PAM3112
300mA CMOS Linear Regulator F eatures
n n n n n n n n n n
General Description
The PAM3112 regulator features low quiescent current (65 μ A Typ.) and excellent line/load regulation, making it ideal for battery powered applications. The output voltage can be 1.2V or 1.3V. Space-saving packages SOT-23, SOT-89 and SC70 are attractive for portable and handheld applications. It has both thermal shutdown and a current limit features to prevent device failure under extreme operating conditions. The device is stable with an output capacitance of 2.2 μ F or greater.
Accuracy within ±2% Quiescent Current: 65 μ A Typ. Excellent Line/Load Regulation Guaranteed 300mA Output Current Fast Response Current Limiting Short Circuit Protection Low Temperature Coefficient Thermal Shutdown Space Saving Package: SOT-23, SOT-89 and SC70 n Pb-Free Package
Applications
n n n n n n n
Cordless Phone Cellular Phone Bluetooth Earphone Digital Camera Portable Electronics WLAN M P 3 Player
Typical Application
VIN VOUT
Block Diagram
VIN
VOUT PAM3112 GND
CO 2.2 μ F
VIN
VOUT
C IN 1μF
OverCurrent Shutdown
IN
VIN VOUT PAM3112
C IN 1μF
OUT
EN BYP
Thermal Protection
EN
GND
BYP
C BYP 10nF CO 2.2 μ F
Bandgap
Amp GND
Power Analog Microelectronics , Inc
www.poweranalog.com 10/2008 Rev 1.3
1
PAM3112
300mA CMOS Linear Regulator P in Configuration & Marking Information
Top View SOT23-3 Top View SOT23 - 5 Top View SOT89-3
3
5
4
AOVYW
AOVYW
P3112V XXXYW
AO: Product Code of PAM3112 X: Internal Code V: Voltage Code Y: Year W: Week
1
Top View SC70-3L
3
2
1
2
Top View SC70-4L 4 3
3
1
2 Top View SC70-5L 5 4
3
AOVYW
1 2
AOVYW
1 2 1
AOVYW
2 3
Pin Description
Pin SOT23-3 SOT23-5 SOT89-3 SC70-3L SC70-4L SC70-5L 1 VOUT GND VIN GND VOUT VIN EN VIN 2 GND VOUT GND VIN GND VOUT GND GND 3 VIN VIN EN VOUT VIN GND VOUT EN VIN BYP VOUT BYP VOUT 4 5
Name VIN GND EN BYP VOUT Input Ground
Function
Chip Enable(active high) Bypass Pin, need a 10nF capacitor connect to GND Output
Power Analog Microelectronics , Inc
www.poweranalog.com 10/2008 Rev 1.3
2
PAM3112
300mA CMOS Linear Regulator Absolute Maximum Ratings
These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability. All voltages are with respect to ground. Input Voltage .................................................. 6V Output Current .....................................P D/(V IN-V O) Output Pin Voltage .............. GND-0.3V to V IN+0.3V Lead Soldering Temperature (5sec) ............. 300 °C Maximum Junction Temperature..................150 °C Storage Temperature ....................- 65 °C to 150 °C ESD Rating ............................................. Class B
Recommended Operating Conditions
Junction Temperature ..................- 40 °C to 125 °C Ambient Temperature ......................- 40°C to 85°C
Thermal Information
Parameter Thermal Resistance (Junction to Case) Symbol θJC Package SOT-23 SOT-89 SC70 SOT-23 Thermal Resistance (Junction to Ambient) θJA SOT-89 SC70 SOT-23 Internal Power Dissipation PD SOT-89 SC70 Maximum 130 45 TBD 250 160 300 400 550 300 mW °C/W °C/W Unit
Power Analog Microelectronics , Inc
www.poweranalog.com 10/2008 Rev 1.3
3
PAM3112
300mA CMOS Linear Regulator E lectrical Characteristic
Parameter Input Voltage Output Voltage Accuracy Output Current Ground Current Quiescent Current Line Regulation Load Regulation Short Circuit Current Temperature Coefficient Over Temperature Shutdown Over Temperature Hysteresis Power Supply Ripple Rejection Output Noise EN Input High Threshold EN Input Low Threshold Shutdown Current
T A= 25°C , V IN= 3 V , C IN= 1 μ F , C O= 2.2 μ F , unless otherwise noted.
