0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PE46140A-X

PE46140A-X

  • 厂商:

    PEREGRINE(游隼半导体)

  • 封装:

    VFQFN32

  • 描述:

    ICMPACCONTROLLER32QFN

  • 数据手册
  • 价格&库存
PE46140A-X 数据手册
PE46140 Document Category: Product Specification Monolithic Phase & Amplitude Controller, 3.4–3.8 GHz Features Figure 1 • PE46140 Functional Diagram • 90° phase splitter • 4-bit digital step attenuator, 7.5 dB range, 0.5 dB resolution 0° • 5-bit digital phase shifter, 87.2° range, 2.8° resolution • High power handling and linearity RFOUT2 87.2° 2.8° LSB RFIN 7.5 dB 0.5 dB LSB ▪ P0.1dB of +35 dBm ▪ Input IP3 of +60 dBm -90° • 3-bit insertion loss stabilizer (ILS) ▪ 0.44 dB range, 0.06 dB resolution RFOUT1 87.2° 2.8° LSB 0 dB VDD • 32-lead 6 × 6 × 0.85 mm QFN Digital Interface GND Applications SPENB DS SDO 3 • Wireless infrastructure ▪ Small cells (micro, pico) LE SDI ▪ Macro cells CLK Serial Interface ▪ Distributed antenna systems (DAS) • Precision phase shifter • Dual polarization antenna alignment • Analog linearization techniques Product Description The PE46140 is a HaRP™ technology-enhanced monolithic phase and amplitude controller (MPAC) designed for precise phase and amplitude control of two independent RF paths. It optimizes system performance while reducing manufacturing costs of transmitters that use symmetric or asymmetric power amplifier designs to efficiently process signals with large peak-to-average ratios. This monolithic RFIC integrates a 90° RF splitter, digital phase shifters and a digital step attenuator along with a low voltage CMOS serial interface. It can cover a phase range of 87.2° in 2.8° steps and an attenuation range of 7.5 dB in 0.5 dB steps, while providing excellent phase and amplitude accuracy from 3.4–3.8 GHz. The PE46140 also features exceptional linearity, high output port-to-port isolation and extremely low power consumption relative to competing module solutions. It is offered in a 32-lead 6 × 6 mm QFN package. The PE46140 is manufactured on Peregrine’s UltraCMOS® process, a patented variation of silicon-on-insulator (SOI) technology on a sapphire substrate, offering the performance of GaAs with the economy and integration of ©2015–2016, Peregrine Semiconductor Corporation. All rights reserved. • Headquarters: 9380 Carroll Park Drive, San Diego, CA, 92121 Product Specification DOC-64256-3 – (08/2016) www.psemi.com PE46140 MPAC conventional CMOS. Peregrine’s HaRP technology enhancements deliver high linearity and excellent harmonics performance. Absolute Maximum Ratings Exceeding absolute maximum ratings listed in Table 1 may cause permanent damage. Operation should be restricted to the limits in Table 2. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability. ESD Precautions When handling this UltraCMOS device, observe the same precautions as with any other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid exceeding the rating specified in Table 1. Latch-up Immunity Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up. Table 1 • Absolute Maximum Ratings for PE46140 Parameter/Condition Min Max Unit Supply voltage, VDD –0.3 5.5 V Digital input voltage –0.3 3.6 V 34 dBm +150 °C ESD voltage HBM(1), all pins 1500 V ESD voltage CDM(2), all pins 1000 V Maximum input power Storage temperature range –65 Notes: 1) Human body model (MIL-STD 883 Method 3015.7). 