INTEGRATED CIRCUITS
DATA SHEET
For a complete data sheet, please also download:
• The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications • The IC06 74HC/HCT/HCU/HCMOS Logic Package Information • The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines
74HC/HCT4516 Binary up/down counter
Product specification File under Integrated Circuits, IC06 December 1990
Philips Semiconductors
Product specification
Binary up/down counter
FEATURES • Output capability: standard • ICC category: MSI GENERAL DESCRIPTION The 74HC/HCT4516 are high-speed Si-gate CMOS devices and are pin compatible with the “4516” of the “4000B” series. They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT4516 are edge-triggered synchronous up/down 4-bit binary counters with a clock input (CP), an up/down count control input (UP/DN), an active LOW count enable input (CE), an asynchronous active HIGH Logic equation for terminal count: TC = CE . {(UP/DN) . Q 0 . Q 1 . Q 2 . Q 3 + (UP ⁄ DN ) . Q 0 . Q 1 . Q 2 . Q 3 } QUICK REFERENCE DATA GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns
74HC/HCT4516
parallel load input (PL), four parallel inputs (D0 to D3), four parallel outputs (Q0 to Q3), an active LOW terminal count output (TC), and an overriding asynchronous master reset input (MR). Information on D0 to D3 is loaded into the counter while PL is HIGH, independent of all other input conditions except the MR input, which must be LOW. When PL and CE are LOW, the counter changes on the LOW-to-HIGH transition of CP. UP/DN determines the direction of the count, HIGH for counting up, LOW for counting down. When counting up, TC is LOW when Q0 to Q3 are HIGH and CE is LOW. When counting down, TC is LOW when Q0 to Q3 and CE are LOW. A HIGH on MR resets the counter (Q0 to Q3 = LOW) independent of all other input conditions.
TYPICAL SYMBOL tPHL/ tPLH fmax CI CPD Notes 1. CPD is used to determine the dynamic power dissipation (PD in µW): PD = CPD × VCC2 × fi + ∑ (CL × VCC2 × fo) where: fi = input frequency in MHz fo = output frequency in MHz ∑ (CL × VCC2 × fo) = sum of outputs CL = output load capacitance in pF VCC = supply voltage in V 2. For HC the condition is VI = GND to VCC For HCT the condition is VI = GND to VCC − 1.5 V PARAMETER propagation delay CP to Qn maximum clock frequency input capacitance power dissipation capacitance per package notes 1 and 2 CONDITIONS HC CL = 15 pF; VCC = 5 V 19 45 3.5 59 HCT 19 57 3.5 61 ns MHz pF pF UNIT
ORDERING INFORMATION See “74HC/HCT/HCU/HCMOS Logic Package Information”.
December 1990
2
Philips Semiconductors
Product specification
Binary up/down counter
PIN DESCRIPTION PIN NO. 1 4, 12, 13, 3 5 6, 11, 14, 2 7 8 9 10 15 16 SYMBOL PL D0 to D3 CE Q0 to Q3 TC GND MR UP/DN CP VCC NAME AND FUNCTION parallel load input (active HIGH) parallel inputs count enable input (active LOW) parallel outputs terminal count output (active LOW) ground (0 V)
74HC/HCT4516
asynchronous master reset input (active HIGH) up/down control input clock input (LOW-to-HIGH, edge-triggered) positive supply voltage
Fig.1 Pin configuration.
Fig.2
Fig.3 IEC logic symbol.
December 1990
3
Philips Semiconductors
Product specification
Binary up/down counter
FUNCTION TABLE MR L L L L H Notes PL H L L L X UP/DN X X L H X
74HC/HCT4516
CE X H L L X
CP X X ↑ ↑ X
MODE parallel load no change count down count up reset
1. H = HIGH voltage level L = LOW voltage level X = don’t care ↑ = LOW-to-HIGH clock transition
Fig.4 Functional diagram.
Fig.5 Timing diagram.
December 1990
4
Philips Semiconductors
Product specification
Binary up/down counter
74HC/HCT4516
Fig.6 Logic diagram.
