rating
Symbol
Value
Bias and Driver Voltages (Zero Series Impedance, see also Total Device spec) (Note 1)
VCC, VC
36
V
Total Power Supply and Zener Current
(ICC + IZ)
30
mA
Output Current, Source or Sink (Note 2)
IO
1.0
A
Output Energy (Capacitive Load per Cycle)
W
5.0
mJ
Current Sense and Voltage Feedback Inputs
Vin
− 0.3 to + 5.5
V
Error Amp Output Sink Current
IO
10
mA
PD
RqJA
862
145
mW
°C/W
PD
RqJA
702
178
mW
°C/W
PD
RqJA
1.25
100
W
°C/W
TJ
+150
°C
TA
0 to +70
−25 to +85
−40 to +105
°C
Power Dissipation and Thermal Characteristics
D Suffix, Plastic Package, SOIC−14 Case 751A
Maximum Power Dissipation @ TA = 25°C
Thermal Resistance, Junction−to−Air
D1 Suffix, Plastic Package, SOIC−8 Case 751
Maximum Power Dissipation @ TA = 25°C
Thermal Resistance, Junction−to−Air
N Suffix, Plastic Package, Case 626
Maximum Power Dissipation @ TA = 25°C
Thermal Resistance, Junction−to−Air
Operating Junction Temperature
Operating Ambient Temperature
UC3844B, UC3845B
UC2844B, UC2845B
UC3844BV, UC3845BV
Unit
Storage Temperature Range
Tstg
− 65 to +150
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. The voltage is clamped by a zener diode (see page 9 Under Voltage Lockout section). Therefore this voltage may be exceeded as long as
the total power supply and zener current is not exceeded.
2. Maximum package power dissipation limits must be observed.
3. This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per JEDEC Standard
JESD22-A114B, Machine Model Method 200 V per JEDEC Standard JESD22-A115-A
4. This device contains latch-up protection and exceeds 100 mA per JEDEC Standard JESD78
ELECTRICAL CHARACTERISTICS (VCC = 15 V [Note 5], RT = 10 k, CT = 3.3 nF. For typical values TA = 25°C, for min/max values
TA is the operating ambient temperature range that applies [Note 6], unless otherwise noted.)
UC284xB
Characteristic
UC384xB, xBV, NCV384xBV
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Vref
4.95
5.0
5.05
4.9
5.0
5.1
V
Line Regulation (VCC = 12 V to 25 V)
Regline
−
2.0
20
−
2.0
20
mV
Load Regulation (IO = 1.0 mA to 20 mA)
Regload
−
3.0
25
−
3.0
25
mV
Temperature Stability
TS
−
0.2
−
−
0.2
−
mV/°C
Total Output Variation over Line, Load, & Temperature
Vref
4.9
−
5.1
4.82
−
5.18
V
Output Noise Voltage (f = 10 Hz to 10 kHz, TJ = 25°C)
Vn
−
50
−
−
50
−
mV
Long Term Stability (TA = 125°C for 1000 Hours)
S
−
5.0
−
−
5.0
−
mV
ISC
− 30
− 85
−180
− 30
− 85
−180
mA
fOSC
49
48
225
52
−
250
55
56
275
49
48
225
52
−
250
55
56
275
kHz
Frequency Change with Voltage (VCC = 12 V to 25 V)
DfOSC/DV
−
0.2
1.0
−
0.2
1.0
%
Frequency Change w/ Temperature (TA = Tlow to Thigh)
DfOSC/DT
−
1.0
−
−
0.5
−
%
VOSC
−
1.6
−
−
1.6
−
V
REFERENCE SECTION
Reference Output Voltage (IO = 1.0 mA, TJ = 25°C)
Output Short Circuit Current
OSCILLATOR SECTION
Frequency
TJ = 25°C
TA = Tlow to Thigh
TJ = 25°C (RT = 6.2 k, CT = 1.0 nF)
Oscillator Voltage Swing (Peak−to−Peak)
5. Adjust VCC above the Startup threshold before setting to 15 V.
6. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
Thigh = + 70°C for UC3844B, UC3845B
Tlow = 0°C for UC3844B, UC3845B
= − 25°C for UC2844B, UC2845B
= + 85°C for UC2844B, UC2845B
= − 40°C for UC384xBV, NCV384xBV
=+105°C for UC3844BV, UC3845BV
= +125°C for NCV384xBV
http://onsemi.com
2
UC3844B, UC3845B, UC2844B, UC2845B
ELECTRICAL CHARACTERISTICS (VCC = 15 V [Note 7], RT = 10 k, CT = 3.3 nF. For typical values TA = 25°C, for min/max values
TA is the operating ambient temperature range that applies [Note 8], unless otherwise noted.)
UC284xB
UC384xB, xBV,
NCV384xBV
Characteristic
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
Discharge Current (VOSC = 2.0 V)
TJ = 25°C
TA = Tlow to Thigh (UC284XB, UC384XB)
(UC384XBV)
Idischg
7.8
7.5
−
8.3
−
−
8.8
8.8
−
7.8
7.6
7.2
8.3
−
−
8.8
8.8
8.8
mA
VFB
2.45
2.5
2.55
2.42
2.5
2.58
V
IIB
−
− 0.1
−1.0
−
− 0.1
− 2.0
mA
AVOL
65
90
−
65
90
−
dB
MHz
OSCILLATOR SECTION
ERROR AMPLIFIER SECTION
Voltage Feedback Input (VO = 2.5 V)
Input Bias Current (VFB = 5.0 V)
Open Loop Voltage Gain (VO = 2.0 V to 4.0 V)
Unity Gain Bandwidth (TJ = 25°C)
BW
0.7
1.0
−
0.7
1.0
−
Power Supply Rejection Ratio (VCC = 12 V to 25 V)
PSRR
60
70
−
60
70
−
dB
Output Current − Sink (VO = 1.1 V, VFB = 2.7 V)
Output Current − Source (VO = 5.0 V, VFB = 2.3 V)
ISink
2.0
− 0.5
12
−1.0
−
−
2.0
− 0.5
12
−1.0
−
−
mA
VOH
VOL
5.0
6.2
−
5.0
6.2
−
−
−
0.8
−
1.1
−
−
−
0.8
0.8
1.1
1.2
2.85
−
3.0
−
3.15
−
2.85
2.85
3.0
3.0
3.15
3.25
0.9
−
1.0
−
1.1
−
0.9
0.85
1.0
1.0
1.1
1.1
PSRR
−
70
−
−
70
−
dB
ISource
Output Voltage Swing
High State (RL = 15 k to ground, VFB = 2.3 V)
Low State (RL = 15 k to Vref, VFB = 2.7 V)
(UC284XB, UC384XB)
(UC384XBV)
V
CURRENT SENSE SECTION
Current Sense Input Voltage Gain (Notes 9 & 10)
(UC284XB, UC384XB)
(UC384XBV)
AV
Maximum Current Sense Input Threshold (Note 9)
(UC284XB, UC384XB)
(UC384XBV)
Vth
Power Supply Rejection Ratio (VCC = 12 V to 25 V) (Note 9)
Input Bias Current
Propagation Delay (Current Sense Input to Output)
V/V
V
IIB
−
− 2.0
−10
−
− 2.0
−10
mA
tPLH(In/Out)
−
150
300
−
150
300
ns
VOL
−
−
−
13
−
12
0.1
1.6
−
13.5
−
13.4
0.4
2.2
−
−
−
−
−
−
−
13
12.9
12
0.1
1.6
1.6
13.5
−
13.4
0.4
2.2
2.3
−
−
−
OUTPUT SECTION
Output Voltage
Low State (ISink = 20 mA)
(ISink = 200 mA, UC284XB, UC384XB)
(ISink = 200 mA, UC384XBV)
High State (ISource = 20 mA, UC284XB, UC384XB)
(ISource = 20 mA, UC384XBV)
(ISource = 200 mA)
V
VOH
Output Voltage with UVLO Activated (VCC = 6.0 V, ISink = 1.0 mA)
VOL(UVLO)
−
0.1
1.1
−
0.1
1.1
V
Output Voltage Rise Time (CL = 1.0 nF, TJ = 25°C)
tr
−
50
150
−
50
150
ns
Output Voltage Fall Time (CL = 1.0 nF, TJ = 25°C)
tf
−
50
150
−
50
150
ns
UNDERVOLTAGE LOCKOUT SECTION
Startup Threshold
UCX844B, BV
UCX845B, BV
Vth
15
7.8
16
8.4
17
9.0
14.5
7.8
16
8.4
17.5
9.0
V
Minimum Operating Voltage After Turn−On
UCX844B, BV
UCX845B, BV
VCC(min)
