74AUP1Z125
Low-power X-tal driver with enable and internal resistor
Rev. 01 — 3 August 2006 Product data sheet
1. General description
The 74AUP1Z125 is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families. When not in use the EN input can be driven HIGH, pulling up the X1 input and putting the device in a low power disable mode. Schmitt-trigger action at the EN input makes the circuit tolerant to slower input rise and fall times across the entire VCC range from 0.8 V to 3.6 V. This device ensures a very low static and dynamic power consumption across the entire VCC range from 0.8 V to 3.6 V. This device is fully specified for partial Power-down applications using IOFF at output Y. The IOFF circuitry disables the output Y, preventing the damaging backflow current through the device when it is powered down. The 74AUP1Z125 combines the functions of the 74AUP1GU04 and 74AUP1G125 to provide a device optimized for use in crystal oscillator applications. The integration of the two devices into the 74AUP1Z125 produces the benefits of a compact footprint, lower power dissipation and stable operation over a wide range of frequency and temperature.
2. Features
s Wide supply voltage range from 0.8 V to 3.6 V s High noise immunity s ESD protection: x HBM JESD22-A114-C Class 3A. Exceeds 5000 V x MM JESD22-A115-A exceeds 200 V x CDM JESD22-C101-C exceeds 1000 V s Low static power consumption; ICC = 0.9 µA (maximum) s Latch-up performance exceeds 100 mA per JESD 78 Class II s Inputs accept voltages up to 3.6 V s Low noise overshoot and undershoot < 10 % of VCC s IOFF circuitry provides partial Power-down mode operation at output Y s Multiple package options s Specified from −40 °C to +85 °C and −40 °C to +125 °C
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
3. Ordering information
Table 1. Ordering information Package Temperature range Name 74AUP1Z125GW 74AUP1Z125GM 74AUP1Z125GF −40 °C to +125 °C −40 °C to +125 °C −40 °C to +125 °C SC-88 XSON6 XSON6 Description plastic surface-mounted package; 6 leads Version SOT363 Type number
plastic extremely thin small outline package; no leads; SOT886 6 terminals; body 1 × 1.45 × 0.5 mm plastic extremely thin small outline package; no leads; SOT891 6 terminals; body 1 × 1 × 0.5 mm
4. Marking
Table 2. Marking Marking code 55 55 55 Type number 74AUP1Z125GW 74AUP1Z125GM 74AUP1Z125GF
5. Functional diagram
VCC
RPU
X1
3
6
Y
RFB
4
X2
EN
1
001aaf141
Fig 1. Logic symbol
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
2 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
6. Pinning information
6.1 Pinning
74AUP1Z125 74AUP1Z125
EN GND 1 2 6 5 Y GND VCC X1 X1 3
001aaf142
EN
1
6
Y EN GND
74AUP1Z125
1 2 3 6 5 4 Y VCC X2
2
5
VCC
3
4
X2
X1
4
X2
001aaf143
001aaf144
Transparent top view
Transparent top view
Fig 2. Pin configuration SOT363 (SC-88)
Fig 3. Pin configuration SOT886 (XSON6)
Fig 4. Pin configuration SOT891 (XSON6)
6.2 Pin description
Table 3. Symbol EN GND X1 X2 VCC Y Pin description Pin 1 2 3 4 5 6 Description enable input (active LOW) ground (0 V) data input unbuffered output supply voltage data output
7. Functional description
Table 4. Input EN L L H H
[1]
Function table[1] Output X1 L H L H X2 H L H L Y H L Z Z
H = HIGH voltage level; L = LOW voltage level; Z = high-impedance OFF-state.
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
3 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
8. Limiting values
Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol VCC IIK VI IOK VO IO ICC IGND Tstg Ptot
[1] [2]
Parameter supply voltage input clamping current input voltage output clamping current output voltage output current supply current ground current storage temperature total power dissipation
Conditions VI < 0 V
[1]
Min −0.5 −0.5 [1]
Max +4.6 −50 +4.6 −50 VCC + 0.5 ±20 +50 −50 +150 250
Unit V mA V mA V mA mA mA °C mW
VO < 0 V VO = 0 V to VCC
−0.5 −65
Tamb = −40 °C to +125 °C
[2]
-
The input and output voltage ratings may be exceeded if the input and output current ratings are observed. For SC-88 packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K. For XSON6 packages: above 45 °C the value of Ptot derates linearly with 2.4 mW/K.
