0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
74LVC1G125GW

74LVC1G125GW

  • 厂商:

    PHILIPS

  • 封装:

  • 描述:

    74LVC1G125GW - Bus buffer/line driver; 3-state - NXP Semiconductors

  • 数据手册
  • 价格&库存
74LVC1G125GW 数据手册
74LVC1G125 Bus buffer/line driver; 3-state Rev. 10 — 7 December 2011 Product data sheet 1. General description The 74LVC1G125 provides one non-inverting buffer/line driver with 3-state output. The 3-state output is controlled by the output enable input (OE). A HIGH-level at pin OE causes the output to assume a high-impedance OFF-state. The input can be driven from either 3.3 V or 5 V devices. This feature allows the use of this device in a mixed 3.3 V and 5 V environment. This device is fully specified for partial power-down applications using IOFF. The IOFF circuitry disables the output, preventing the damaging backflow current through the device when it is powered down. 2. Features and benefits  Wide supply voltage range from 1.65 V to 5.5 V  High noise immunity  Complies with JEDEC standard:  JESD8-7 (1.65 V to 1.95 V)  JESD8-5 (2.3 V to 2.7 V)  JESD8-B/JESD36 (2.7 V to 3.6 V)  24 mA output drive (VCC = 3.0 V)  ESD protection:  HBM JESD22-A114F exceeds 2000 V  MM JESD22-A115-A exceeds 200 V  CMOS low power consumption  Inputs accept voltages up to 5 V  Latch-up performance exceeds 250 mA  Direct interface with TTL levels  Multiple package options  Specified from 40 C to +85 C and 40 C to +125 C NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state 3. Ordering information Table 1. Ordering information Package Temperature range 74LVC1G125GW 74LVC1G125GV 74LVC1G125GM 74LVC1G125GF 74LVC1G125GN 74LVC1G125GS 40 C to +125 C 40 C to +125 C 40 C to +125 C 40 C to +125 C 40 C to +125 C 40 C to +125 C Name TSSOP5 SC-74A XSON6 XSON6 XSON6 XSON6 Description plastic thin shrink small outline package; 5 leads; body width 1.25 mm plastic surface-mounted package; 5 leads plastic extremely thin small outline package; no leads; 6 terminals; body 1  1.45  0.5 mm plastic extremely thin small outline package; no leads; 6 terminals; body 1  1  0.5 mm extremely thin small outline package; no leads; 6 terminals; body 0.9  1.0  0.35 mm extremely thin small outline package; no leads; 6 terminals; body 1.0  1.0  0.35 mm Version SOT353-1 SOT753 SOT886 SOT891 SOT1115 SOT1202 Type number 4. Marking Table 2. Marking Marking code[1] VM V25 VM VM VM VM Type number 74LVC1G125GW 74LVC1G125GV 74LVC1G125GM 74LVC1G125GF 74LVC1G125GN 74LVC1G125GS [1] The pin 1 indicator is located on the lower left corner of the device, below the marking code. 5. Functional diagram 2 A Y 4 2 4 A Y 1 OE mna118 1 EN mna119 OE mna120 Fig 1. Logic symbol Fig 2. IEC logic symbol Fig 3. Logic diagram 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 2 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state 6. Pinning information 6.1 Pinning 74LVC1G125 74LVC1G125 OE A 1 2 GND GND 3 001aaf198 OE 5 VCC 1 6 VCC OE A 74LVC1G125 1 2 3 6 5 4 VCC n.c. Y A 2 5 n.c. 3 4 Y GND 4 Y 001aaf199 001aaf400 Transparent top view Transparent top view Fig 4. Pin configuration SOT353-1 and SOT753 Fig 5. Pin configuration SOT886 Fig 6. Pin configuration SOT891, SOT1115 and SOT1202 6.2 Pin description Table 3. Symbol OE A GND Y n.c. VCC Pin description Pin SOT353-1, SOT753 1 2 3 4 5 SOT886, SOT891, SOT1115, SOT1202 1 2 3 4 5 6 output enable input data input ground (0 V) data output not connected supply voltage Description 7. Functional description Table 4. Input OE L L H [1] H = HIGH voltage level; L = LOW voltage level; X = don’t care; Z = high-impedance OFF-state. Function table[1] Output A L H X Y L H Z 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 3 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state 8. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol VCC IIK VI IOK VO IO ICC IGND Ptot Tstg [1] [2] [3] Parameter supply voltage input clamping current input voltage output clamping current output voltage output current supply current ground current total power dissipation storage temperature Conditions VI < 0 V [1] Min 0.5 50 0.5 [1][2] [1][2] Max +6.5 +6.5 50 VCC + 0.5 +6.5 50 100 250 +150 Unit V mA V mA V V mA mA mA mW C VO > VCC or VO < 0 V Active mode Power-down mode VO = 0 V to VCC 0.5 0.5 100 Tamb = 40 C to +125 C [3] 65 The input and output voltage ratings may be exceeded if the input and output current ratings are observed. When VCC = 0 V (Power-down mode), the output voltage can be 5.5 V in normal operation. For TSSOP5 and SC-74A packages: above 87.5 C the value of Ptot derates linearly with 4.0 mW/K. For XSON6 package: above 118 C the value of Ptot derates linearly with 7.8 mW/K. 9. Recommended operating conditions Table 6. Symbol VCC VI VO Tamb t/V Recommended operating conditions Parameter supply voltage input voltage output voltage ambient temperature input transition rise and fall rate VCC = 1.65 V to 2.7 V VCC = 2.7 V to 5.5 V Active mode VCC = 0 V; Power-down mode Conditions Min 1.65 0 0 0 40 Typ Max 5.5 5.5 VCC 5.5 +125 20 10 Unit V V V V C ns/V ns/V 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 4 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state 10. Static characteristics Table 7. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Tamb = 40 C to +85 C VIH HIGH-level input voltage VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V VCC = 4.5 V to 5.5 V VIL LOW-level input voltage VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V VCC = 4.5 V to 5.5 V VOL LOW-level output voltage VI = VIH or VIL VCC = 1.65 V to 5.5 V; IO = 100 A VCC = 1.65 V; IO = 4 mA VCC = 2.3 V; IO = 8 mA VCC = 2.7 V; IO = 12 mA VCC = 3.0 V; IO = 24 mA VCC = 4.5 V; IO = 32 mA VOH HIGH-level output voltage VI = VIH or VIL VCC = 1.65 V to 5.5 V; IO = 100 A VCC = 1.65 V; IO = 4 mA VCC = 2.3 V; IO = 8 mA VCC = 2.7 V; IO = 12 mA VCC = 3.0 V; IO = 24 mA VCC = 4.5 V; IO = 32 mA II IOZ IOFF ICC ICC CI input leakage current OFF-state output current VCC = 0 V to 5.5 V; VI = 5.5 V or GND VCC = 3.6 V; VI = VIH or VIL; VO = 5.5 V or GND VI = 5.5 V or GND; VCC = 1.65 V to 5.5 V; IO = 0 A per pin; VCC = 2.3 V to 5.5 V; VI = VCC  0.6 V; IO = 0 A VCC  0.1 1.2 1.9 2.2 2.3 3.8 0.1 0.1 0.1 0.1 5 5 5 10 10 10 500 V V V V V V A A A A A pF 0.1 0.45 0.3 0.4 0.55 0.55 V V V V V V 0.65  VCC 1.7 2.0 0.7  VCC 0.7 0.8 0.3  VCC V V V V V V V Conditions Min Typ[1] Max Unit 0.35  VCC V power-off leakage current VCC = 0 V; VI or VO = 5.5 V supply current additional supply current input capacitance 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 5 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state Table 7. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Tamb = 40 C to +125 C VIH HIGH-level input voltage VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V VCC = 4.5 V to 5.5 V VIL LOW-level input voltage VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V VCC = 4.5 V to 5.5 V VOL LOW-level output voltage VI = VIH or VIL VCC = 1.65 V to 5.5 V; IO = 100 A VCC = 1.65 V; IO = 4 mA VCC = 2.3 V; IO = 8 mA VCC = 2.7 V; IO = 12 mA VCC = 3.0 V; IO = 24 mA VCC = 4.5 V; IO = 32 mA VOH HIGH-level output voltage VI = VIH or VIL VCC = 1.65 V to 5.5 V; IO = 100 A VCC = 1.65 V; IO = 4 mA VCC = 2.3 V; IO = 8 mA VCC = 2.7 V; IO = 12 mA VCC = 3.0 V; IO = 24 mA VCC = 4.5 V; IO = 32 mA II IOZ IOFF ICC ICC input leakage current OFF-state output current VCC = 0 V to 5.5 V; VI = 5.5 V or GND VCC = 3.6 V; VI = VIH or VIL; VO = 5.5 V or GND VI = 5.5 V or GND; VCC = 1.65 V to 5.5 V; IO = 0 A per pin; VCC = 2.3 V to 5.5 V; VI = VCC  0.6 V; IO = 0 A VCC  0.1 0.95 1.7 1.9 2.0 3.4 100 200 200 200 5000 V V V V V V A A A A A 0.1 0.70 0.45 0.60 0.80 0.80 V V V V V V 0.65  VCC 1.7 2.0 0.7  VCC 0.7 0.8 0.3  VCC V V V V V V V Conditions Min Typ[1] Max Unit 0.35  VCC V power-off leakage current VCC = 0 V; VI or VO = 5.5 V supply current additional supply current [1] All typical values are measured at VCC = 3.3 V and Tamb = 25 C. 