2) Charged device model (JEDEC JESD22-C101). Page 2 DOC-64256-3 – (08/2016) www.psemi.com PE46140 MPAC Recommended Operating Conditions Table 2 lists the recommended operating condition for PE46140. Devices should not be operated outside the recommended operating conditions listed below. Table 2 • Recommended Operating Condition for PE46140 Parameter Min Supply voltage, VDD(1) Typ 2.3 Supply current 350 Max Unit 5.5 V 500 µA Digital input high 1.17 3.6 V Digital input low 0 0.6 V 20 µA RF input power, CW 29 dBm RF input power, pulsed(2) 32 dBm +105 °C Digital input leakage 10 Operating temperature range –40 +25 Notes: 1) Product performance does not vary over VDD. 2) Pulsed, 5% duty cycle of 4620 µs period. DOC-64256-3 – (08/2016) Page 3 www.psemi.com PE46140 MPAC Electrical Specifications Table 3 provides the PE46140 key electrical specifications at +25 °C, VDD = 2.3–5.5V, 50Ω, unless otherwise specified. Table 3 • PE46140 Electrical Specifications at +25 °C Parameter Path Condition Operating frequency Min Typ 3.4 Max Unit 3.8 GHz 7.0 dB Insertion loss RFIN to RFOUTX Reference phase and minimum attenuation state. Includes 3 dB from power divider. 6.5 Input return loss RFIN 3.4–3.8 GHz. All phase states. 15 dB Output return loss RFOUT1 or RFOUT2 3.4–3.8 GHz. All phase states. 15 dB Isolation RFOUT1 to RFOUT2 3.4–3.8 GHz. Reference phase and minimum attenuation state. 30 dB 25.5 Input 0.1dB compression RFIN to RFOUTX point(1) 3.4–3.8 GHz. 35 dBm RFIN to RFOUTX 3.4–3.8 GHz. 60 dBm 50% LE to 90% or 10% RF final value. 875 Input IP3 Switching time(2) Phase shift range RFIN to RFOUTX Phase step Relative phase shift RFOUT1 to RFOUT2 Attenuation range RFIN to RFOUT2 Phase (RFOUT1)–Phase (RFOUT2) [same state]. Attenuation step 1220 ns 87.2 deg 2.8 deg –90 deg 7.5 dB 0.5 dB Notes: 1) The input 0.1dB compression point is a linearity figure of merit. Refer to Table 2 for the operating RF input power (50Ω). 2) Worst case state transition. All bits changing. Page 4 DOC-64256-3 – (08/2016) www.psemi.com PE46140 MPAC Table 4 provides the PE46140 key electrical specifications at +105 °C, VDD = 2.3–5.5V, 50Ω, unless otherwise specified. Table 4 • PE46140 Electrical Specifications at +105 °C Parameter Path Condition Operating frequency Min Typ 3.4 Max Unit 3.8 GHz 7.8 dB Insertion loss RFIN to RFOUTX Reference phase and minimum attenuation state. Includes 3 dB from power divider. 6.5 Input return loss RFIN 3.4–3.8 GHz. All phase states. 15 dB Output return loss RFOUT1 or RFOUT2 3.4–3.8 GHz. All phase states. 15 dB Isolation RFOUT1 to RFOUT2 3.4–3.8 GHz. Reference phase and minimum attenuation state. 30 dB 22.5 Input 0.1dB compression RFIN to RFOUTX point(1) 3.4–3.8 GHz. 35 dBm RFIN to RFOUTX 3.4–3.8 GHz. 60 dBm 50% LE to 90% or 10% RF final value. 875 Input IP3 Switching time(2) Phase shift range RFIN to RFOUTX Phase step Relative phase shift RFOUT1 to RFOUT2 Attenuation range RFIN to RFOUT2 Phase (RFOUT1)–Phase (RFOUT2) [same state]. Attenuation step 1220 ns 87.2 deg 2.8 deg –90 deg 7.5 dB 0.5 dB Notes: 1) The input 0.1dB compression point is a linearity figure of merit. Refer to Table 2 for the operating RF input power (50Ω). 