9. Recommended operating conditions
Table 6. Symbol VCC VI VO Tamb ∆t/∆V Recommended operating conditions Parameter supply voltage input voltage output voltage ambient temperature input transition rise and fall rate VCC = 0.8 V to 3.6 V Conditions Min 0.8 0 0 −40 0 Max 3.6 3.6 VCC +125 200 Unit V V V °C ns/V
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
4 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
10. Static characteristics
Table 7. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Tamb = 25 °C VIH HIGH-level input voltage X1 input VCC = 0.8 V to 3.6 V EN input VCC = 0.8 V VCC = 0.9 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V VIL LOW-level input voltage X1 input VCC = 0.8 V to 3.6 V EN input VCC = 0.8 V VCC = 0.9 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V VOH HIGH-level output voltage Y output; VI = VIH or VIL IO = −20 µA; VCC = 0.8 V to 3.6 V IO = −1.1 mA; VCC = 1.1 V IO = −1.7 mA; VCC = 1.4 V IO = −1.9 mA; VCC = 1.65 V IO = −2.3 mA; VCC = 2.3 V IO = −3.1 mA; VCC = 2.3 V IO = −2.7 mA; VCC = 3.0 V IO = −4.0 mA; VCC = 3.0 V X2 output; VI = GND or VCC IO = −20 µA; VCC = 0.8 V to 3.6 V IO = −1.1 mA; VCC = 1.1 V IO = −1.7 mA; VCC = 1.4 V IO = −1.9 mA; VCC = 1.65 V IO = −2.3 mA; VCC = 2.3 V IO = −3.1 mA; VCC = 2.3 V IO = −2.7 mA; VCC = 3.0 V IO = −4.0 mA; VCC = 3.0 V VCC − 0.1 1.11 1.32 2.05 1.9 2.72 2.6 V V V V V V V V 0.75 × VCC VCC − 0.1 1.11 1.32 2.05 1.9 2.72 2.6 V V V V V V V V 0.75 × VCC 0.30 × VCC V 0.35 × VCC V 0.7 0.9 V V 0.25 × VCC V 0.70 × VCC 0.65 × VCC 1.6 2.0 V V V V 0.75 × VCC V Conditions Min Typ Max Unit
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
5 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
Table 7. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter VOL LOW-level output voltage Conditions Y output; VI = VIH or VIL IO = 20 µA; VCC = 0.8 V to 3.6 V IO = 1.1 mA; VCC = 1.1 V IO = 1.7 mA; VCC = 1.4 V IO = 1.9 mA; VCC = 1.65 V IO = 2.3 mA; VCC = 2.3 V IO = 3.1 mA; VCC = 2.3 V IO = 2.7 mA; VCC = 3.0 V IO = 4.0 mA; VCC = 3.0 V X2 output; VI = GND or VCC IO = 20 µA; VCC = 0.8 V to 3.6 V IO = 1.1 mA; VCC = 1.1 V IO = 1.7 mA; VCC = 1.4 V IO = 1.9 mA; VCC = 1.65 V IO = 2.3 mA; VCC = 2.3 V IO = 3.1 mA; VCC = 2.3 V IO = 2.7 mA; VCC = 3.0 V IO = 4.0 mA; VCC = 3.0 V II input leakage current X1 input VI = EN = VCC; VCC = 0 V to 3.6 V EN input VI = GND to 3.6 V; VCC = 0 V to 3.6 V Ipu Ifbck pull-up current feedback current X1 input; EN = VCC VI = GND; VCC = 0.8 V to 3.6 V X1 input VI = GND or VCC; EN = GND; VCC = 0.8 V to 3.6 V IOZ IOFF ∆IOFF ICC ∆ICC OFF-state output current power-off leakage current additional power-off leakage current supply current additional supply current VI = VIH or VIL; VO = 0 V to 3.6 V; VCC = 0 V to 3.6 V; EN = VCC VI or VO = 0 V to 3.6 V; VCC = 0 V VI or VO = 0 V to 3.6 V; VCC = 0 V to 0.2 V VI = GND or VCC; IO = 0 A; VCC = 0.8 V to 3.6 V EN input VI = VCC − 0.6 V; IO = 0 A; VCC = 3.3 V 40 µA
[1] [1]
Min -
Typ -
Max 0.1 0.3 × VCC 0.31 0.31 0.31 0.44 0.31 0.44 0.1 0.3 × VCC 0.31 0.31 0.31 0.44 0.31 0.44 ±10 ±0.1