December 1990
5
Philips Semiconductors
Product specification
Binary up/down counter
DC CHARACTERISTICS FOR 74HC For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”. Output capability: standard ICC category: MSI AC CHARACTERISTICS FOR 74HC GND = 0 V; tr = tf = 6 ns; CL = 50 pF Tamb (°C) 74HC SYMBOL PARAMETER +25 min. tPHL/ tPLH propagation delay CP to Qn propagation delay MR to Qn propagation delay PL to Qn propagation delay CP to TC propagation delay CE to TC propagation delay MR to TC propagation delay PL to TC output transition time typ. 72 26 21 69 25 20 83 30 24 74 27 22 36 13 10 69 25 20 91 33 26 19 7 6 80 16 14 80 16 14 80 16 14 25 9 7 28 10 8 19 7 6 −40 to+85 max. min. 220 44 37 210 42 36 250 50 43 260 52 44 125 25 21 235 47 40 300 60 51 75 15 13 100 20 17 100 20 17 100 20 17 max. 275 55 47 265 53 45 315 63 54 325 65 55 155 31 26 295 59 50 375 75 64 95 19 16 120 24 20 120 24 20 120 24 20 −40 to +125 min. max. 330 66 56 315 63 54 375 75 64 395 78 66 190 38 32 355 71 60 450 90 77 110 22 19 ns
74HC/HCT4516
TEST CONDITIONS UNIT VCC (V) 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0
WAVEFORMS
Fig.7
tPHL
ns
Fig.10
tPLH/ tPHL
ns
Fig.9
tPHL/ tPLH
ns
Fig.7
tPHL/ tPLH
ns
Fig.8
tPLH
ns
Fig.10
tPLH/ tPHL
ns
Fig.9
tTLH/ tTHL
ns
Fig.9
tW
clock pulse width CP, CE HIGH or LOW parallel load pulse width HIGH master reset pulse width HIGH
ns
Fig.7
tW
ns
Fig.10
tW
ns
Fig.10
December 1990
6
Philips Semiconductors
Product specification
Binary up/down counter
Tamb (°C) 74HC SYMBOL PARAMETER +25 min. trem removal time MR to CP removal time PL to CP set-up time UP/DN to CP set-up time CE to CP set-up time Dn to PL hold time CE to CP hold time Dn to PL hold time UP/DN to CP 80 16 14 80 16 14 100 20 17 100 20 17 100 20 17 5 5 5 3 3 3 0 0 0 typ. 28 10 8 25 9 7 30 11 9 19 7 6 17 6 5 0 0 0 −6 −2 −2 −19 −7 −6 16 49 58 −40 to+85 max. min. 100 20 17 100 20 17 125 25 21 125 25 21 125 25 21 5 5 5 3 3 3 0 0 0 4.8 24 28 max. −40 to +125 min. 120 24 20 120 24 20 150 30 26 150 30 26 150 30 26 5 5 5 3 3 3 0 0 0 4.0 20 24 max. ns
74HC/HCT4516
TEST CONDITIONS UNIT VCC (V) 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0 2.0 4.5 6.0
WAVEFORMS
Fig.10
trem
ns
Fig.10
tsu
ns
Fig.8
tsu
ns
Fig.8
tsu
ns
Fig.11
th
ns
Fig.8
th
ns
Fig.11
th
ns
Fig.8
fmax
maximum clock pulse 6.0 frequency 30 35
MHz
Fig.7
December 1990
7
Philips Semiconductors
Product specification
Binary up/down counter
DC CHARACTERISTICS FOR 74HCT For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”. Output capability: standard ICC category: MSI
74HC/HCT4516
Note to HCT types The value of additional quiescent supply current (∆ICC) for a unit load of 1 is given in the family specifications. To determine ∆ICC per input, multiply this value by the unit load coefficient shown in the table below. INPUT Dn PL, CE UP/DN CP MR UNIT LOAD COEFFICIENT 0.75 1.00 1.00 1.25 1.50
December 1990
8
Philips Semiconductors
Product specification
Binary up/down counter
AC CHARACTERISTICS FOR 74HCT GND = 0 V; tr = tf = 6 ns; CL = 50 pF Tamb (°C) 74HCT SYMBOL PARAMETER +25 min. tPHL/ tPLH tPHL tPLH/ tPHL tPHL/ tPLH tPHL/ tPLH tPLH tPLH/ tPHL tTLH/ tTHL tW tW tW trem trem tsu tsu tsu th propagation delay CP to Qn propagation delay MR to Qn propagation delay PL to Qn propagation delay CP to TC propagation delay CE to TC propagation delay MR to TC propagation delay PL to TC output transition time clock pulse width CP, CE HIGH or LOW parallel load pulse width HIGH master rest pulse width HIGH removal time MR to CP removal time PL to CP set-up time UP/DN to CP set-up time CE to CP set-up time Dn to PL hold time CE to CP 16 16 20 23 17 20 20 20 10 typ. 28 24 32 29 18 31 34 7 9 8 5 14 10 11 9 9 9 −40 to +85 max. min. 50 42 53 58 31 50 68 15 20 20 25 29 21 25 25 25 13 max. 63 53 66 73 39 63 85 19 24 24 30 35 26 30 30 30 15 −40 to+125 min. max. 75 63 80 87 47 75 102 22 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
