DATA SHEET
BZX55-C SERIES
AXIAL LEAD ZENER DIODES
VOLTAGE
2.4 to 47 Volts
POWER
500 mWatts
DO-35
Unit: inch (mm)
FEATURES
• Planar Die construction • 500mW Power Dissipation • Ideally Suited for Automated Assembly Processes • Both normal and Pb free product are available : Normal : 80~95% Sn, 5~20% Pb Pb free: 98.5% Sn above
.153(3.9)MAX. 1.02(26.0)MIN.
.020(0.52)TYP.
MECHANICAL DATA
• Terminals: Solderable per MIL-STD-202, Method 208 • Polarity: See Diagram Below • Approx. Weight: 0.13 grams • Mounting Position: Any • Ordering information: Suffix :” -35” to order DO-35 Package • Packing information B - 2K per Bulk box T/R - 10K per 13" plastic Reel T/B - 5K per horiz. tape & Ammo box
1.02(26.0)MIN.
• Case: Molded glass DO-35
.079(2.0)MAX.
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS (TJ =25°C unless otherwise noted)
Parameter Power Dissipation at Tamb = 25 Junction Temperature Storage Temperature Range Valid provided that leads at a distance of 8mm from case are kept at ambient temperature.
O
Symbol
Value 500 175 -65 to +175
Units mW
O
C
PTOT TJ TS
C C
O
Parameter Thermal Resistance Junction to Ambient Air Forward Voltage at IF = 100mA
Symbol
Min. ---
Typ.
Max. 0.3 1
Units K/mW V
RthA VF
---
Valid provided that leads at a distance of 10 mm from case are kept at ambient temperature.
STAD-SEP.14.2004
PAGE . 1
Nominal Zener Voltage Part Number
No m. V BZX55-C2V4 BZX55-C2V7 BZX55-C3V0 BZX55-C3V3 BZX55-C3V6 BZX55-C3V9 BZX55-C4V3 BZX55-C4V7 BZX55-C5V1 BZX55-C5V6 BZX55-C6V2 BZX55-C6V8 BZX55-C7V5 BZX55-C8V2 BZX55-C9V1 BZX55-C10 BZX55-C11 BZX55-C12 BZX55-C13 BZX55-C15 BZX55-C16 BZX55-C18 BZX55-C20 BZX55-C22 BZX55-C24 BZX55-C27 BZX55-C30 BZX55-C33 BZX55-C36 BZX55-C39 BZX55-C43 BZX55-C47 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 10.0 11.0 12.0 13.0 15.0 16.0 18.0 20.0 22.0 24.0 27.0 30.0 33.0 36.0 39.0 43.0 47.0
Max. Zener Impedance Z ZT @ IZT Z ZK @ IZK
Ω 600 600 600 600 600 600 600 600 550 450 200 150 50 50 50 70 70 90 110 110 170 170 220 220 220 220 220 220 220 500 600 700 mA 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Max Reverse Leakage Current IR @ V R
uA 50 10 4.0 2.0 2.0 2.0 1.0 0.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 V 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 3.0 5.0 6.0 7.0 7.5 8.5 9.0 10.0 11.0 12.0 14.0 15.0 17.0 18.0 20.0 22.0 24.0 27.0 30.0 33.0 36.0
V Z @ IZT
M i n. V 2.28 2.50 2.80 3.10 3.40 3.70 4.00 4.40 4.80 5.20 5.80 6.40 7.00 7.70 8.50 9.40 10.40 11.40 12.40 13.80 15.30 16.80 18.80 20.80 22.80 25.10 28.00 31.00 34.00 37.00 40.00 44.00 M a x. V 2.56 2.90 3.20 3.50 3.80 4.10 4.60 5.00 5.40 6.00 6.60 7.20 7.90 8.70 9.60 10.60 11.60 12.70 14.10 15.60 17.10 19.10 21.20 23.30 25.60 28.90 32.00 35.00 38.00 41.00 46.00 50.00