Unit V V V V V V V V V V V V V V V V µA µA
-
-
−15 ±7.5 ±0.1 ±0.2 ±0.2 10
µA µA µA µA µA µA
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
6 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
Table 7. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter CI input capacitance Conditions X1 input VCC = 0 V to 3.6 V; VI = GND or VCC EN input VCC = 0 V to 3.6 V; VI = GND or VCC CO output capacitance X2 output VO = GND; VCC = 0 V Y output VO = GND; VCC = 0 V Tamb = −40 °C to +85 °C VIH HIGH-level input voltage X1 input VCC = 0.8 V to 3.6 V EN input VCC = 0.8 V VCC = 0.9 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V VIL LOW-level input voltage X1 input VCC = 0.8 V to 3.6 V EN input VCC = 0.8 V VCC = 0.9 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V 0.30 × VCC V 0.35 × VCC V 0.7 0.9 V V 0.25 × VCC V 0.70 × VCC 0.65 × VCC 1.6 2.0 V V V V 0.75 × VCC V 1.7 pF 1.8 pF 0.8 pF 1.5 pF Min Typ Max Unit
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
7 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
Table 7. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter VOH HIGH-level output voltage Conditions Y output; VI = VIH or VIL IO = −20 µA; VCC = 0.8 V to 3.6 V IO = −1.1 mA; VCC = 1.1 V IO = −1.7 mA; VCC = 1.4 V IO = −1.9 mA; VCC = 1.65 V IO = −2.3 mA; VCC = 2.3 V IO = −3.1 mA; VCC = 2.3 V IO = −2.7 mA; VCC = 3.0 V IO = −4.0 mA; VCC = 3.0 V X2 output; VI = GND or VCC IO = −20 µA; VCC = 0.8 V to 3.6 V IO = −1.1 mA; VCC = 1.1 V IO = −1.7 mA; VCC = 1.4 V IO = −1.9 mA; VCC = 1.65 V IO = −2.3 mA; VCC = 2.3 V IO = −3.1 mA; VCC = 2.3 V IO = −2.7 mA; VCC = 3.0 V IO = −4.0 mA; VCC = 3.0 V VOL LOW-level output voltage Y output; VI = VIH or VIL IO = 20 µA; VCC = 0.8 V to 3.6 V IO = 1.1 mA; VCC = 1.1 V IO = 1.7 mA; VCC = 1.4 V IO = 1.9 mA; VCC = 1.65 V IO = 2.3 mA; VCC = 2.3 V IO = 3.1 mA; VCC = 2.3 V IO = 2.7 mA; VCC = 3.0 V IO = 4.0 mA; VCC = 3.0 V X2 output; VI = GND or VCC IO = 20 µA; VCC = 0.8 V to 3.6 V IO = 1.1 mA; VCC = 1.1 V IO = 1.7 mA; VCC = 1.4 V IO = 1.9 mA; VCC = 1.65 V IO = 2.3 mA; VCC = 2.3 V IO = 3.1 mA; VCC = 2.3 V IO = 2.7 mA; VCC = 3.0 V IO = 4.0 mA; VCC = 3.0 V 0.1 0.3 × VCC 0.37 0.35 0.33 0.45 0.33 0.45 V V V V V V V V 0.1 0.3 × VCC 0.37 0.35 0.33 0.45 0.33 0.45 V V V V V V V V VCC − 0.1 0.7 × VCC 1.03 1.30 1.97 1.85 2.67 2.55 V V V V V V V V VCC − 0.1 0.7 × VCC 1.03 1.30 1.97 1.85 2.67 2.55 V V V V V V V V Min Typ Max Unit
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
8 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
Table 7. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter II input leakage current Conditions X1 input VI = EN = VCC; VCC = 0 V to 3.6 V EN input VI = GND to 3.6 V; VCC = 0 V to 3.6 V Ipu Ifbck pull-up current feedback current X1 input; EN = VCC VI = GND; VCC = 0.8 V to 3.6 V X1 input VI = GND or VCC; EN = GND; VCC = 0.8 V to 3.6 V IOZ IOFF ∆IOFF ICC ∆ICC OFF-state output current power-off leakage current additional power-off leakage current supply current additional supply current VI = VIH or VIL; VO = 0 V to 3.6 V; VCC = 0 V to 