9.0
7.0
10
7.6
11
8.2
8.5
7.0
10
7.6
11.5
8.2
V
7. Adjust VCC above the Startup threshold before setting to 15 V.
8. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
Thigh = + 70°C for UC3844B, UC3845B
Tlow = 0°C for UC3844B, UC3845B
= − 25°C for UC2844B, UC2845B
= + 85°C for UC2844B, UC2845B
= − 40°C for UC384xBV, NCV384xBV
= +105°C for UC3844BV, UC3845BV
= +125°C for NCV384xBV
9. This parameter is measured at the latch trip point with VFB = 0 V.
10. Comparator gain is defined as: AV = DV Output/Compensation
DV Current Sense Input
http://onsemi.com
3
UC3844B, UC3845B, UC2844B, UC2845B
ELECTRICAL CHARACTERISTICS (VCC = 15 V [Note 11], RT = 10 k, CT = 3.3 nF. For typical values TA = 25°C, for min/max
values TA is the operating ambient temperature range that applies [Note 12], unless otherwise noted.)
UC284xB
Characteristic
UC384xB, xBV, NCV384xBV
Symbol
Min
Typ
Max
Min
Typ
Max
DC(max)
47
−
−
48
−
−
50
−
0
47
46
−
48
48
−
50
50
0
−
0.3
0.5
−
0.3
0.5
−
12
17
−
12
17
30
36
−
30
36
−
Unit
PWM SECTION
Duty Cycle
Maximum (UC284XB, UC384XB)
Maximum (UC384XBV)
Minimum
%
DC(min)
TOTAL DEVICE
Power Supply Current
Startup (VCC = 6.5 V for UCX845B,
Startup (VCC = 14 V for UCX844B, BV)
Operating (Note 11)
ICC
Power Supply Zener Voltage (ICC = 25 mA)
VZ
mA
V
11. Adjust VCC above the Startup threshold before setting to 15 V.
12. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
Thigh = + 70°C for UC3844B, UC3845B
Tlow = 0°C for UC3844B, UC3845B
= − 25°C for UC2844B, UC2845B
= + 85°C for UC2844B, UC2845B
= − 40°C for UC384xBV, NCV384xBV
= +105°C for UC3844BV, UC3845BV
=+125°C for NCV384xBV
80
% DT, PERCENT OUTPUT DEADTIME
R T, TIMING RESISTOR (k Ω)
75
VCC = 15 V
TA = 25°C
50
20
8.0
5.0
2.0
NOTE: Output switches at
1/2 the oscillator frequency
0.8
10 k
20 k
50 k
100 k
200 k
500 k
fOSC, OSCILLATOR FREQUENCY (kHz)
70
65
60
ÄÄÄÄÄ
ÄÄÄÄÄ
ÄÄÄÄÄ
ÄÄÄÄÄ
ÄÄÄÄÄ
ÄÄÄÄÄ
2
4
1
7
55
5
6
50
10 k
1.0 M
3
1.CT = 10 nF
2.CT = 5.0 nF
3.CT = 2.0 nF
4.CT = 1.0 nF
5.CT = 500 pF
6.CT = 200 pF
7.CT = 100 pF
20 k
50 k 100 k
200 k
500 k
fOSC, OSCILLATOR FREQUENCY (kHz)
1.0 M
For R T u 5 Kf X 1.72
R TC T
Figure 2. Timing Resistor
versus Oscillator Frequency
Figure 3. Output Deadtime
versus Oscillator Frequency
VCC = 15 V
AV = -1.0
TA = 25°C
200 mV/DIV
2.5 V
VCC = 15 V
AV = -1.0
TA = 25°C
3.0 V
20 mV/DIV
2.55 V
2.5 V
2.0 V
2.45 V
0.5 ms/DIV
1.0 ms/DIV
Figure 4. Error Amp Small Signal
Transient Response
Figure 5. Error Amp Large Signal
Transient Response
http://onsemi.com
4
φ, EXCESS PHASE (DEGREES)
Vth , CURRENT SENSE INPUT THRESHOLD (V)
A VOL , OPEN LOOP VOLTAGE GAIN (dB)
UC3844B, UC3845B, UC2844B, UC2845B
0
1.2
30
1.0
60
0.8
90
0.6
20
120
0.4
0
150
0.2
180
10 M
0
100
VCC = 15 V
VO = 2.0 V to 4.0 V
RL = 100 k
TA = 25°C
80
Gain
60
40
Phase
-20
10
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
1.0 M
VCC = 15 V
TA = 25°C
TA = 125°C
TA = -55°C
0
0
VCC = 15 V
-4.0
-8.0
-12
TA = -55°C
TA = 125°C
-16
-20
TA = 25°C
-24
0
20
40
60
80
100
Iref, REFERENCE SOURCE CURRENT (mA)
120
ÄÄÄÄ
ÄÄÄÄ
110
VCC = 15 V
RL ≤ 0.1 W
90
70
50
-55
-25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
Figure 9. Reference Short Circuit Current
versus Temperature
ΔV , OUTPUT VOLTAGE CHANGE (2.0 mV/DIV)
Figure 8. Reference Voltage Change
versus Source Current
VCC = 15 V
IO = 1.0 mA to 20 mA
TA = 25°C
VCC = 12 V to 25 V
TA = 25°C
O
O
ΔV , OUTPUT VOLTAGE CHANGE (2.0 mV/DIV)
8.0
Figure 7. Current Sense Input Threshold
versus Error Amp Output Voltage
ISC , REFERENCE SHORT CIRCUIT CURRENT (mA)
Δ Vref , REFERENCE VOLTAGE CHANGE (mV)
Figure 6. Error Amp Open Loop Gain and
Phase versus Frequency
2.0
4.0
6.0
VO, ERROR AMP OUTPUT VOLTAGE (VO)
2.0 ms/DIV
2.0 ms/DIV
Figure 10. Reference Load Regulation
Figure 11. Reference Line Regulation
http://onsemi.com
5
125
0
TA = 25°C
-2.0
Source Saturation
(Load to Ground)
VCC = 15 V
80 ms Pulsed Load
120 Hz Rate
VCC = 15 V
CL = 1.0 nF
TA = 25°C
90
%
TA = -55°C
3.0
TA = -55°C
2.0
TA = 25°C
Sink Saturation
(Load to VCC)
GND
200
400
600
IO, OUTPUT LOAD CURRENT (mA)
800
50 ns/DIV
Figure 12. Output Saturation Voltage
versus Load Current
Figure 13. Output Waveform
25
20
15
5
0
0
UCX844B
10
UCX845B
100 mA/DIV
ICC, SUPPLY CURRENT
VCC = 30 V
CL = 15 pF
TA = 25°C
ICC, SUPPLY CURRENT (mA)
0
10
%
20 V/DIV
1.0
0
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ
ÄÄÄÄÄ
ÄÄÄÄÄÄÄÄ
ÄÄÄÄ
ÄÄÄÄ
ÄÄÄÄ
ÄÄÄÄ
ÄÄÄÄ
ÄÄÄÄÄÄÄÄÄ
ÄÄÄÄÄÄÄÄ
VCC
-1.0
V O , OUTPUT VOLTAGE
Vsat , OUTPUT SATURATION VOLTAGE (V)
UC3844B, UC3845B, UC2844B, UC2845B