2) Worst case state transition. All bits changing. DOC-64256-3 – (08/2016) Page 5 www.psemi.com PE46140 MPAC Switching Frequency Thermal Data The PE46140 has a maximum 25 kHz switching frequency. Psi-JT (JT), junction top-of-package, is a thermal metric to estimate junction temperature of a device on the customer application PCB (JEDEC JESD51-2). The switching frequency is defined to be the rate at which the PE46140 can be continuously toggled across attenuation and phase states. JT = (TJ – TT)/P where JT = junction-to-top of package characterization parameter, °C/W TJ = die junction temperature, °C TT = package temperature (top surface, in the center), °C P = power dissipated by device, Watts Table 5 • Thermal Data for PE46140 Parameter Maximum junction temperature, TJMAX Typ Unit 123.2 °C JT 2.5 °C/W JA 34.5 °C/W +105°C ambient Page 6 DOC-64256-3 – (08/2016) www.psemi.com PE46140 MPAC Control Logic Table 6–Table 11 provide the control logic truth tables for the PE46140. Table 6 • Bit Descriptions C0 Channel register select C0 = L, channel RFOUT1 register select C0 = H, channel RFOUT2 register select M0–M3 Attenuation setting per channel in dB P0–P4 Phase shift setting per channel in deg S0–S3 Insertion loss stabilizer setting per channel Table 7 • 14-bit Word Q13 Q12 Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 C0 S3 S2 M3 M2 M1 M0 P4 P3 P2 P1 P0 S1 S0 1 — — — — — — 45 22.5 11.2 5.6 2.8 — — 2 — 0.25 4 2 1 0.5 45 22.5 11.2 5.6 2.8 0.12 0.06 Table 8 • Serial Truth Table – Phase Setting Q13 Q12 Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 C0 S3 S2 M3 M2 M1 M0 P4 P3 P2 P1 P0 S1 S0 1/2 — 0.25 4 2 1 0.5 45 22.5 11.2 5.6 2.8 0.12 0.06 X L X X X X X L L L L L X X Ref phase X L X X X X X L L L L H X X 2.8 deg X L X X X X X L L L H L X X 5.6 deg X L X X X X X L L H L L X X 11.25 deg X L X X X X X L H L L L X X 22.5 deg X L X X X X X H L L L L X X 45 deg X L X X X X X H H H H H X X 87.2 deg DOC-64256-3 – (08/2016) Phase Shift Setting Page 7 www.psemi.com PE46140 MPAC Table 9 • Serial Truth Table – Attenuation Setting (RFOUT2) Q13 Q12 Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 C0 S3 S2 M3 M2 M1 M0 P4 P3 P2 P1 P0 S1 S0 2 — 0.25 4 2 1 0.5 45 22.5 11.2 5.6 2.8 0.12 0.06 H L X L L L L X X X X X X X Ref insertion loss H L X L L L H X X X X X X X 0.5 dB H L X L L H L X X X X X X X 1 dB H L X L H L L X X X X X X X 2 dB H L X H L L L X X X X X X X 4 dB H L X H H H H X X X X X X X 7.5 dB Amplitude Setting Table 10 • Default State Settings at Power Up (RFOUT1) Q13 Q12 DS Setting Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 P3 P2 P1 P0 S1 S0 5.6 2.8 Default Setting at Power Up C0 S3 S2 M3 M2 M1 M0 P4 1/2 — 0.25 4 2 1 0.5 45 DS = 0 — — — — — — — L L L L L — — 0 dB 0 deg DS = 1 — — — — — — — H L L L L — — 0 dB 45 deg Q1 Q0 22.5 11.2 0.12 0.06 Table 11 • Default State Settings at Power Up (RFOUT2) Q13 Q12 DS Setting Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 P3 P2 P1 P0 5.6 2.8 Default Setting S1 S0 at Power Up 0.12 0.06 C0 S3 S2 M3 M2 M1 M0 P4 1/2 — 0.25 4 2 1 0.5 45 DS = 0 — L L L L L L L L L L L L L 0 dB 0 deg DS = 1 — L L H H H H H L L L L L L 7.5 dB 45 deg Page 8 22.5 11.2 DOC-64256-3 – (08/2016) www.psemi.com PE46140 MPAC Insertion Loss Stabilizer The PE46140 offers greater ILS by compensating for known variations between phase states. Three attenuation bits are used to reduce the variation seen in the insertion loss across all phase states for the RFOUT2 path. ILS bits S0–S2 are accessible for creating a custom lookup table. Table 12 • Insertion Loss Stabilizer Bit Definition Q13 Q12 Q11 Q10 Q9 Q8 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 C0 S3 S2 M3 M2 M1 M0 P4 P3 P2 P1 P0 S1 S0 2 — 0.25 4 2 1 0.5 45 22.5 11.2 5.6 2.8 0.12 0.06 X X X X X X X X X X X X X X H L L X X X X X X X X X L L Ref IL H L L X X X X X X X X X L H 0.06 dB H L L X X X X X X X X X H L 0.125 dB H L H X X X X X X X X X L L 0.25 dB H L H X X X X X X X X X H H 0.44 dB Programming Options Serial Interface The serial interface is a 14-bit serial-in shift register with two parallel-out channel registers RFOUT1 and RFOUT2 buffered by a transparent latch. The 14 bits comprise four bits defining the attenuation setting, five bits for the phase shift setting and three bits for the insertion loss stabilization feature. Channel register RFOUT1 and RFOUT2 selection is determined by the value of the C0 bit contained as part of the 14-bit program word. The serial interface is controlled using three CMOS compatible signals: serial data in (SDI), clock (CLK) and latch enable (LE). The SDI and CLK inputs allow data to be serially entered into the shift register. Serial data is clocked in starting with two spare bits first and then the phase setting LSB. The shift register must be Amplitude Setting loaded while LE is held LOW to prevent the internal channel register values from changing as data is entered. The LE input should then be toggled HIGH, latching the new data into the PE46140. SDO is a clock delayed reply of the user’s input SDI command for functional confirmation. Phase shift, attenuation and insertion loss stabilizer setting truth tables are listed in Table 8, Table 9 and Table 12. The serial timing diagram is illustrated in Figure 2 and associated AC characteristics are listed in Table 13. Power-up Control Settings The PE46140 will power up in one of two default states depending upon the setting of the default state (DS) pin, as defined in Table 10 and Table 11. No specific signal sequencing is required for the default state to be set and active once VDD is applied. DOC-64256-3 – (08/2016) Page 9 www.psemi.com PE46140 MPAC Figure 2 • Latched Buffered SDO Serial Interface TOV TSCLK TLCLKH TSU TH TSCLKL TSCLKH LE TSettle SCLK S0 S1 P0 P1 P2 P3 P4 M0 M1 M2 M3 S2 S3 C0 SDI SDO S0 S1 P0 P1 P2 P3 P4 M0 M1 M2 M3 S2 S3 C0 0 1 S0 S1 P0 P1 P2 P3 P4 M0 M1 M2 M3 S2 S3 C0 S0 S1 P0 P1 P2 P3 P4 M0 M1 M2 M3 S2 S3 C0 Channel 1 Register Data Default/Current Value Channel 2 New Value TOH Default/Current Value Register Data New Value Table 13 • Serial Interface Timing Characteristics (1) Parameter/Condition Min Max Unit Serial clock frequency, FCLK(2) 0.032 26 MHz Serial clock period, TSCLK 40 ns Serial clock HIGH time, TSCLKH 20 ns Serial clock LOW time, TSCLKL 20 ns Serial data output propagation delay from CLK falling edge, TOV (10 pF) Latch clock pulse width high, TLCLKH 9 10 ns ns Serial data input setup time from CLK rising edge, TSU 5 ns Serial data input hold time from CLK rising edge, TH 2 ns Serial data output hold time from CLK rising edge, TOH 1.6 ns Serial clock rising edge setup time to latch clock rising edge, TSETTLE 27 ns SDO drive strength(3) 15 pF Notes: 1) VDD = 2.3V–5.5V, –40 °C < TA < +105 °C, unless otherwise specified. 