3.6 V; EN = VCC VI or VO = 0 V to 3.6 V; VCC = 0 V VI or VO = 0 V to 3.6 V; VCC = 0 V to 0.2 V VI = GND or VCC; IO = 0 A; VCC = 0.8 V to 3.6 V EN input VI = VCC − 0.6 V; IO = 0 A; VCC = 3.3 V Tamb = −40 °C to +125 °C VIH HIGH-level input voltage X1 input VCC = 0.8 V to 3.6 V EN input VCC = 0.8 V VCC = 0.9 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V VIL LOW-level input voltage X1 input VCC = 0.8 V to 3.6 V EN input VCC = 0.8 V VCC = 0.9 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V 0.25 × VCC V 0.30 × VCC V 0.7 0.9 V V 0.25 × VCC V 0.75 × VCC 0.70 × VCC 1.6 2.0 V V V V 0.75 × VCC V 50 µA
[1] [1]
Min -
Typ -
Max ±15 ±0.5
Unit µA µA
-
-
−15 ±7.5 ±0.5 ±0.5 ±0.6 0.9
µA µA µA µA µA µA
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
9 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
Table 7. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter VOH HIGH-level output voltage Conditions Y output; VI = VIH or VIL IO = −20 µA; VCC = 0.8 V to 3.6 V IO = −1.1 mA; VCC = 1.1 V IO = −1.7 mA; VCC = 1.4 V IO = −1.9 mA; VCC = 1.65 V IO = −2.3 mA; VCC = 2.3 V IO = −3.1 mA; VCC = 2.3 V IO = −2.7 mA; VCC = 3.0 V IO = −4.0 mA; VCC = 3.0 V X2 output; VI = GND or VCC IO = −20 µA; VCC = 0.8 V to 3.6 V IO = −1.1 mA; VCC = 1.1 V IO = −1.7 mA; VCC = 1.4 V IO = −1.9 mA; VCC = 1.65 V IO = −2.3 mA; VCC = 2.3 V IO = −3.1 mA; VCC = 2.3 V IO = −2.7 mA; VCC = 3.0 V IO = −4.0 mA; VCC = 3.0 V VOL LOW-level output voltage Y output; VI = VIH or VIL IO = 20 µA; VCC = 0.8 V to 3.6 V IO = 1.1 mA; VCC = 1.1 V IO = 1.7 mA; VCC = 1.4 V IO = 1.9 mA; VCC = 1.65 V IO = 2.3 mA; VCC = 2.3 V IO = 3.1 mA; VCC = 2.3 V IO = 2.7 mA; VCC = 3.0 V IO = 4.0 mA; VCC = 3.0 V X2 output; VI = GND or VCC IO = 20 µA; VCC = 0.8 V to 3.6 V IO = 1.1 mA; VCC = 1.1 V IO = 1.7 mA; VCC = 1.4 V IO = 1.9 mA; VCC = 1.65 V IO = 2.3 mA; VCC = 2.3 V IO = 3.1 mA; VCC = 2.3 V IO = 2.7 mA; VCC = 3.0 V IO = 4.0 mA; VCC = 3.0 V 0.11 0.41 0.39 0.36 0.50 0.36 0.50 V V V V V V V 0.33 × VCC V 0.11 0.41 0.39 0.36 0.50 0.36 0.50 V V V V V V V 0.33 × VCC V VCC − 0.11 0.6 × VCC 0.93 1.17 1.77 1.67 2.40 2.30 V V V V V V V V VCC − 0.11 0.6 × VCC 0.93 1.17 1.77 1.67 2.40 2.30 V V V V V V V V Min Typ Max Unit
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
10 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
Table 7. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter II input leakage current Conditions X1 input VI = EN = VCC; VCC = 0 V to 3.6 V EN input VI = GND to 3.6 V; VCC = 0 V to 3.6 V Ipu Ifbck pull-up current feedback current X1 input; EN = VCC VI = GND; VCC = 0.8 V to 3.6 V X1 input VI = GND or VCC; EN = GND; VCC = 0.8 V to 3.6 V IOZ IOFF ∆IOFF ICC ∆ICC OFF-state output current power-off leakage current additional power-off leakage current supply current additional supply current VI = VIH or VIL; VO = 0 V to 3.6 V; VCC = 0 V to 3.6 V; EN = VCC VI or VO = 0 V to 3.6 V; VCC = 0 V VI or VO = 0 V to 3.6 V; VCC = 0 V to 0.2 V VI = GND or VCC; IO = 0 A; VCC = 0.8 V to 3.6 V EN input VI = VCC − 0.6 V; IO = 0 A; VCC = 3.3 V
[1] Only for output Y.