10
100 ns/DIV
Figure 14. Output Cross Conduction
ÄÄÄÄ
ÄÄÄÄ
ÄÄÄÄ
ÄÄÄÄ
RT = 10 k
CT = 3.3 nF
VFB = 0 V
ISense = 0 V
TA = 25°C
20
30
VCC, SUPPLY VOLTAGE (V)
40
Figure 15. Supply Current versus Supply Voltage
PIN FUNCTION DESCRIPTION
Pin
8−Pin
14−Pin
Function
1
1
Compensation
2
3
Voltage
Feedback
3
5
Current Sense
4
7
RT/CT
The Oscillator frequency and maximum Output duty cycle are programmed by connecting resistor
RT to Vref and capacitor CT to ground. Oscillator operation to 1.0 kHz is possible.
GND
This pin is the combined control circuitry and power ground.
6
10
Output
7
12
VCC
This pin is the positive supply of the control IC.
8
14
Vref
This is the reference output. It provides charging current for capacitor CT through resistor RT.
8
Power
Ground
11
VC
9
GND
2,4,6,13
NC
5
Description
This pin is the Error Amplifier output and is made available for loop compensation.
This is the inverting input of the Error Amplifier. It is normally connected to the switching power
supply output through a resistor divider.
A voltage proportional to inductor current is connected to this input. The PWM uses this
information to terminate the output switch conduction.
This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced
and sunk by this pin. The output switches at one−half the oscillator frequency.
This pin is a separate power ground return that is connected back to the power source. It is used
to reduce the effects of switching transient noise on the control circuitry.
The Output high state (VOH) is set by the voltage applied to this pin. With a separate power source
connection, it can reduce the effects of switching transient noise on the control circuitry.
This pin is the control circuitry ground return and is connected back to the powersource ground.
No connection. These pins are not internally connected.
http://onsemi.com
6
UC3844B, UC3845B, UC2844B, UC2845B
OPERATING DESCRIPTION
Comparator. This guarantees that no drive pulses appear at
the Output (Pin 6) when Pin 1 is at its lowest state (VOL).
This occurs when the power supply is operating and the load
is removed, or at the beginning of a soft−start interval
(Figures 21, 22). The Error Amp minimum feedback
resistance is limited by the amplifier’s source current
(0.5 mA) and the required output voltage (VOH) to reach the
comparator’s 1.0 V clamp level:
The UC3844B, UC3845B series are high performance,
fixed frequency, current mode controllers. They are
specifically designed for Off−Line and DC−DC converter
applications offering the designer a cost−effective solution
with minimal external components. A representative block
diagram is shown in Figure 16.
Oscillator
The oscillator frequency is programmed by the values
selected for the timing components RT and CT. Capacitor CT
is charged from the 5.0 V reference through resistor RT to
approximately 2.8 V and discharged to 1.2 V by an internal
current sink. During the discharge of CT, the oscillator
generates an internal blanking pulse that holds the center
input of the NOR gate high. This causes the Output to be in
a low state, thus producing a controlled amount of output
deadtime. An internal flip−flop has been incorporated in the
UCX844/5B which blanks the output off every other clock
cycle by holding one of the inputs of the NOR gate high. This
in combination with the CT discharge period yields output
deadtimes programmable from 50% to 70%. Figure 2 shows
RT versus Oscillator Frequency and Figure 3, Output
Deadtime versus Frequency, both for given values of CT.
Note that many values of RT and CT will give the same
oscillator frequency but only one combination will yield a
specific output deadtime at a given frequency. The oscillator
thresholds are temperature compensated to within ±6%
at 50 kHz. Also, because of industry trends moving the
UC384X into higher and higher frequency applications, the
UC384XB is guaranteed to within ±10% at 250 kHz.
In many noise−sensitive applications it may be desirable
to frequency−lock the converter to an external system clock.
This can be accomplished by applying a clock signal to the
circuit shown in Figure 18. For reliable locking, the
free−running oscillator frequency should be set about 10%
less than the clock frequency. A method for multi−unit
synchronization is shown in Figure 19. By tailoring the
clock waveform, accurate Output duty cycle clamping can
be achieved to realize output deadtimes of greater than 70%.