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 6 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state 11. Dynamic characteristics Table 8. Dynamic characteristics Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 9. Symbol Parameter tpd Conditions [2] 40 C to +85 C Min Typ[1] 3.3 2.2 2.5 2.1 1.7 4.1 2.8 3.3 2.4 2.1 4.3 2.7 3.0 3.1 2.2 25 6 Max 8.0 5.5 5.5 4.5 4.0 9.4 6.6 6.6 5.3 5.0 9.2 5.0 5.0 5.0 4.2 - 40 C to +125 C Unit Min 1.0 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 Max 10.5 7 7 6 5.5 12 8.5 8.5 7 6.5 12 6.5 6.5 6.5 5.5 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns pF pF propagation delay A to Y; see Figure 7 VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 2.7 V VCC = 3.0 V to 3.6 V VCC = 4.5 V to 5.5 V 1.0 0.5 0.5 0.5 0.5 [3] ten enable time OE to Y; see Figure 8 VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 2.7 V VCC = 3.0 V to 3.6 V VCC = 4.5 V to 5.5 V 1.0 0.5 0.5 0.5 0.5 [4] tdis disable time OE to Y; see Figure 8 VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 2.7 V VCC = 3.0 V to 3.6 V VCC = 4.5 V to 5.5 V 1.0 0.5 0.5 0.5 0.5 [5] CPD power dissipation capacitance per buffer; VI = GND to VCC output enabled output disabled - [1] [2] [3] [4] [5] Typical values are measured at Tamb = 25 C and VCC = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively. tpd is the same as tPLH and tPHL ten is the same as tPZH and tPZL tdis is the same as tPLZ and tPHZ CPD is used to determine the dynamic power dissipation (PD in W). PD = CPD  VCC2  fi  N + (CL  VCC2  fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; VCC = supply voltage in V; N = number of inputs switching; (CL  VCC2  fo) = sum of outputs. 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 7 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state 12. Waveforms VI A input GND t PHL VOH Y output VOL VM mnb153 VM t PLH Measurement points are given in Table 9. VOL and VOH are typical output voltage levels that occur with the output load. Fig 7. Input A to output Y propagation delay times VI OE input GND tPLZ VCC output LOW-to-OFF OFF-to-LOW VOL tPHZ VOH output HIGH-to-OFF OFF-to-HIGH GND outputs enabled outputs disabled outputs enabled mna644 VM tPZL VM VX tPZH VY VM Measurement points are given in Table 9. VOL and VOH are typical output voltage levels that occur with the output load. Fig 8. Table 9. VCC 3-state enable and disable times Measurement points Input VM 0.5VCC 0.5VCC 1.5 V 1.5 V 0.5VCC Output VM 0.5VCC 0.5VCC 1.5 V 1.5 V 0.5VCC VX VOL + 0.15 V VOL + 0.15 V VOL + 0.3 V VOL + 0.3 V VOL + 0.3 V VY VOH  0.15 V VOH  0.15 V VOH  0.3 V VOH  0.3 V VOH  0.3 V Supply voltage 1.65 V to 1.95 V 2.3 V to 2.7 V 2.7 V 3.0 V to 3.6 V 4.5 V to 5.5 V 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 8 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state VEXT VCC VI VO DUT RT CL RL RL G mna616 Test data is given in Table 10. Definitions for test circuit: RL = Load resistance. CL = Load capacitance including jig and probe capacitance. RT = Termination resistance should be equal to the output impedance Zo of the pulse generator. VEXT = External voltage for measuring switching times. Fig 9. Table 10. VCC Test circuit for measuring switching times Test data Input VI VCC VCC 2.7 V 2.7 V VCC tr, tf  2.0 ns  2.0 ns  2.5 ns  2.5 ns  2.5 ns Load CL 30 pF 30 pF 50 pF 50 pF 50 pF RL 1 k 500  500  500  500  VEXT tPLH, tPHL open open open open open tPZH, tPHZ GND GND GND GND GND tPZL, tPLZ 2VCC 2VCC 6V 6V 2VCC Supply voltage 1.65 V to 1.95 V 2.3 V to 2.7 V 2.7 V 3.0 V to 3.6 V 4.5 V to 5.5 V 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 9 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state 13. Package outline TSSOP5: plastic thin shrink small outline package; 5 leads; body width 1.25 mm SOT353-1 D E A X c y HE vMA Z 5 4 A2 A1 (A3) θ A 1 e e1 bp 3 wM detail X Lp L 0 1.5 scale 3 mm DIMENSIONS (mm are the original dimensions) UNIT mm A max. 1.1 A1 0.1 0 A2 1.0 0.8 A3 0.15 bp 0.30 0.15 c 0.25 0.08 D(1) 2.25 1.85 E(1) 1.35 1.15 e 0.65 e1 1.3 HE 2.25 2.0 L 0.425 Lp 0.46 0.21 v 0.3 w 0.1 y 0.1 Z(1) 0.60 0.15 θ 7° 0° Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. OUTLINE VERSION SOT353-1 REFERENCES IEC JEDEC MO-203 JEITA SC-88A EUROPEAN PROJECTION ISSUE DATE 00-09-01 03-02-19 Fig 10. Package outline SOT353-1 (TSSOP5) 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 10 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state Plastic surface-mounted package; 5 leads SOT753 D B E A X y HE vMA 5 4 Q A A1 c 1 2 3 detail X Lp e bp wM B 0 1 scale 2 mm DIMENSIONS (mm are the original dimensions) UNIT mm A 1.1 0.9 A1 0.100 0.013 bp 0.40 0.25 c 0.26 0.10 D 3.1 2.7 E 1.7 1.3 e 0.95 HE 3.0 2.5 Lp 0.6 0.2 Q 0.33 0.23 v 0.2 w 0.2 y 0.1 OUTLINE VERSION SOT753 REFERENCES IEC JEDEC JEITA SC-74A EUROPEAN PROJECTION ISSUE DATE 02-04-16 06-03-16 Fig 11. Package outline SOT753 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 11 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm SOT886 b 1 2 3 4× L1 L (2) e 6 e1 5 e1 4 6× (2) A A1 D E terminal 1 index area 0 DIMENSIONS (mm are the original dimensions) UNIT mm A (1) max 0.5 A1 max 0.04 b 0.25 0.17 D 1.5 1.4 E 1.05 0.95 e 0.6 e1 0.5 L 0.35 0.27 L1 0.40 0.32 1 scale 2 mm Notes 1. Including plating thickness. 2. Can be visible in some manufacturing processes. OUTLINE VERSION SOT886 REFERENCES IEC JEDEC MO-252 JEITA EUROPEAN PROJECTION ISSUE DATE 04-07-15 04-07-22 Fig 12. Package outline SOT886 (XSON6) 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 12 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1 x 0.5 mm SOT891 1 2 b 3 4× (1) L1 e L 6 e1 5 e1 4 6× (1) A A1 D E terminal 1 index area 0 1 scale DIMENSIONS (mm are the original dimensions) UNIT mm A max 0.5 A1 max 0.04 b 0.20 0.12 D 1.05 0.95 E 1.05 0.95 e 0.55 e1 0.35 L 0.35 0.27 L1 0.40 0.32 2 mm Note 1. Can be visible in some manufacturing processes. OUTLINE VERSION SOT891 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 05-04-06 07-05-15 Fig 13. Package outline SOT891 (XSON6) 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 13 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state XSON6: extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm SOT1115 1 2 b 3 (4×)(2) L1 e L 6 e1 5 e1 4 (6×)(2) A1 A D E terminal 1 index area 0 Dimensions Unit mm A(1) A1 b D E e e1 0.3 L L1 0.5 scale 1 mm max 0.35 0.04 0.20 0.95 1.05 nom 0.15 0.90 1.00 0.55 min 0.12 0.85 0.95 0.35 0.40 0.30 0.35 0.27 0.32 Note 1. Including plating thickness. 2. Visible depending upon used manufacturing technology. Outline version SOT1115 References IEC JEDEC JEITA European projection sot1115_po Issue date 10-04-02 10-04-07 Fig 14. Package outline SOT1115 (XSON6) 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 14 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state XSON6: extremely thin small outline package; no leads; 6 terminals; body 1.0 x 1.0 x 0.35 mm SOT1202 1 2 b 3 (4×)(2) L L1 e 6 e1 5 e1 4 (6×)(2) A1 A D E terminal 1 index area 0 Dimensions Unit mm A(1) A1 b D E e e1 L L1 0.5 scale 1 mm max 0.35 0.04 0.20 1.05 1.05 0.35 0.40 nom 0.15 1.00 1.00 0.55 0.35 0.30 0.35 min 0.12 0.95 0.95 0.27 0.32 Note 1. Including plating thickness. 