[1] [1]
Min -
Typ -
Max ±20 ±0.75
Unit µA µA
-
-
−15 ±7.5 ±0.75 ±0.75 ±0.75 1.4
µA µA µA µA µA µA
-
-
75
µA
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
11 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
11. Dynamic characteristics
Table 8. Dynamic characteristics Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7. Symbol Parameter Conditions Min CL = 5 pF tpd propagation delay X1 to X2; see Figure 5 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V X1 to Y; see Figure 5 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V ten enable time EN to Y; see Figure 6 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V tdis disable time EN to Y; see Figure 6 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V
[4] [3] [2] [2]
25 °C Typ[1] Max
−40 °C to +125 °C Min Max (85 °C) Max (125 °C)
Unit
0.9 0.7 0.5 0.4 0.3 2.8 2.2 1.9 1.6 1.4 3.1 2.5 2.1 1.8 1.7 2.5 2.0 1.9 1.4 1.7
6.2 2.3 1.7 1.4 1.1 1.0 18.5 5.9 4.2 3.5 2.9 2.6 31.2 6.1 4.3 3.6 2.9 2.6 11.1 4.5 3.3 3.2 2.3 2.6
4.4 3.1 2.6 2.0 1.8 12.5 7.7 6.2 4.8 4.1 13.8 8.2 6.5 4.8 4.1 9.0 6.4 6.0 4.4 4.4
0.9 0.6 0.5 0.4 0.3 3.2 2.6 2.2 1.9 1.7 2.9 2.3 2.0 1.7 1.7 2.9 2.3 2.0 1.7 1.7
4.8 3.4 2.9 2.3 2.1 14.8 9.1 7.8 6.2 4.7 16.3 9.7 7.6 5.8 4.7 9.4 6.7 6.4 4.7 4.9
5.3 3.8 3.2 2.6 2.4 16.3 10.1 8.6 6.9 5.2 18.0 10.7 8.4 6.4 5.2 10.4 7.4 7.1 5.2 5.4
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
12 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
Table 8. Dynamic characteristics …continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7. Symbol Parameter Conditions Min CL = 10 pF tpd propagation delay X1 to X2; see Figure 5 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V X1 to Y; see Figure 5 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V ten enable time EN to Y; see Figure 6 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V tdis disable time EN to Y; see Figure 6 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V
[4] [3] [2] [2]
25 °C Typ[1] Max
−40 °C to +125 °C Min Max (85 °C) Max (125 °C)
Unit
1.2 1.0 0.8 0.6 0.5 3.2 2.1 1.9 2.1 1.8 3.6 2.3 2.0 1.8 1.7 3.4 2.1 2.2 1.6 2.1
9.6 3.1 2.3 1.9 1.5 1.3 21.4 6.7 4.9 4.1 3.4 3.1 34.4 6.9 5.0 4.2 3.4 3.2 13.0 5.7 4.2 4.3 3.1 3.8
6.1 4.0 3.3 2.7 2.4 14.3 8.9 6.9 5.4 4.8 15.5 9.3 7.2 5.5 4.9 10.4 7.6 7.3 5.3 6.0
1.2 0.9 0.7 0.6 0.5 3.6 3.0 2.6 2.3 3.0 3.4 2.2 1.9 1.7 1.7 3.4 2.2 1.9 1.7 1.7
6.8 4.6 3.8 3.1 2.7 16.2 10.1 8.0 6.6 5.6 16.0 9.6 7.9 6.4 5.5 10.8 8.0 7.6 5.5 6.5
7.5 5.1 4.2 3.5 3.0 17.9 11.2 8.8 7.3 6.2 17.6 10.6 8.7 7.1 6.1 11.9 8.8 8.4 6.1 7.2
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
13 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
Table 8. Dynamic characteristics …continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7. Symbol Parameter Conditions Min CL = 15 pF tpd propagation delay X1 to X2; see Figure 5 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V X1 to Y; see Figure 5 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V ten enable time EN to Y; see Figure 6 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V tdis disable time EN to Y; see Figure 6 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V
[4] [3] [2] [2]
25 °C Typ[1] Max
−40 °C to +125 °C Min Max (85 °C) Max (125 °C)
Unit
1.6 1.3 1.0 0.8 0.7 3.6 3.0 2.2 2.0 2.0 4.0 3.0 2.3 2.0 2.0 4.3 3.0 3.0 2.1 2.9
13.0 3.8 2.8 2.3 1.9 1.6 24.2 7.5 5.4 4.6 3.9 3.6 37.5 7.7 5.5 4.7 3.9 3.6 14.8 6.8 5.1 5.4 3.9 5.1
7.9 4.9 4.0 3.2 2.9 16.1 9.7 7.7 6.1 5.4 17.2 10.0 7.9 6.2 5.5 11.2 8.1 8.0 6.1 7.2
1.4 1.1 0.9 0.8 0.7 4.0 3.3 2.9 2.6 2.3 3.7 2.5 2.1 2.0 1.9 3.7 2.5 2.1 2.0 1.9
8.8 5.7 4.7 3.7 3.3 17.6 10.6 9.0 7.3 5.9 17.5 10.2 9.2 7.4 6.0 12.4 8.9 9.3 7.3 7.9
9.7 6.3 5.2 4.1 3.7 19.4 11.7 9.9 8.1 6.5 19.3 11.3 10.2 8.2 6.6 13.7 9.8 10.3 8.1 8.7
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