Rf(min) ≈
3.0 (1.0 V) + 1.4 V
= 8800 W
0.5 mA
Current Sense Comparator and PWM Latch
The UC3844B, UC3845B operate as a current mode
controller, whereby output switch conduction is initiated by
the oscillator and terminated when the peak inductor current
reaches the threshold level established by the Error
Amplifier Output/Compensation (Pin 1). Thus the error
signal controls the peak inductor current on a
cycle−by−cycle basis. The Current Sense Comparator PWM
Latch configuration used ensures that only a single pulse
appears at the Output during any given oscillator cycle. The
inductor current is converted to a voltage by inserting the
ground−referenced sense resistor RS in series with the
source of output switch Q1. This voltage is monitored by the
Current Sense Input (Pin 3) and compared to a level derived
from the Error Amp Output. The peak inductor current under
normal operating conditions is controlled by the voltage at
Pin 1 where:
Ipk =
V(Pin 1) − 1.4 V
3 RS
Abnormal operating conditions occur when the power
supply output is overloaded or if output voltage sensing is
lost. Under these conditions, the Current Sense Comparator
threshold will be internally clamped to 1.0 V. Therefore the
maximum peak switch current is:
Ipk(max) =
1.0 V
RS
When designing a high power switching regulator it
becomes desirable to reduce the internal clamp voltage in order
to keep the power dissipation of RS to a reasonable level. A
simple method to adjust this voltage is shown in Figure 20. The
two external diodes are used to compensate the internal diodes,
yielding a constant clamp voltage over temperature. Erratic
operation due to noise pickup can result if there is an excessive
reduction of the Ipk(max) clamp voltage.
A narrow spike on the leading edge of the current
waveform can usually be observed and may cause the power
supply to exhibit an instability when the output is lightly
loaded. This spike is due to the power transformer
interwinding capacitance and output rectifier recovery time.
The addition of an RC filter on the Current Sense Input with
a time constant that approximates the spike duration will
usually eliminate the instability (refer to Figure 24).
Error Amplifier
A fully compensated Error Amplifier with access to the
inverting input and output is provided. It features a typical
dc voltage gain of 90 dB, and a unity gain bandwidth of
1.0 MHz with 57 degrees of phase margin (Figure 6). The
non−inverting input is internally biased at 2.5 V and is not
pinned out. The converter output voltage is typically divided
down and monitored by the inverting input. The maximum
input bias current is −2.0 mA which can cause an output
voltage error that is equal to the product of the input bias
current and the equivalent input divider source resistance.
The Error Amp Output (Pin 1) is provided for external
loop compensation (Figure 29). The output voltage is offset
by two diode drops (≈1.4 V) and divided by three before it
connects to the inverting input of the Current Sense
http://onsemi.com
7
UC3844B, UC3845B, UC2844B, UC2845B
VCC
VCC
7(12)
36V
Vref
Reference
Regulator
8(14)
R
2.5V
RT
Vin
VCC
UVLO
Internal
Bias
R
+
-
3.6V
+
-
(See
Text)
VC
7(11)
Vref
UVLO
Output
Q1
Oscillator
CT
4(7)
6(10)
T
+ 1.0mA
S
Voltage
Feedback
Input 2(3)
Output/
Compensation 1(1)
2R
Q
R
R
Error
Amplifier
Power Ground
PWM
Latch
1.0V
Current Sense Input
Current Sense
Comparator
GND
5(8)
3(5)
5(9)
Pin numbers adjacent to terminals are for the 8-pin dual-in-line package.
Pin numbers in parenthesis are for the D suffix SOIC-14 package.
= Sink Only Positive True Logic
Figure 16. Representative Block Diagram
Capacitor CT
Latch “Set"
Input
Output/
Compensation
Current Sense
Input
Latch “Reset"
Input
Output
Small RT/Large CT
Large RT/Small CT
Figure 17. Timing Diagram
http://onsemi.com
8
RS
UC3844B, UC3845B, UC2844B, UC2845B
Undervoltage Lockout
designer added flexibility in tailoring the drive voltage
independent of VCC. A Zener clamp is typically connected
to this input when driving power MOSFETs in systems
where VCC is greater than 20 V. Figure 23 shows proper
power and control ground connections in a current−sensing
power MOSFET application.
Two undervoltage lockout comparators have been
incorporated to guarantee that the IC is fully functional
before the output stage is enabled. The positive power
supply terminal (VCC) and the reference output (Vref) are
each monitored by separate comparators. Each has built−in
hysteresis to prevent erratic output behavior as their
respective thresholds are crossed. The VCC comparator
upper and lower thresholds are 16 V/10 V for the UCX844B,
and 8.4 V/7.6 V for the UCX845B. The Vref comparator
upper and lower thresholds are 3.6 V/3.4 V. The large
hysteresis and low startup current of the UCX844B makes
it ideally suited in off−line converter applications where
efficient bootstrap startup techniques are required
(Figure 30). The UCX845B is intended for lower voltage
dc−dc converter applications. A 36 V Zener is connected as
a shunt regulator from VCC to ground. Its purpose is to
protect the IC from excessive voltage that can occur during
system startup. The minimum operating voltage for the
UCX844B is 11 V and 8.2 V for the UCX845B.
Reference
The 5.0 V bandgap reference is trimmed to ±1.0%
tolerance at TJ = 25°C on the UC284XB, and ±2.0% on the
UC384XB. Its primary purpose is to supply charging current
to the oscillator timing capacitor. The reference has
short−circuit protection and is capable of providing in
excess of 20 mA for powering additional control system
circuitry.
Design Considerations
Do not attempt to construct the converter on
wire−wrap or plug−in prototype boards. High frequency
circuit layout techniques are imperative to prevent
pulse−width jitter. This is usually caused by excessive noise
pick−up imposed on the Current Sense or Voltage Feedback
inputs. Noise immunity can be improved by lowering circuit
impedances at these points. The printed circuit layout should
contain a ground plane with low−current signal and
high−current switch and output grounds returning on
separate paths back to the input filter capacitor. Ceramic
bypass capacitors (0.1 mF) connected directly to VCC, VC,
and Vref may be required depending upon circuit layout.
This provides a low impedance path for filtering the high
frequency noise. All high current loops should be kept as
short as possible using heavy copper runs to minimize
radiated EMI. The Error Amp compensation circuitry and
the converter output voltage divider should be located close
to the IC and as far as possible from the power switch and
other noise−generating components.
Output
These devices contain a single totem pole output stage that
was specifically designed for direct drive of power
MOSFETs. It is capable of up to ±1.0 A peak drive current
and has a typical rise and fall time of 50 ns with a 1.0 nF load.
Additional internal circuitry has been added to keep the
Output in a sinking mode whenever an undervoltage lockout
is active. This characteristic eliminates the need for an
external pulldown resistor.
The SOIC−14 surface mount package provides separate
pins for VC (output supply) and Power Ground. Proper
implementation will significantly reduce the level of
switching transient noise imposed on the control circuitry.