2) Limited by test duration not static logic design. Synchronous to clock. Minimum clock frequency tested = 32 kHz. 3) SDO maximum capacitive load drive strength for FCLK = 26 MHz with a 1.8V swing. Page 10 DOC-64256-3 – (08/2016) www.psemi.com PE46140 MPAC Typical Performance Data Figure 3–Figure 21 show the typical performance data @ +25 °C and VDD = 2.3V–5.5V, 50Ω, unless otherwise specified. Figure 3 • Relative Phase Shift (RFOUT1 to RFOUT2) Phase (S21) - Phase (S31) -80 -82 Phase Delta (Deg) -84 -86 -88 -90 -92 -94 -96 -98 -100 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 Frequency (GHz) DOC-64256-3 – (08/2016) Page 11 www.psemi.com PE46140 MPAC Figure 4 • Insertion Loss (RFIN to RFOUT1) Magnitude (S21) -6 -6.2 Insertion Loss (dB) -6.4 -6.6 -6.8 -7 -7.2 -7.4 -7.6 -7.8 -8 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 3.8 3.9 4 4.1 Frequency (GHz) Figure 5 • Insertion Loss (RFIN to RFOUT2) Magnitude (S31) -6 -6.2 Insertion Loss (dB) -6.4 -6.6 -6.8 -7 -7.2 -7.4 -7.6 -7.8 -8 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Frequency (GHz) Page 12 DOC-64256-3 – (08/2016) www.psemi.com PE46140 MPAC Figure 6 • Insertion Loss RFIN to RFOUT2 (All RFOUT2 Attenuation States) 0 0 0.5 -2 1 Insertion Loss (dB) -4 1.5 2 -6 2.5 -8 3 3.5 -10 4 -12 4.5 5 -14 5.5 6 -16 6.5 -18 7 7.5 -20 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 Frequency (GHz) Figure 7 • Relative Phase RFIN to RFOUT1 (All RFOUT1 Phase States) 0 -10 -20 Phase (Deg) -30 -40 -50 -60 -70 -80 -90 -100 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Frequency (GHz) DOC-64256-3 – (08/2016) 3.8 3.9 4 4.1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Page 13 www.psemi.com PE46140 MPAC Figure 8 • Relative Phase RFIN to RFOUT2 (All RFOUT2 Phase States) 0 -10 -20 Phase (Deg) -30 -40 -50 -60 -70 -80 -90 -100 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 Frequency (GHz) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Figure 9 • Input Return Loss (All States) 0 -5 -10 Return Loss (dB) -15 -20 -25 -30 -35 -40 -45 -50 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 Frequency (GHz) Page 14 DOC-64256-3 – (08/2016) www.psemi.com PE46140 MPAC Figure 10 • Output Return Loss RFOUT1 (All RFOUT1 Phase States) 0 -5 Return Loss (dB) -10 -15 -20 -25 -30 -35 -40 -45 -50 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 3.8 3.9 4 4.1 Frequency (GHz) Figure 11 • Output Return Loss RFOUT2 (All RFOUT2 States) 0 -5 -10 Return Loss (dB) -15 -20 -25 -30 -35 -40 -45 -50 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Frequency (GHz) DOC-64256-3 – (08/2016) Page 15 www.psemi.com PE46140 MPAC Figure 12 • Isolation Output Ports (All States) 0 -5 -10 Isolation (dB) -15 -20 -25 -30 -35 -40 -45 -50 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 3.8 3.9 4 4.1 Frequency (GHz) Figure 13 • RFOUT1 Insertion Loss Variation Across All RFOUT2 States -6 -6.2 Insertion Loss (dB) -6.4 -6.6 -6.8 -7 -7.2 -7.4 -7.6 -7.8 -8 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Frequency (GHz) Page 16 DOC-64256-3 – (08/2016) www.psemi.com PE46140 MPAC Figure 14 • RFOUT1 Phase Variation Across All RFOUT2 Phase States 2.5 2 1.5 Phase (Deg) 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 80 90 Frequency (GHz) Figure 15 • RFOUT1 Insertion Loss Variation Across RFOUT1 Phase State 3.4 GHz 3.6 GHz 3.8 GHz -6 -6.2 Insertion Loss (dB) -6.4 -6.6 -6.8 -7 -7.2 -7.4 -7.6 -7.8 -8 0 10 20 30 40 50 60 70 Phase State (Deg) DOC-64256-3 – (08/2016) Page 17 www.psemi.com PE46140 MPAC Figure 16 • RFOUT2 Insertion Loss Variation Across RFOUT2 Phase State 3.4 GHz 3.6 GHz 3.8 GHz -6 -6.2 Insertion Loss (dB) -6.4 -6.6 -6.8 -7 -7.2 -7.4 -7.6 -7.8 -8 0 10 20 30 40 50 60 70 80 90 Phase State (Deg) Figure 17 • RFOUT2 Phase Variation Across RFOUT2 Attenuation State 3.4 GHz 3.6 GHz 3.8 GHz 4 3 Phase (Deg) 2 1 0 -1 -2 -3 -4 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 Attenuation State (dB) Page 18 DOC-64256-3 – (08/2016) www.psemi.com PE46140 MPAC Figure 18 • RFOUT2 Insertion Loss Across RFOUT2 Attenuation State vs VDD, Frequency = 3.6 GHz 2.3V 3.3V 5.5V 0 Insertion Loss (dB) -2 -4 -6 -8 -10 -12 -14 -16 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 Attenuation State (dB) Figure 19 • RFOUT2 Insertion Loss Across RFOUT2 Attenuation State vs Temperature, Frequency = 3.6 GHz -40 °C +25 °C +85 °C +105 °C 0 Insertion Loss (dB) -2 -4 -6 -8 -10 -12 -14 -16 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 Attenuation State (dB) DOC-64256-3 – (08/2016) Page 19 www.psemi.com PE46140 MPAC Figure 20 • RFOUT2 Relative Phase Across RFOUT2 Phase State vs VDD, Frequency = 3.6 GHz 2.3V 3.3V 5.5V 0 Relative Phase (Deg) -10 -20 -30 -40 -50 -60 -70 -80 -90 0 10 20 30 40 50 60 70 80 90 Phase State (Deg) Figure 21 • RFOUT2 Relative Phase Across RFOUT2 Phase State vs Temperature, Frequency = 3.6 GHz -40 °C +25 °C +85 °C +105 °C 0 Relative Phase (Deg) -10 -20 -30 -40 -50 -60 -70 -80 -90 0 10 20 30 40 50 60 70 80 90 Phase State (Deg) Page 20 DOC-64256-3 – (08/2016) www.psemi.com PE46140 MPAC Pin Information Table 14 • Pin Descriptions for PE46140 This section provides pinout information for the PE46140. Figure 22 shows the pin map of this device for the available package. Table 14 provides a description for each pin. Pin No. Pin Name 1, 8 CLK(1) Clock input 2, 7 SDO(2) Serial data output 3, 6, 12–16, 22, 25–29 NC 4, 5 RFIN(3) RF input 9, 32 SDI(1) Serial data input 10, 31 LE(1) Latch enable 11, 30 VDD(1) Figure 22 • Pin Configuration (Top View) 25 26 27 28 29 30 1 24 2 23 3 22 4 21 Exposed Ground Pad 5 20 RFOUT2 RFOUT2 NC DS SPENB GND RFOUT1 RFOUT1 17, 18 19 20 16 15 17 14 8 13 18 12 7 11 19 10 6 9 CLK SDO NC RFIN RFIN NC SDO CLK 31 32 SDI LE VDD NC NC NC NC NC Pin 1 Dot Marking SDI LE VDD NC NC NC NC NC 21 23, 24 Pad Description No connect Supply voltage RFOUT1(3) RF output 1 GND(4) Ground SPENB(5)(6) Serial port enable DS(6) Default state at power up select RFOUT2(3) RF output 2 GND Exposed pad: ground for proper operation Notes: 1) Pins are internally connected, signal only needs to be applied to one of the pins. The alternate unused pin needs to be left floating. 2) SDOs are independently buffered outputs of the same signal. 3) RF pins 4, 5, 17 and 18, 23 and 24 must be at 0 VDC. The RF pins do not require DC blocking capacitors for proper operation if the 0 VDC requirement is met. 4) Pin 19 must be grounded for proper function. 5) Must be active low for normal SPI operation. Logic high programs 0 dB attenuation setting and 0° phase setting. Setting back to logic low returns to the previously programmed state. 