Symbol Test Conditions V IN Vo IO IG ND IQ LNR LDR ISC Tc OTS OTH PSRR Vn V IH V IL ISD Io=1mA Io=1mA Io=100mA CB YP=10nF CB YP=10nF V IN =2.5V to 5V V IN =2.5V to 5V V EN=0V 0.01 1.5 0.3 1 f=100Hz f=1kHz Io=1mA to 300mA Io=0mA V IN =2.5V to 5.0V Io=10mA Io= 1mA to 300mA Vo=0V -0.15 Io=1mA MIN 2.5 -2 300 70 65 0.1 30 130 40 150 30 70 65 50 TYP MAX 5.5 2 Note 1 90 90 0.15 60 Units V % mA μA μA %/V mV mA ppm/ C
O O O
C C
dB μVrms V V μA
f =10Hz to 100kHz,
Note 1: Output current is limited by P D, Maximum Io=400mW/(V IN(MAX.)-Vo).
Power Analog Microelectronics , Inc
www.poweranalog.com 10/2008 Rev 1.3
4
PAM3112
300mA CMOS Linear Regulator Typical Performance Characteristics
1. Output Voltage vs Input Voltage
1.25 1.2
1.205 1.2
T A= 25°C , C IN= 1 μ F , C O= 2.2 μ F, V O=1.2V, unless otherwise noted. 2. Output Voltage vs Output Current
V IN=3V
Output Voltage(V)
Output Voltage(V)
1.15 1.1 1.05 1 0.95 0.9 0.85 0.8 2 3 4 Input Voltage(V) 5 6
IO=1mA IO=150mA IO=300mA
1.195 1.19 1.185 1.18 1.175 0 50 100 150 200 250 300 Output Current(mA)
V IN=4V V IN=5V
3. Output Voltage vs Temperature
1.2 1.195
80 70
4. Quiescent Current vs Input Voltage
Output Voltage(V)
1.185 1.18 1.175 1.17 1.165 1.16 0 50
IO=30mA
Input Voltage(V)
1.19
60 50 40 30 20 10 0 2 3 4 5 Quiescent Current(uA) 6
IO=300mA
100
150
Temperature(℃)
5. Ground Current vs Temperature
82 80
120 100 80 60
6. Ground Current vs Input Voltage
IO=300mA
Ground Current(uA)
78 76 74 72 70 68 0 30 60 90 120 150 Temperature(℃)
Ground Current(uA)
IO=150mA
40 20 0 2 3 4 Input Voltage(V)
IO=1mA
5
6
Power Analog Microelectronics , Inc
www.poweranalog.com 10/2008 Rev 1.3
5
PAM3112
300mA CMOS Linear Regulator Typical Performance Characteristics (continued)
7. Load Regulation Transient Response 8. Line Regulation Transient Response
Vo AC Coupling
V IN DC Coupling
Io DC Coupling
Vo AC Coupling
I O=1mA to 100mA
+0 -10
Io=1mA,V IN=3V to 5V 9. Power Supply Ripple Rejection
Vo AC Coupling
d B
-20 -30 -40 -50
I O=100mA
Io DC Coupling
I O=1mA
-60 -70 -80 10
20
50
100
200
500
1k Hz
2k
5k
10k
20k
50k100k
I O=1mA to 300mA
V IN=3V,Vpp=1V
Vo AC Coupling
Io DC Coupling
I O=100mA to 300mA
Power Analog Microelectronics , Inc
www.poweranalog.com 10/2008 Rev 1.3
6
PAM3112
300mA CMOS Linear Regulator A pplication Information
Capacitor Selection and Regulator Stability Similar to any low dropout regulator, the external capacitors used with the PAM3112 must be carefully selected for regulator stability and performance. A capacitor C IN of more than 1 μ F can be used at the PAM3112 input pin, while there is no upper limit for the capacitance of C IN. Please note that the distance between C IN and the input pin of the PAM3112 should not exceed 0.5 inch. Ceramic c a p a c i t o r s a r e s u i t a b l e f o r t h e PA M 3 11 2 . Capacitors with larger values and lower ESR (equivalent series resistance) provide better PSRR and line-transient response. The PAM3112 is designed specifically to work with low ESR ceramic output capacitors in order to save space and improve performance. Using an output ceramic capacitor whose value is > 2.2μF with ESR>5mΩ ensures stability. A 10nF bypass capacitor connected to BYP pin is suggested for suppressing output noise. The capacitor, in series connection with an internal 200k Ω resistor, forms a low-pass filter for noise reduction. Increasing the capacitance will slightly decrease the output