This becomes particularly useful when reducing the Ipk(max)
clamp level. The separate VC supply input allows the
Vref
8(14)
8(14)
R
RT
R
RA
Bias
Bias
R
8
RB
5.0k
6
R
4
3
Osc
CT
4(7)
0.01
External
Sync
Input
Osc
+
5
2R
47
2(3)
EA
5.0k
2
R
5.0k
C
R
Q
S
4(7)
+
7
2R
2(3)
MC1455
EA
R
1
1(1)
1(1)
5(9)
To Additional
UCX84XBs
The diode clamp is required if the Sync amplitude is large enough to cause
the bottom side of CT to go more than 300 mV below ground.
f +
Figure 18. External Clock Synchronization
1.44
(RA ) 2RB)C
D(max) +
RA
RA ) 2RB
Figure 19. External Duty Cycle Clamp and
Multi−Unit Synchronization
http://onsemi.com
9
5(9)
UC3844B, UC3845B, UC2844B, UC2845B
VCC
Vin
7(12)
5.0V Ref
8(14)
5.0V Ref
8(14)
R
Bias
+
-
Bias
R
R
+
-
7(11)
+
-
Osc
Q1
4(7)
Osc
4(7)
T
VClamp
+
R2
R
6(10)
Q
2(3)
Q
R
2R
R
EA
2(3)
1.0V
1(1)
3(5)
1(1)
RS
C
1.67
ǒRR21 ) 1Ǔ + 0.33x10
-3
5(9)
tSoft-Start ≈ 3600C in mF
5(9)
VClamp ≈
EA
1.0M
5(8)
R
2R
R
Comp/Latch
1.0V
R1
S
1.0mA
S
1.0 mA
T
+
ǒR1R)1R2R2Ǔ Where: 0 ≤ VClamp ≤ 1.0 V
V
Ipk(max) [ Clamp
RS
Figure 20. Adjustable Reduction of Clamp Level
VCC
Figure 21. Soft−Start Circuit
Vin
VCC
Vin
VPin5 [
(12)
7(12)
RSIpkrDS(on)
rDM(on) ) RS
If: SENSEFET = MTP10N10M
RS = 200
5.0V Ref
5.0V Ref
8(14)
R
Bias
R
7(11)
+
-
+
S
G
Q1
T
VClamp
T
6(10)
2(3)
1.0V
R2
1.67
ǒRR21 ) 1Ǔ
ƪ
ƫ
RS
1/4 W
Power Ground:
To Input Source
Return
Control Circuitry Ground:
To Pin (9)
Where: 0 ≤ VClamp ≤ 1.0 V
R1R2
tSoftStart + * In 1 * VC
C
R1 ) R2
3VClamp
(8)
(5)
RS
5(9)
MPSA63
M
Comp/Latch
Comp/Latch
3(5)
VClamp ≈
R
5(8)
1(1)
R1
(10)
Q
Q
R
2R
R
EA
K
S
S
1.0 mA
D SENSEFET
(11)
+
-
Osc
4(7)
Then : VPin5 [ 0.075Ipk
+
-
+
-
Virtually lossless current sensing can be achieved with the implementation
of a SENSEFETt power switch. For proper operation during over-current
conditions, a reduction of the Ipk(max) clamp level must be implemented.
Refer to Figures 20 and 22.
V
Ipk(max) [ Clamp
RS
Figure 23. Current Sensing Power MOSFET
Figure 22. Adjustable Buffered Reduction of
Clamp Level with Soft−Start
http://onsemi.com
10
UC3844B, UC3845B, UC2844B, UC2845B
VCC
Vin
7(12)
5.0V Ref
+
7(11)
+
-
Q1
T
The addition of the RC filter will eliminate
instability caused by the leading edge spike
on the current waveform.
6(10)
S
5(8)
Q
R
3(5)
Comp/Latch
R
C
RS
Figure 24. Current Waveform Spike Suppression
VCC
Vin
IB
7(12)
+
Vin
0
5.0V Ref
-
+
-
Base Charge
Removal
C1
7(11)
+
-
Rg
Q1
Q1
6(10)
T
6(10)
S
Q
R
5(8)
5(8)
Comp/Latch
3(5)
3(5)
RS
RS
Series gate resistor Rg will damp any high frequency
parasitic oscillations caused by the MOSFET input
capacitance and any series wiring inductance in the
gate-source circuit.
The totem pole output can furnish negative base current
for enhanced transistor turn-off, with the addition of
capacitor C1.
Figure 25. MOSFET Parasitic Oscillations
Figure 26. Bipolar Transistor Drive
http://onsemi.com
11
UC3844B, UC3845B, UC2844B, UC2845B
Vin
VCC
7(12)
Isolation
Boundary
5.0V Ref
+
-
VGS Waveforms
7(11)
+
-
+
Q1
+
0
0
-
T
50% DC
6(10)
S
5(8)
Q
V(Pin1) - 1.4
Ipk =
R
3 RS
R
3(5)
Comp/Latch
C
RS
NS
25% DC
ǒNNSpǓ
NP
Figure 27. Isolated MOSFET Drive
8(14)
R
Bias
R
Osc
4(7)
+
1.0 mA
2(3)
2R
R
EA
1(1)
MCR
101
2N
3905
5(9)
2N
3903
The MCR101 SCR must be selected for a holding of < 0.5 mA @ TA(min). The
simple two transistor circuit can be used in place of the SCR as shown. All
resistors are 10 k.
Figure 28. Latched Shutdown
2.5V
From VO
Rd
+
1.0mA
Ri
2(3)
Cf
Rf
EA
2.5V
From VO
+
2R
Rp
R
Cp
Ri
Rd
Cf
1(1)
Rf ≥ 8.8k
1.0mA 2R
2(3)
Rf
EA
R
1(1)
5(9)
5(9)
Error Amp compensation circuit for stabilizing any current mode topology except
for boost and flyback converters operating with continuous inductor current.
Error Amp compensation circuit for stabilizing current mode boost
and flyback topologies operating with continuous inductor current.
Figure 29. Error Amplifier Compensation
http://onsemi.com
12
UC3844B, UC3845B, UC2844B, UC2845B
L1
MBR1635
4.7W
+
MDA
202
4.7k
250
3300
pF
56k
115 Vac
T1
2200
+
1000
+
5.0V RTN
MUR110
1N4935
7(12)
+
1N4935
68
+
5.0V Ref
8(14)
R
4(7)
T
+
6(10)
EA
150k
1N4937
MTP
4N50
1N5819
5(8)
1.0k
Comp/Latch
3(5)
1(1)
470pF
0.5
5(9)
T1 - Primary: 45 Turns #26 AWG
Secondary ±12 V: 9 Turns #30 AWG (2 Strands) Bifiliar Wound
Secondary 5.0 V: 4 Turns (six strands) #26 Hexfiliar Wound
Secondary Feedback: 10 Turns #30 AWG (2 strands) Bifiliar Wound
Core: Ferroxcube EC35-3C8
Bobbin: Ferroxcube EC35PCB1
Gap: ≈ 0.10" for a primary inductance of 1.0 mH
L1 - 15 mH at 5.0 A, Coilcraft Z7156
L2, L3 - 25 mH at 5.0 A, Coilcraft Z7157
Figure 30. 7 W Off−Line Flyback Regulator
Test
Line Regulation:
Conditions
Results
Vin = 95 Vac to 130 Vac
D = 50 mV or ±0.5%
D = 24 mV or ±0.1%
Load Regulation: 5.0 V
±12 V
Vin = 115 Vac, Iout = 1.0 A to 4.0 A
Vin = 115 Vac, Iout = 100 mA to 300 mA
D = 300 mV or ±3.0%
D = 60 mV or ±0.25%
Output Ripple:
Vin = 115 Vac
40 mVpp
80 mVpp
Vin = 115 Vac
70%
Efficiency
5.0 V
±12 V
5.0 V
±12 V
All outputs are at nominal load currents unless otherwise noted.