2. Visible depending upon used manufacturing technology. Outline version SOT1202 References IEC JEDEC JEITA European projection sot1202_po Issue date 10-04-02 10-04-06 Fig 15. Package outline SOT1202 (XSON6) 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 15 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state 14. Abbreviations Table 11. Acronym CMOS DUT ESD HBM MM TTL Abbreviations Description Complementary Metal Oxide Semiconductor Device Under Test ElectroStatic Discharge Human Body Model Machine Model Transistor-Transistor Logic 15. Revision history Table 12. Revision history Release date 20111207 Data sheet status Product data sheet Product data sheet Product data sheet Product data sheet Product data sheet Product specification Product specification Product specification Product specification Product specification Change notice Supersedes 74LVC1G125 v.9 74LVC1G125 v.8 74LVC1G125 v.7 74LVC1G125 v.6 74LVC1G125 v.5 74LVC1G125 v.4 74LVC1G125 v.3 74LVC1G125 v.2 74LVC1G125 v.1 Document ID 74LVC1G125 v.10 Modifications: 74LVC1G125 v.9 74LVC1G125 v.8 74LVC1G125 v.7 74LVC1G125 v.6 74LVC1G125 v.5 74LVC1G125 v.4 74LVC1G125 v.3 74LVC1G125 v.2 74LVC1G125 v.1 • Legal pages updated. 20101229 20100824 20070830 20060912 20040915 20021118 20020528 20010406 20001222 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 16 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state 16. Legal information 16.1 Data sheet status Document status[1][2] Objective [short] data sheet Preliminary [short] data sheet Product [short] data sheet [1] [2] [3] Product status[3] Development Qualification Production Definition This document contains data from the objective specification for product development. This document contains data from the preliminary specification. This document contains the product specification. Please consult the most recently issued document before initiating or completing a design. The term ‘short data sheet’ is explained in section “Definitions”. The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 16.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. © NXP B.V. 2011. All rights reserved. 16.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or 74LVC1G125 All information provided in this document is subject to legal disclaimers. Product data sheet Rev. 10 — 7 December 2011 17 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state NXP Semiconductors’ specifications such use shall be solely at customer’s own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard warranty and NXP Semiconductors’ product specifications. Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications. In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond 16.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 17. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com 74LVC1G125 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2011. All rights reserved. Product data sheet Rev. 10 — 7 December 2011 18 of 19 NXP Semiconductors 74LVC1G125 Bus buffer/line driver; 3-state 18. Contents 1 2 3 4 5 6 6.1 6.2 7 8 9 10 11 12 13 14 15 16 16.1 16.2 16.3 16.4 17 18 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features and benefits . . . . . . . . . . . . . . . . . . . . 1 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2 Pinning information . . . . . . . . . . . . . . . . . . . . . . 3 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3 Functional description . . . . . . . . . . . . . . . . . . . 3 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 4 Recommended operating conditions. . . . . . . . 4 Static characteristics. . . . . . . . . . . . . . . . . . . . . 5 Dynamic characteristics . . . . . . . . . . . . . . . . . . 7 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 10 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 16 Legal information. . . . . . . . . . . . . . . . . . . . . . . 17 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 17 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Contact information. . . . . . . . . . . . . . . . . . . . . 18 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP B.V. 2011. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com Date of release: 7 December 2011 Document identifier: 74LVC1G125
74LVC1G125GW 价格&库存

很抱歉,暂时无法提供与“74LVC1G125GW”相匹配的价格&库存,您可以联系我们找货

免费人工找货
74LVC1G125GW-TP
  •  国内价格
  • 5+0.187
  • 50+0.1705
  • 500+0.1485
  • 1000+0.132
  • 2500+0.1243

库存:3000

74LVC1G125GW,125
  •  国内价格
  • 1+0.20787

库存:973