marking co d e
55C 2V 4 55C 2V 7 55C 3V 0 55C 3V 3 55C 3V 6 55C 3V 9 55C 4V 3 55C 4V 7 55C 5V 1 55C 5V 6 55C 6V 2 55C 6V 8 55C 7V 5 55C 8V 2 55C 9V 1 55C 10V 55C11V 55C 12V 55C 13V 55C 15V 55C 16V 55C 18V 55C 20V 55C 22V 55C 24V 55C 27V 55C 30V 55C 33V 55C 36V 55C 39V 55C 43V 55C 47V
Ω 85 85 85 85 85 85 75 60 35 25 10 8 7 7 10 15 20 20 26 30 40 50 55 55 80 80 80 80 80 90 90 110
mA 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 2.5 2.5 2.5
STAD-SEP.14.2004
PAGE . 2
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
RthJA –Therm.Resist.Junction/ Ambient ( K/W)
500
VZtn – Relative VoltageChange
1.3
V Ztn=V Zt/V Z(25°C)
400
1.2 1.1 1.0 0.9 0.8 –60
TK VZ =10 x 10–4/K
300
l l
8 x 10–4/K 6 x 10–4/K 4 x 10–4/K 2 x 10–4/K
0
200 100
TL=constant
–2 x 10–4/K –4 x 10–4/K
0 0 5 10 15 20 l – Lead Length ( mm )
0
60
120
180
240
95 961 1
95 9599
Tj – Junction Temperature (°C )
Fig. 1 Thermal Resistance vs. Lead Length
Fig. 4 Typical Change of Working Voltage vs. Junction Temperature
TK VZ –Temperature Coefficient of VZ ( 10–4 /K)
P –Total Power Dissipation ( mW) tot
600 500 400 300
15
10
5
I Z=5mA
200
100 0
0
–5 0 10 20 30
40
0
40
80
120
160
200
50
95 9602
Tamb – Ambient T emperature(°C )
95 9600
V Z – Z-Voltage ( V )
Fig. 2 Total Power Dissipation vs. Ambient Temperature
Fig. 5 Temperature Coefficient of Vz vs. Z-Voltage
1000
CD – Diode Capacitance ( pF )
200
VZ –VoltageChange mV ) (
Tj =25°C
100
150
V R=2V
100
Tj =25°C
I Z=5mA
10
50
1 0
95 9598
0
5
10
15
20
25
95 9601
0
5
10
15
20
25
V Z – Z-Voltage ( V )
V Z – Z-Voltage ( V )
Fig. 3 Typical Change of Working Voltage under Operating Conditions at Tamb=25°C
Fig. 6 Diode Capacitance vs. Z-Voltage
STAD-SEP.14.2004
PAGE . 3
100
I F – Forward Current ( mA)
50 40 30 20 10 0
Ptot=500mW Tamb=25°C
Tj =25°C
1
0.1 0.01 0.001 0 0.2 0.4 0.6 0.8 1.0
IZ – Z-Current ( mA)
10
15
95 9607
20
25
30
35
95 9605
V F – Forward Voltage ( V )
V Z – Z-Voltage ( V )
Fig. 7 Forward Current vs. Forward Voltage
Fig. 9 Z-Current vs. Z-Voltage
IZ – Z-Current ( mA)
80 60 40 20 0
0 4 8 12
r Z – Differential Z-Resistance ( Ω )
100
1000
Ptot=500mW Tamb=25°C
I Z=1mA
100
5mA
10 10mA
1
Tj =25°C
0 5 10 15 20 25 V Z – Z-Voltage ( V )
16
20
95 9606
95 9604
V Z – Z-Voltage ( V )
Fig. 8 Z-Current vs. Z-Voltage
Zthp –ThermalResistance PulseCond.(K/W) for
Fig. 10 Differential Z-Resistance vs. Z-Voltage
1000
tp/T=0.5
100
tp/T=0.2
Single Pulse
RthJA=300K/W T=Tjmax–Tamb
10
tp/T=0.01
tp/T=0.1
tp/T=0.02
tp/T=0.05
1 10–1 100 101
i ZM =(–VZ+(V Z2+4rzj x T/Zthp)1/2)/(2rzj)
102
95 9603
tp – Pulse Length ( ms )
Fig. 11 Thermal Response
STAD-SEP.14.2004
PAGE . 4
很抱歉,暂时无法提供与“BZX55-C3V0”相匹配的价格&库存,您可以联系我们找货
免费人工找货