http://onsemi.com
13
+
12V/0.3A
+
-12V/0.3A
L3
Q
R
4.7k
680pF 2.7k
22
2(3)
100
pF
10
7(11)
+
-
S
18k
+
MUR110
Osc
1.0nF
1000
Bias
33k
10
±12V RTN
1N4937
+
-
R
+ L2
47
100
0.01
1000
5.0V/4.0A
UC3844B, UC3845B, UC2844B, UC2845B
Output Load Regulation
(Open Loop Configuration)
Vin = 15V
7(12)
UC3845B
+
IO (mA)
VO (V)
0
2
9
18
36
29.9
28.8
28.3
27.4
24.4
47
34V
8(14)
10k
Reference
Regulator
2.5V
VCC
UVLO
R
Internal
Bias
R
+
-
3.6V
+
-
1N5819
7(11)
Vref
UVLO
6(10)
15
10
Osc
4(7)
1.0nF
0.5mA
2(3)
S
2R
R
PWM
Latch
1.0V
R2
47
3(5)
Current Sense
Comparator
1(1)
+
Connect to
Pin 2 for
closed loop
operation.
5(8)
Q
R
Error
Amplifier
VO ≈ 2 (Vin)
+
T
+
1N5819
R1
ǒR2
) 1Ǔ
R1
VO = 2.5
5(9)
The capacitor's equivalent series resistance must limit the Drive Output current to 1.0 A. An additional series resistor
may be required when using tantalum or other low ESR capacitors. The converter's output can provide excellent line
and load regulation by connecting the R2/R1 resistor divider as shown.
Figure 31. Step−Up Charge Pump Converter
Output Load Regulation
Vin = 15V
UC3845B
7(12)
+
IO (mA)
VO (V)
0
2
9
18
32
−14.4
−13.2
−12.5
−11.7
−10.6
47
34V
8(14)
10k
Reference
Regulator
2.5V
R
VCC
UVLO
Internal
Bias
R
+
-
3.6V
+
-
Vref
UVLO
7(11)
6(10)
15
10
1N5819
VO ≈ -Vin
Osc
1.0nF
4(7)
T
+
0.5mA
2(3)
R
5(8)
Q
R
Error
Amplifier
1N5819
S
2R
1.0V
PWM
Latch
3(5)
Current Sense
Comparator
1(1)
5(9)
The capacitor's equivalent series resistance must limit the Drive Output current to 1.0 A.
An additional series resistor may be required when using tantalum or other low ESR capacitors.
Figure 32. Voltage−Inverting Charge Pump Converter
http://onsemi.com
14
+
47
UC3844B, UC3845B, UC2844B, UC2845B
ORDERING INFORMATION
Package
Shipping†
UC384xBDG
SOIC−14
(Pb−Free)
55 Units/Rail
UC384xBDR2G
SOIC−14
(Pb−Free)
2500 Tape & Reel
SOIC−8
(Pb−Free)
98 Units/Rail
UC384xBD1R2G
SOIC−8
(Pb−Free)
2500 Tape & Reel
UC384xBNG
PDIP−8
(Pb−Free)
50 Units/Rail
UC284xBDG
SOIC−14
(Pb−Free)
55 Units/Rail
UC284xBDR2G
SOIC−14
(Pb−Free)
2500 Tape & Reel
SOIC−8
(Pb−Free)
98 Units/Rail
UC284xBD1R2G
SOIC−8
(Pb−Free)
2500 Tape & Reel
UC284xBNG
PDIP−8
(Pb−Free)
50 Units/Rail
UC384xBVDG
SOIC−14
(Pb−Free)
55 Units/Rail
UC384xBVDR2G
SOIC−14
(Pb−Free)
2500 Tape & Reel
SOIC−8
(Pb−Free)
98 Units/Rail
UC384xBVD1R2G
SOIC−8
(Pb−Free)
2500 Tape & Reel
UC384xBVNG
PDIP−8
(Pb−Free)
50 Units/Rail
SOIC−8
(Pb−Free)
2500 Tape & Reel
Device
UC384xBD1G
UC284xBD1G
UC384xBVD1G
NCV3845BVD1R2G*
Operating Temperature Range
TA = 0° to +70°C
TA = −25° to +85°C
TA = −40° to +105°C
TA = −40° to +125°C
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
x indicates either a 4 or 5 to define specific device part numbers.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable.
http://onsemi.com
15
UC3844B, UC3845B, UC2844B, UC2845B
MARKING DIAGRAMS
PDIP−8
N SUFFIX
CASE 626
8
8
UC384xBN
AWL
YYWWG
8
UC384xBVN
AWL
YYWWG
1
UC284xBN
AWL
YYWWG
1
1
SOIC−14
D SUFFIX
CASE 751A
14
14
UC384xBDG
AWLYWW
1
14
UC384xBVDG
AWLYWW
UC284xBDG
AWLYWW
1
1
SOIC−8
D1 SUFFIX
CASE 751
8
8
384xB
ALYW
G
8
384xB
ALYWV
G
1
1
x
A
WL, L
YY, Y
WW, W
G or G
284xB
ALYW
G
1
= 4 or 5
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
SENSEFET is a trademark of Semiconductor Components Industries, LLC.
http://onsemi.com
16
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
PDIP−8
CASE 626−05
ISSUE P
DATE 22 APR 2015
SCALE 1:1
D
A
E
H
8
5
E1
1
4
NOTE 8
b2
c
B
END VIEW
TOP VIEW
WITH LEADS CONSTRAINED
NOTE 5
A2
A
e/2
NOTE 3
L
SEATING
PLANE
A1
C
D1
M
e
8X
SIDE VIEW
b
0.010
eB
END VIEW
M
C A
M
B
M
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: INCHES.
3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACKAGE SEATED IN JEDEC SEATING PLANE GAUGE GS−3.
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH
OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE
NOT TO EXCEED 0.10 INCH.
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM
PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR
TO DATUM C.
6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE
LEADS UNCONSTRAINED.
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE
LEADS, WHERE THE LEADS EXIT THE BODY.
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE
CORNERS).