noise, but increase the startup time. Load Transient Considerations Curve 7 of the PAM3112 load-transient response on page 6 shows two components of the output response, a DC shift from the output impedance due to the load current change and transient response. The DC shift is quite small due to excellent load regulation of the PAM3112. The transient spike, resulting from a step change in the load current from 1mA to 300mA, is 20mV. The ESR of the output capacitor is critical to the transient spike. A larger capacitance along with smaller ESR results in a is smaller spike. Shutdown Input Operation The PAM3112 is shut down by pulling the EN input low and turned on by tying the EN input to VIN or leaving the EN input floating. Internal P-Channel Pass Transistor The PAM3112 features a 0.75 Ω P-Channel MOSFET device as a pass transistor. The P-MOS pass transistor enables the PAM3112 to consume only 65 μ A of ground current during low dropout, light-load, or heavy-load operation. These features increase the battery operation life time. Input-Output ( Dropout ) Voltage A regulator's minimum input-output voltage difference (or dropout voltage) determines the lowest usable supply voltage. The PAM3112 has a typical 300mV dropout voltage. In batterypowered systems, this will determine the useful end-of-life battery voltage. Current Limit and Short Circuit Protection The PAM3112 features a current limit, which monitors and controls the gate voltage of the pass transistor. The output current can be limited to 400mA by regulating the gate voltage. The PAM3112 also has a built-in short circuit current limit. Thermal considerations Thermal protection limits power dissipation in the PA M 3 11 2 . W h e n t h e j u n c t i o n t e m p e r a t u r e exceeds 150°C, the OTP (Over Temperature Protection) starts the thermal shutdown and turns the pass transistor off. The pass transistor resumes operation after the junction temperature drops below 120°C. For continuous operation, the junction temperature should be maintained below 125°C. The power dissipation is defined as: P D= (V IN-V OUT)*I O+V IN*I GND The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surrounding airflow and temperature difference between junction and ambient. The maximum power dissipation can be calculated by the following formula: P D(MAX) = (T J(MAX)-T A)/θ JA
Power Analog Microelectronics , Inc
www.poweranalog.com 10/2008 Rev 1.3
7
PAM3112
300mA CMOS Linear Regulator
Where T J(MAX) is the maximum allowable junction temperature 125°C, T A is the ambient temperature and θ JA is the thermal resistance from the junction to the ambient. For example, as θ JA is 250°C/W for the SOT-23 package based on the standard JEDEC 51-3 for a single-layer thermal test board, the maximum power dissipation at T A=25°C can be calculated by following formula: P D(MAX)=(125°C-25°C)/250=0.4W SOT-23 It is also useful to calculate the junction temperature of the PAM3112 under a set of specific condition. Suppose the input voltage V IN=3.3V, the output current I O=150mA and the case temperature T A =40°C measured by a thermal couple during operation, the power dissipation is defined as: P D=(3.3V-1.2V)*150mA+3.3V*70 μ A≌315mW And the junction temperature T J can b e calculated as follows: T J = T A+P D*θ JA T J = 40°C+0.35W*250°C/W =40°C+78.75°C =118.75°C
很抱歉,暂时无法提供与“PAM3112GUA120”相匹配的价格&库存,您可以联系我们找货
免费人工找货