14 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
Table 8. Dynamic characteristics …continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7. Symbol Parameter Conditions Min CL = 30 pF tpd propagation delay X1 to X2; see Figure 5 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V X1 to Y; see Figure 5 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V ten enable time EN to Y; see Figure 6 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V tdis disable time EN to Y; see Figure 6 VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V
[4] [3] [2] [2]
25 °C Typ[1] Max
−40 °C to +125 °C Min Max (85 °C) Max (125 °C)
Unit
2.4 2.0 1.7 1.4 1.2 4.8 4.0 2.9 2.7 2.7 5.2 4.0 3.0 2.7 2.7 6.0 4.4 5.1 3.6 5.2
23.2 6.0 4.2 3.6 2.9 2.5 32.6 9.6 6.9 5.9 5.0 4.7 47.1 9.9 7.1 6.0 5.0 4.8 20.3 10.2 7.8 8.8 6.3 8.8
13.1 7.6 6.1 4.8 4.3 21.0 12.4 9.8 7.5 6.8 21.0 12.4 9.9 7.7 6.8 15.3 11.2 12.5 8.6 11.5
2.2 1.8 1.5 1.3 1.1 5.0 4.3 3.8 3.3 3.1 4.8 3.1 2.8 2.6 2.6 4.8 3.1 2.8 2.6 2.6
14.8 9.0 7.2 5.7 5.1 21.7 13.5 10.7 8.2 7.7 21.7 13.5 10.7 8.1 7.7 16.5 12.3 13.3 9.5 13.0
16.3 9.9 8.0 6.3 5.7 23.9 14.9 11.8 9.1 8.5 23.9 14.9 11.8 9.0 8.5 18.2 13.6 14.7 10.5 14.3
ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
15 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
Table 8. Dynamic characteristics …continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7. Symbol Parameter Conditions Min CL = 5 pF, 10 pF, 15 pF and 30 pF CPD power dissipation capacitance f = 1 MHz; EN = GND; VI = GND to VCC VCC = 0.8 V VCC = 1.1 V to 1.3 V VCC = 1.4 V to 1.6 V VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 3.0 V to 3.6 V
[1] [2] [3] [4] [5] All typical values are measured at nominal VCC. tpd is the same as tPLH and tPHL. ten is the same as tPZH and tPZL. tdis is the same as tPHZ and tPLZ. CPD is used to determine the dynamic power dissipation (PD in µW). PD = CPD × VCC2 × fi × N + Σ(CL × VCC2 × fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; VCC = supply voltage in V; N = number of inputs switching; Σ(CL × VCC2 × fo) = sum of the outputs. Feedback current is included in CPD.
[5][6]
25 °C Typ[1] Max
−40 °C to +125 °C Min Max (85 °C) Max (125 °C)
Unit
-
5.8 6.0 6.2 6.8 9.7 12.6
-
-
-
-
pF pF pF pF pF pF
[6]
12. Waveforms
VI
X1 input
GND
VM
VM
t PHL VOH
t PLH
X2, Y output
VOL
VM
VM
001aaf145
Measurement points are given in Table 9. Logic levels: VOL and VOH are typical output voltage drop that occur with the output load.
Fig 5. The input (X1) to output (X2, Y) propagation delays
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
16 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
Table 9. VCC
Measurement points Output VM 0.5 × VCC Input VM 0.5 × VCC VI VCC tr = tf ≤ 3.0 ns
Supply voltage 0.8 V to 3.6 V
VI EN input GND tPLZ VCC Y output LOW-to-OFF OFF-to-LOW VM VOL tPHZ VOH Y output HIGH-to-OFF OFF-to-HIGH GND outputs enabled outputs disabled outputs enabled
001aaf146
VM
tPZL
VX tPZH VY VM
Measurement points are given in Table 10. Logic levels: VOL and VOH are typical output voltage drop that occur with the output load.
Fig 6. Enable and disable times Table 10. VCC 0.8 V to 1.6 V 1.65 V to 2.7 V 3.0 V to 3.6 V Measurement points Input VM 0.5 × VCC 0.5 × VCC 0.5 × VCC Output VM 0.5 × VCC 0.5 × VCC 0.5 × VCC VX VOL + 0.1 V VOL + 0.15 V VOL + 0.3 V VY VOH − 0.1 V VOH − 0.15 V VOH − 0.3 V
Supply voltage
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
17 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
VCC
VEXT
5 kΩ
PULSE GENERATOR
VI
VO
DUT
RT CL RL
001aac521
Test data is given in Table 11. Definitions for test circuit: RL = Load resistance. CL = Load capacitance including jig and probe capacitance. RT = Termination resistance should be equal to the output impedance Zo of the pulse generator. VEXT = External voltage for measuring switching times.