DIM
A
A1
A2
b
b2
C
D
D1
E
E1
e
eB
L
M
INCHES
MIN
MAX
−−−−
0.210
0.015
−−−−
0.115 0.195
0.014 0.022
0.060 TYP
0.008 0.014
0.355 0.400
0.005
−−−−
0.300 0.325
0.240 0.280
0.100 BSC
−−−−
0.430
0.115 0.150
−−−−
10 °
MILLIMETERS
MIN
MAX
−−−
5.33
0.38
−−−
2.92
4.95
0.35
0.56
1.52 TYP
0.20
0.36
9.02
10.16
0.13
−−−
7.62
8.26
6.10
7.11
2.54 BSC
−−−
10.92
2.92
3.81
−−−
10 °
NOTE 6
GENERIC
MARKING DIAGRAM*
STYLE 1:
PIN 1. AC IN
2. DC + IN
3. DC − IN
4. AC IN
5. GROUND
6. OUTPUT
7. AUXILIARY
8. VCC
XXXXXXXXX
AWL
YYWWG
XXXX
A
WL
YY
WW
G
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “ G”,
may or may not be present.
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42420B
PDIP−8
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 1
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the
rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOIC−8 NB
CASE 751−07
ISSUE AK
8
1
SCALE 1:1
−X−
DATE 16 FEB 2011
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW
STANDARD IS 751−07.
A
8
5
S
B
0.25 (0.010)
M
Y
M
1
4
−Y−
K
G
C
N
X 45 _
SEATING
PLANE
−Z−
0.10 (0.004)
H
M
D
0.25 (0.010)
M
Z Y
S
X
J
S
8
8
1
1
IC
4.0
0.155
XXXXX
A
L
Y
W
G
IC
(Pb−Free)
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
XXXXXX
AYWW
1
1
Discrete
XXXXXX
AYWW
G
Discrete
(Pb−Free)
XXXXXX = Specific Device Code
A
= Assembly Location
Y
= Year
WW
= Work Week
G
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “G”, may
or may not be present. Some products may
not follow the Generic Marking.
1.270
0.050
SCALE 6:1
INCHES
MIN
MAX
0.189
0.197
0.150
0.157
0.053
0.069
0.013
0.020
0.050 BSC
0.004
0.010
0.007
0.010
0.016
0.050
0 _
8 _
0.010
0.020
0.228
0.244
8
8
XXXXX
ALYWX
G
XXXXX
ALYWX
1.52
0.060
0.6
0.024
MILLIMETERS
MIN
MAX
4.80
5.00
3.80
4.00
1.35
1.75
0.33
0.51
1.27 BSC
0.10
0.25
0.19
0.25
0.40
1.27
0_
8_
0.25
0.50
5.80
6.20
GENERIC
MARKING DIAGRAM*
SOLDERING FOOTPRINT*
7.0
0.275
DIM
A
B
C
D
G
H
J
K
M
N
S
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
STYLES ON PAGE 2
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42564B
SOIC−8 NB
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 2
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
SOIC−8 NB
CASE 751−07
ISSUE AK
DATE 16 FEB 2011
STYLE 1:
PIN 1. EMITTER
2. COLLECTOR
3. COLLECTOR
4. EMITTER
5. EMITTER
6. BASE
7. BASE
8. EMITTER
STYLE 2:
PIN 1. COLLECTOR, DIE, #1
2. COLLECTOR, #1
3. COLLECTOR, #2
4. COLLECTOR, #2
5. BASE, #2
6. EMITTER, #2
7. BASE, #1
8. EMITTER, #1
STYLE 3:
PIN 1. DRAIN, DIE #1
2. DRAIN, #1
3. DRAIN, #2
4. DRAIN, #2
5. GATE, #2
6. SOURCE, #2
7. GATE, #1
8. SOURCE, #1
STYLE 4:
PIN 1. ANODE
2. ANODE
3. ANODE
4. ANODE
5. ANODE
6. ANODE
7. ANODE
8. COMMON CATHODE
STYLE 5:
PIN 1. DRAIN
2. DRAIN
3. DRAIN
4. DRAIN
5. GATE
6. GATE
7. SOURCE
8. SOURCE
STYLE 6:
PIN 1. SOURCE
2. DRAIN
3. DRAIN
4. SOURCE
5. SOURCE
6. GATE
7. GATE
8. SOURCE
STYLE 7:
PIN 1. INPUT
2. EXTERNAL BYPASS
3. THIRD STAGE SOURCE
4. GROUND
5. DRAIN
6. GATE 3
7. SECOND STAGE Vd
8. FIRST STAGE Vd
STYLE 8:
PIN 1. COLLECTOR, DIE #1
2. BASE, #1
3. BASE, #2
4. COLLECTOR, #2
5. COLLECTOR, #2
6. EMITTER, #2
7. EMITTER, #1
8. COLLECTOR, #1
STYLE 9:
PIN 1. EMITTER, COMMON
2. COLLECTOR, DIE #1
3. COLLECTOR, DIE #2
4. EMITTER, COMMON
5. EMITTER, COMMON
6. BASE, DIE #2
7. BASE, DIE #1
8. EMITTER, COMMON
STYLE 10:
PIN 1. GROUND
2. BIAS 1
3. OUTPUT
4. GROUND
5. GROUND
6. BIAS 2
7. INPUT
8. GROUND
STYLE 11:
PIN 1. SOURCE 1
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. DRAIN 2
7. DRAIN 1
8. DRAIN 1
STYLE 12:
PIN 1. SOURCE
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN
STYLE 13:
PIN 1. N.C.