74HC/HCT4516
TEST CONDITIONS UNIT VCC (V) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5
WAVEFORMS
Fig.7 Fig.10 Fig.9 Fig.7 Fig.8 Fig.10 Fig.9 Fig.9 Fig.7 Fig.10 Fig.10 Fig.10 Fig.10 Fig.8 Fig.8 Fig.11 Fig.8
December 1990
9
Philips Semiconductors
Product specification
Binary up/down counter
Tamb (°C) 74HCT SYMBOL PARAMETER +25 min. th th fmax hold time Dn to PL hold time UP/DN to CP 5 0 typ. −6 −5 52 −40 to +85 max. min. 5 0 24 max. −40 to+125 min. 5 0 20 max. ns ns
74HC/HCT4516
TEST CONDITIONS UNIT VCC (V) 4.5 4.5 4.5
WAVEFORMS
Fig.11 Fig.8 Fig.7
maximum clock pulse 30 frequency
MHz
December 1990
10
Philips Semiconductors
Product specification
Binary up/down counter
AC WAVEFORMS
74HC/HCT4516
(1)
HC : VM = 50%; VI = GND to VCC. HCT: VM = 1.3 V; VI = GND to 3 V.
(1)
HC : VM = 50%; VI = GND to VCC. HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.7
Waveforms showing the clock (CP) to output (Qn) and terminal count (TC) propagation delays, the clock pulse width and the maximum clock pulse frequency.
Fig.8
Waveforms showing the set-up and hold times form count enable (CE) and up/down (UP/DN) control inputs to the clock pulse (CP), the propagation delays from UP/DN, CE to TC.
(1)
(1)
HC : VM = 50%; VI = GND to VCC. HCT: VM = 1.3 V; VI = GND to 3 V.
HC : VM = 50%; VI = GND to VCC. HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.9
Waveforms showing the preset enable pulse width, preset enable to output delays and output transition times.
Fig.10 Waveforms showing the master reset pulse, master reset to terminal count and Qn delay and master reset to clock removal time.
December 1990
11
Philips Semiconductors
Product specification
Binary up/down counter
74HC/HCT4516
(1)
HC : VM = 50%; VI = GND to VCC. HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.11 Waveforms showing the data set-up and hold times to parallel load (PL).
December 1990
12
Philips Semiconductors
Product specification
Binary up/down counter
APPLICATION INFORMATION
74HC/HCT4516
Terminal count (TC) lines at the 2nd, 3rd, etc. Stages may have a negative-going glitch pulse resulting from differential delays of different 4516s. These negative-going glitches do not affect proper 4516 operation. However, if the terminal count signals are used to trigger other edge-sensitive logic devices, such as flip-flops or counters, the terminal count signals should be gated with the clock signal using a 2-input OR gate such as HC/HCT32.
Fig.12 Cascading counter packages (parallel clocking).
Ripple clocking mode: the UP/DN control can be changed at any count. The only restriction on changing the UP/DN control is that the clock input to the first counting stage must be “HIGH”. For cascading counters operating in a fixed up-count or down-count mode, the OR gates are not required between stages and TC is connected directly to the CP input of the next stage with CE grounded.
Fig.13 Cascading counter packages (ripple clocking).
December 1990
13
Philips Semiconductors
Product specification
Binary up/down counter
74HC/HCT4516
Use the following formulae to calculate Ntotal: i N total = π ( 16 × N i ) + N 0 1 fout = fin/Ntotal
Fig.14 State diagram.
Fig.15 Programmable cascaded frequency divider.
PACKAGE OUTLINES parallel inputs D3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Note 1. no count; fout is HIGH. D2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 D1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 D0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 count-up n 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
(1)
count-down n
(1)
See “74HC/HCT/HCU/HCMOS Logic Package Outlines”.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
December 1990
14
很抱歉,暂时无法提供与“74HC4516D”相匹配的价格&库存,您可以联系我们找货
免费人工找货