Fig 7. Load circuitry for switching times Table 11. VCC 0.8 V to 3.6 V
[1]
Test data Load CL RL[1] 5 pF, 10 pF, 15 pF and 30 pF 5 kΩ or 1 MΩ VEXT tPLH, tPHL open tPZH, tPHZ GND tPZL, tPLZ 2 × VCC
Supply voltage
For measuring enable and disable times RL = 5 kΩ, for measuring propagation delays, setup and hold times and pulse width RL = 1 MΩ.
30 gfs (mA/V) 20
1 MΩ
001aad074
VCC 10
0.47 µF 100 µF
input Vi
output Io 0 0
001aad595
1
2
3 VCC (V)
4
Fig 8. Test set-up for measuring forward transconductance
Fig 9. Typical forward transconductance as a function of supply voltage
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
18 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
13. Application information
Crystal controlled oscillator circuits are widely used in clock pulse generators because of their excellent frequency stability and wide operating frequency range. The use of the 74AUP1Z125 provides the additional advantages of low power dissipation, stable operation over a wide range of frequency and temperature and a very small footprint. This application information describes crystal characteristics, design and testing of crystal oscillator circuits based on the 74AUP1Z125.
13.1 Crystal characteristics
Figure 10 is the equivalent circuit of a quartz crystal. The reactive and resistive component of the impedance of the crystal alone and the crystal with a series and a parallel capacitance is shown in Figure 11.
C1 C0 L1 R1
mnb102
Fig 10. Equivalent circuit of a crystal
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
19 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
C1 C0 L1
+
resistance
(a)
R1 0 fr fa
R1
f reactance
∞
− + C1 RL
(b)
resistance
C0
L1 R1
0
fL
fa
f reactance
∞
CL
−
+ C1
(c) CL
Rp
resistance
C0 L1 R1 − 0
fr
fL
fa
f reactance
∞
mnb104
(1) (a) = resonance (2) (b) = anti-resonance (3) (c) = load resonance
Fig 11. Average ICC as a function of VCC
13.1.1 Design
Figure 12 shows the recommended way to connect a crystal to the 74AUP1Z125. This circuit is basically a Pierce oscillator circuit in which the crystal is operating at its fundamental frequency and is tuned by the parallel load capacitance of C1 and C2. C1 and C2 are in series with the crystal. They should be approximately equal. R1 is the drive-limiting resistor and is set to approximately the same value as the reactance of C1 at the crystal frequency (R1 = XC1). This will result in an input to the crystal of 50 % of the rail-to-rail output of X2. This keeps the drive level into the crystal within drive specifications (the designer should verify this). Overdriving the crystal can cause damage. The internal 1 MΩ resistor provides negative feedback and sets a bias point of the inverter near mid-supply, operating the 74AUP1GU04 in the high gain linear region. To calculate the values of C1 and C2, the designer can use the formula: C1 × C2 C L = ------------------- + C s C1 + C2 CL is the load capacitance as specified by the crystal manufacturer, Cs is the stray capacitance of the circuit (for the 74AUP1Z125 this is equal to an input capacitance of 5 pF).
74AUP1Z125_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
20 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
74AUP1GU04 portion
74AUP1G125 portion
system load
Y X1
1 MΩ
X2
Xtal Csys C2 C1 Rsys
001aaf147
Fig 12. Crystal oscillator configuration
13.1.2 Testing
After the calculations are performed for a particular crystal, the oscillator circuit should be tested. The following simple checks will verify the prototype design of a crystal controlled oscillator circuit. Perform them after laying out the board:
• Test the oscillator over worst-case conditions (lowest supply voltage, worst-case
crystal and highest operating temperature). Adding series and parallel resistors can simulate a worse case crystal.
• Insure that the circuit does not oscillate without the crystal. • Check the frequency stability over a supply range greater than that which is likely to
occur during normal operation.
• Check that the start-up time is within system requirements.
As the 74AUP1Z125 isolates the system loading, once the design is optimized, the single layout may work in multiple applications for any given crystal.