2. SOURCE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN
STYLE 14:
PIN 1. N−SOURCE
2. N−GATE
3. P−SOURCE
4. P−GATE
5. P−DRAIN
6. P−DRAIN
7. N−DRAIN
8. N−DRAIN
STYLE 15:
PIN 1. ANODE 1
2. ANODE 1
3. ANODE 1
4. ANODE 1
5. CATHODE, COMMON
6. CATHODE, COMMON
7. CATHODE, COMMON
8. CATHODE, COMMON
STYLE 16:
PIN 1. EMITTER, DIE #1
2. BASE, DIE #1
3. EMITTER, DIE #2
4. BASE, DIE #2
5. COLLECTOR, DIE #2
6. COLLECTOR, DIE #2
7. COLLECTOR, DIE #1
8. COLLECTOR, DIE #1
STYLE 17:
PIN 1. VCC
2. V2OUT
3. V1OUT
4. TXE
5. RXE
6. VEE
7. GND
8. ACC
STYLE 18:
PIN 1. ANODE
2. ANODE
3. SOURCE
4. GATE
5. DRAIN
6. DRAIN
7. CATHODE
8. CATHODE
STYLE 19:
PIN 1. SOURCE 1
2. GATE 1
3. SOURCE 2
4. GATE 2
5. DRAIN 2
6. MIRROR 2
7. DRAIN 1
8. MIRROR 1
STYLE 20:
PIN 1. SOURCE (N)
2. GATE (N)
3. SOURCE (P)
4. GATE (P)
5. DRAIN
6. DRAIN
7. DRAIN
8. DRAIN
STYLE 21:
PIN 1. CATHODE 1
2. CATHODE 2
3. CATHODE 3
4. CATHODE 4
5. CATHODE 5
6. COMMON ANODE
7. COMMON ANODE
8. CATHODE 6
STYLE 22:
PIN 1. I/O LINE 1
2. COMMON CATHODE/VCC
3. COMMON CATHODE/VCC
4. I/O LINE 3
5. COMMON ANODE/GND
6. I/O LINE 4
7. I/O LINE 5
8. COMMON ANODE/GND
STYLE 23:
PIN 1. LINE 1 IN
2. COMMON ANODE/GND
3. COMMON ANODE/GND
4. LINE 2 IN
5. LINE 2 OUT
6. COMMON ANODE/GND
7. COMMON ANODE/GND
8. LINE 1 OUT
STYLE 24:
PIN 1. BASE
2. EMITTER
3. COLLECTOR/ANODE
4. COLLECTOR/ANODE
5. CATHODE
6. CATHODE
7. COLLECTOR/ANODE
8. COLLECTOR/ANODE
STYLE 25:
PIN 1. VIN
2. N/C
3. REXT
4. GND
5. IOUT
6. IOUT
7. IOUT
8. IOUT
STYLE 26:
PIN 1. GND
2. dv/dt
3. ENABLE
4. ILIMIT
5. SOURCE
6. SOURCE
7. SOURCE
8. VCC
STYLE 29:
PIN 1. BASE, DIE #1
2. EMITTER, #1
3. BASE, #2
4. EMITTER, #2
5. COLLECTOR, #2
6. COLLECTOR, #2
7. COLLECTOR, #1
8. COLLECTOR, #1
STYLE 30:
PIN 1. DRAIN 1
2. DRAIN 1
3. GATE 2
4. SOURCE 2
5. SOURCE 1/DRAIN 2
6. SOURCE 1/DRAIN 2
7. SOURCE 1/DRAIN 2
8. GATE 1
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42564B
SOIC−8 NB
STYLE 27:
PIN 1. ILIMIT
2. OVLO
3. UVLO
4. INPUT+
5. SOURCE
6. SOURCE
7. SOURCE
8. DRAIN
STYLE 28:
PIN 1. SW_TO_GND
2. DASIC_OFF
3. DASIC_SW_DET
4. GND
5. V_MON
6. VBULK
7. VBULK
8. VIN
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 2 OF 2
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
MECHANICAL CASE OUTLINE
PACKAGE DIMENSIONS
SOIC−14 NB
CASE 751A−03
ISSUE L
14
1
SCALE 1:1
D
DATE 03 FEB 2016
A
B
14
8
A3
E
H
L
1
0.25
B
M
DETAIL A
7
13X
M
b
0.25
M
C A
S
B
S
0.10
X 45 _
M
A1
e
DETAIL A
h
A
C
SEATING
PLANE
DIM
A
A1
A3
b
D
E
e
H
h
L
M
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.19
0.25
0.35
0.49
8.55
8.75
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
INCHES
MIN
MAX
0.054 0.068
0.004 0.010
0.008 0.010
0.014 0.019
0.337 0.344
0.150 0.157
0.050 BSC
0.228 0.244
0.010 0.019
0.016 0.049
0_
7_
GENERIC
MARKING DIAGRAM*
SOLDERING FOOTPRINT*
6.50
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF AT
MAXIMUM MATERIAL CONDITION.
4. DIMENSIONS D AND E DO NOT INCLUDE
MOLD PROTRUSIONS.
5. MAXIMUM MOLD PROTRUSION 0.15 PER
SIDE.
14
14X
1.18
XXXXXXXXXG
AWLYWW
1
1
1.27
PITCH
XXXXX
A
WL
Y
WW
G
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*This information is generic. Please refer to
device data sheet for actual part marking.
Pb−Free indicator, “G” or microdot “G”, may
or may not be present. Some products may
not follow the Generic Marking.
14X
0.58
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
STYLES ON PAGE 2
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42565B
SOIC−14 NB
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 1 OF 2
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
SOIC−14
CASE 751A−03
ISSUE L
DATE 03 FEB 2016
STYLE 1:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. NO CONNECTION
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. NO CONNECTION
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE
STYLE 2:
CANCELLED
STYLE 3:
PIN 1. NO CONNECTION
2. ANODE
3. ANODE
4. NO CONNECTION
5. ANODE
6. NO CONNECTION
7. ANODE
8. ANODE
9. ANODE
10. NO CONNECTION
11. ANODE
12. ANODE
13. NO CONNECTION
14. COMMON CATHODE
STYLE 4:
PIN 1. NO CONNECTION
2. CATHODE
3. CATHODE
4. NO CONNECTION
5. CATHODE
6. NO CONNECTION
7. CATHODE
8. CATHODE
9. CATHODE
10. NO CONNECTION
11. CATHODE
12. CATHODE
13. NO CONNECTION
14. COMMON ANODE
STYLE 5:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. NO CONNECTION
7. COMMON ANODE
8. COMMON CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. ANODE/CATHODE
12. ANODE/CATHODE
13. NO CONNECTION
14. COMMON ANODE
STYLE 6:
PIN 1. CATHODE
2. CATHODE
3. CATHODE
4. CATHODE
5. CATHODE
6. CATHODE
7. CATHODE
8. ANODE
9. ANODE
10. ANODE
11. ANODE
12. ANODE
13. ANODE
14. ANODE
STYLE 7:
PIN 1. ANODE/CATHODE
2. COMMON ANODE
3. COMMON CATHODE
4. ANODE/CATHODE
5. ANODE/CATHODE
6. ANODE/CATHODE
7. ANODE/CATHODE
8. ANODE/CATHODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. COMMON CATHODE
12. COMMON ANODE
13. ANODE/CATHODE
14. ANODE/CATHODE
STYLE 8:
PIN 1. COMMON CATHODE
2. ANODE/CATHODE
3. ANODE/CATHODE
4. NO CONNECTION
5. ANODE/CATHODE
6. ANODE/CATHODE
7. COMMON ANODE
8. COMMON ANODE
9. ANODE/CATHODE
10. ANODE/CATHODE
11. NO CONNECTION
12. ANODE/CATHODE
13. ANODE/CATHODE
14. COMMON CATHODE
DOCUMENT NUMBER:
DESCRIPTION:
98ASB42565B
SOIC−14 NB
Electronic versions are uncontrolled except when accessed directly from the Document Repository.
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.
PAGE 2 OF 2
onsemi and
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.
© Semiconductor Components Industries, LLC, 2019
www.onsemi.com
onsemi,
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. onsemi reserves the right to make changes at any time to any
products or information herein, without notice. The information herein is provided “as−is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com
◊
TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800−282−9855 Toll Free USA/Canada
Phone: 011 421 33 790 2910
Europe, Middle East and Africa Technical Support:
Phone: 00421 33 790 2910
For additional information, please contact your local Sales Representative