6) Pin has an internal 100 kΩ pull-up resistor. DOC-64256-3 – (08/2016) Page 21 www.psemi.com PE46140 MPAC Packaging Information This section provides packaging data including the moisture sensitivity level, package drawing and tape-andreel information. Moisture Sensitivity Level The moisture sensitivity level rating for the PE46140 in the 32-lead 6 × 6 mm QFN package is MSL1. Package Drawing Figure 23 • Package Mechanical Drawing for 32-lead 6 × 6 × 0.85 mm QFN 0.10 C A 6.00±0.05 (2X) B 4.30±0.05 0.25 (x32) 0.40±0.05 (x32) 0.50 (x28) 0.85 (x32) 0.50 (x28) 4.30±0.05 4.35 6.00±0.05 6.75 0.20±0.05 (x32) 0.10 C 4.35 3.50 Ref. (2X) 6.75 PIN #1 CORNER BOTTOM VIEW TOP VIEW RECOMMENDED LAND PATTERN 0.10 C 0.85±0.05 0.05 C SEATING PLANE 0.203 Ref. 0.10 0.05 C A B C ALL FEATURES SIDE VIEW 0.05 MAX C Page 22 DOC-64256-3 – (08/2016) www.psemi.com PE46140 MPAC Tape and Reel Specification Figure 24 • Tape and Reel Specifications for 32-lead 6 × 6 × 0.85 mm QFN Direction of Feed Section A-A P1 P0 see note 1 T P2 see note 3 D1 D0 A E F see note 3 B0 A0 K0 A0 B0 K0 D0 D1 E F P0 P1 P2 T W0 6.30 ± 0.10 6.30 ± 0.10 1.10 ± 0.10 1.50 + 0.1/ -0.0 1.5 min 1.75 ± 0.10 7.50 ± 0.10 4.00 12.00 ± 0.10 2.00 ± 0.10 0.30 ± 0.05 16.00 ± 0.30 A W0 Pin 1 Notes: 1. 10 Sprocket hole pitch cumulative tolerance ±0.2 2. Camber in compliance with EIA 481 3. Pocket position relative to sprocket hole measured as true position of pocket, not pocket hole Dimensions are in millimeters unless otherwise specified Device Orientation in Tape Product Specification DOC-64256-3 – (08/2016) Page 23 www.psemi.com PE46140 MPAC Ordering Information Table 15 lists the available ordering codes for the PE46140 as well as available shipping methods. Table 15 • Order Codes for PE46140 Order Codes Description Packaging Shipping Method PE46140A–X PE46140 monolithic phase and amplitude controller 32-lead 6 × 6 × 0.85 mm QFN 500 units/T&R EK46140–01 PE46140 Evaluation kit Evaluation kit 1/box Document Categories Advance Information Product Brief The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. This document contains a shortened version of the datasheet. For the full datasheet, contact sales@psemi.com. Preliminary Specification Not Recommended for New Designs (NRND) This product is in production but is not recommended for new designs. The datasheet contains preliminary data. Additional data may be added at a later date. Peregrine reserves the right to change specifications at any time without notice in order to supply the best possible product. Product Specification The datasheet contains final data. In the event Peregrine decides to change the specifications, Peregrine will notify customers of the intended changes by issuing a CNF (Customer Notification Form). End of Life (EOL) This product is currently going through the EOL process. It has a specific last-time buy date. Obsolete This product is discontinued. Orders are no longer accepted for this product. Sales Contact For additional information, contact Sales at sales@psemi.com. Disclaimers The information in this document is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user’s own risk. No patent rights or licenses to any circuits described in this document are implied or granted to any third party. Peregrine’s products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications. Patent Statement Peregrine products are protected under one or more of the following U.S. patents: patents.psemi.com Copyright and Trademark ©2015–2016, Peregrine Semiconductor Corporation. All rights reserved. The Peregrine name, logo, UTSi and UltraCMOS are registered trademarks and HaRP, MultiSwitch and DuNE are trademarks of Peregrine Semiconductor Corp. Product Specification www.psemi.com DOC-64256-3 – (08/2016)
PE46140A-X 价格&库存

很抱歉,暂时无法提供与“PE46140A-X”相匹配的价格&库存,您可以联系我们找货

免费人工找货