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
21 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
14. Package outline
Plastic surface-mounted package; 6 leads SOT363
D
B
E
A
X
y
HE
vMA
6
5
4
Q
pin 1 index
A
A1
1
e1 e
2
bp
3
wM B detail X Lp
c
0
1 scale
2 mm
DIMENSIONS (mm are the original dimensions) UNIT mm A 1.1 0.8 A1 max 0.1 bp 0.30 0.20 c 0.25 0.10 D 2.2 1.8 E 1.35 1.15 e 1.3 e1 0.65 HE 2.2 2.0 Lp 0.45 0.15 Q 0.25 0.15 v 0.2 w 0.2 y 0.1
OUTLINE VERSION SOT363
REFERENCES IEC JEDEC JEITA SC-88
EUROPEAN PROJECTION
ISSUE DATE 04-11-08 06-03-16
Fig 13. Package outline SOT363 (SC-88)
74AUP1Z125_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
22 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm
SOT886
b 1 2 3 4× L1 L
(2)
e
6 e1
5 e1
4
6×
(2)
A
A1 D
E
terminal 1 index area 0 DIMENSIONS (mm are the original dimensions) UNIT mm A (1) max 0.5 A1 max 0.04 b 0.25 0.17 D 1.5 1.4 E 1.05 0.95 e 0.6 e1 0.5 L 0.35 0.27 L1 0.40 0.32 1 scale 2 mm
Notes 1. Including plating thickness. 2. Can be visible in some manufacturing processes. OUTLINE VERSION SOT886 REFERENCES IEC JEDEC MO-252 JEITA EUROPEAN PROJECTION ISSUE DATE 04-07-15 04-07-22
Fig 14. Package outline SOT886 (XSON6)
74AUP1Z125_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
23 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1 x 0.5 mm
SOT891
1
2
b 3
L1 e
L
6 e1
5 e1
4
A
A1 D
E
terminal 1 index area 0 1 scale 2 mm
DIMENSIONS (mm are the original dimensions) UNIT mm A max 0.5 A1 max 0.04 b 0.20 0.12 D 1.05 0.95 E 1.05 0.95 e 0.55 e1 0.35 L 0.35 0.27 L1 0.40 0.32
OUTLINE VERSION SOT891
REFERENCES IEC JEDEC JEITA
EUROPEAN PROJECTION
ISSUE DATE 05-03-11 05-04-06
Fig 15. Package outline SOT891 (XSON6)
74AUP1Z125_1 © Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
24 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
15. Abbreviations
Table 12. Acronym CDM CMOS DUT ESD HBM MM TTL Abbreviations Description Charged Device Model Complementary Metal Oxide Semiconductor Device Under Test ElectroStatic Discharge Human Body Model Machine Model Transistor-Transistor Logic
16. Revision history
Table 13. Revision history Release date 20060803 Data sheet status Product data sheet Change notice Supersedes Document ID 74AUP1Z125_1
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
25 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
17. Legal information
17.1 Data sheet status
Document status[1][2] Objective [short] data sheet Preliminary [short] data sheet Product [short] data sheet
[1] [2] [3]
Product status[3] Development Qualification Production
Definition This document contains data from the objective specification for product development. This document contains data from the preliminary specification. This document contains the product specification.
Please consult the most recently issued document before initiating or completing a design. The term ‘short data sheet’ is explained in section “Definitions”. The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.semiconductors.philips.com.
17.2 Definitions
Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Philips Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Philips Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.
malfunction of a Philips Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Philips Semiconductors accepts no liability for inclusion and/or use of Philips Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — Philips Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.semiconductors.philips.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Philips Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.
17.3 Disclaimers
General — Information in this document is believed to be accurate and reliable. However, Philips Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — Philips Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Philips Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or
17.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.
18. Contact information
For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com
74AUP1Z125_1
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.
Product data sheet
Rev. 01 — 3 August 2006
26 of 27
Philips Semiconductors
74AUP1Z125
Low-power X-tal driver with enable and internal resistor
19. Contents
1 2 3 4 5 6 6.1 6.2 7 8 9 10 11 12 13 13.1 13.1.1 13.1.2 14 15 16 17 17.1 17.2 17.3 17.4 18 19 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2 Pinning information . . . . . . . . . . . . . . . . . . . . . . 3 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3 Functional description . . . . . . . . . . . . . . . . . . . 3 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 4 Recommended operating conditions. . . . . . . . 4 Static characteristics. . . . . . . . . . . . . . . . . . . . . 5 Dynamic characteristics . . . . . . . . . . . . . . . . . 12 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Application information. . . . . . . . . . . . . . . . . . 19 Crystal characteristics . . . . . . . . . . . . . . . . . . 19 Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 22 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 25 Legal information. . . . . . . . . . . . . . . . . . . . . . . 26 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 26 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Contact information. . . . . . . . . . . . . . . . . . . . . 26 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’.
© Koninklijke Philips Electronics N.V. 2006.
All rights reserved.
For more information, please visit: http://www.semiconductors.philips.com. For sales office addresses, email to: sales.addresses@www.semiconductors.philips.com. Date of release: 3 August 2006 Document identifier: 74AUP1Z125_1