0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
BK2660-9RG

BK2660-9RG

  • 厂商:

    POWER-ONE

  • 封装:

  • 描述:

    Module DC-DC 30VIN 2-OUT 24V/24V 3A/3A 150W 15-Pin

  • 数据手册
  • 价格&库存
BK2660-9RG 数据手册
K Series 150 Watt DC-DC and AC-DC Converters Features • RoHS lead-free-solder and lead-solder-exempted products available • 5 year warranty for RoHS compliant products with an extended temperature range • Compliant with EN 50155, EN 50121-3-2 • Fire & smoke according to EN 45545 and NF-F16 (ver. V108 or later; not models with H15-S4 connector) • Class I equipment • Extremely wide input voltage ranges from 8 to 385 VDC, and 85 to 264 VAC, 47 to 440 Hz • Input over- and undervoltage lockout • Adjustable output voltage with remote on/off • 1 or 2 outputs: SELV, no load, overload & short-circuit proof • Rectangular current limiting characteristic • PCBs protected by lacquer • Very high reliability 111 4.4" 3U 80 3.2" 16 TE Safety-approved to the latest edition of IEC/EN 60950-1 and UL/CSA 60950-1 168 6.6" Table of Contents Description........................................................................................2 Model Selection.................................................................................2 Functional Description.......................................................................5 Electrical Input Data..........................................................................6 Electrical Output Data.......................................................................9 Auxiliary Functions..........................................................................13 Electromagnetic Compatibility (EMC)..............................................17 Immunity to Environmental Conditions............................................19 Mechanical Data..............................................................................20 Safety and Installation Instructions..................................................22 Description of Options.....................................................................26 Accessories.....................................................................................34 belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 K Series 150 W DC-DC and AC-DC Converters Description The K Series of DC-DC and AC-DC converters represents a broad and flexible range of power supplies for use in advanced electronic systems. Features include high efficiency, high reliability, low output voltage noise and excellent dynamic response to load/line changes. LK models can be powered by DC or AC with a wide-input frequency range (without PFC). The converter inputs are protected against surges and transients. An input over- and undervoltage lockout circuitry disables the outputs, if the input voltage is outside of the specified range. Certain types include an inrush current limiter preventing circuit breakers and fuses from tripping at switch-on. All outputs are open- and short-circuit proof, and are protected against overvoltages by means of built-in suppressor diodes. The output can be inhibited by a logic signal applied to pin 18 (i). The inhibit function is not used, pin 18 must be connected with pin 14 to enable the outputs. LED indicators display the status of the converter and allow for visual monitoring of the system at any time. Full input-to-output, input-to-case, output-to-case, and output to output isolation is provided. The converters are designed, built, and safety-approved to the international safety standards IEC/EN 60950-1. They are particulary suitable for railway applications and comply with EN 50155 and EN 50121-3-2. The case design allows operation at nominal load up to 71 °C with natural cooling. If forced cooling is provided, the ambient temperature may exceed 71 °C, but the case temperature must remain below 95 °C. A temperature sensor generates an inhibit signal, which disables the outputs when the case temperature TC exceeds the limit. The outputs are automatically re-enabled, when the temperature drops below the limit. Various options are available to adapt the converters to individual applications. The converters may either be plugged into a 19 ” DIN-rack system according to IEC 60297-3, or be chassis mounted. Important: For applications requiring compliance with IEC/EN 61000-3-2 (harmonic distortion), please use our LK4000 or LK5000 Series with incorporated power factor correction (PFC). Model Selection Non-standard input/output configurations or special customer adaptations are available on request. Table 1a: Models AK Output 1 Output 2 Input Voltage Efficiency 1 Options Vo nom [VDC] Io nom [A] Vo nom [VDC] Io nom [A] Vi min – Vi max 8 - 35 VDC η min [%] 5.1 12 15 24 20 10 8 5 - - AK1001-9RG AK1301-9RG AK1501-9RG AK1601-9RG 79 81 83 84.5 -7 ⁴, P, D, V ², T, B, B1, non-G 12 15 24 5 4 2.5 12 3 15 3 24 3 5 4 2.5 AK2320-9RG AK2540-9RG AK2660-9RG 79 80.5 80.5 -7 ⁴, P, D, T, B, B1, non-G Min. efficiency at Vi nom, Io nom and TA = 25 °C. Typical values are approximately 2% better. Option V for models with 5.1 V outputs; excludes option D 3 Second output semi-regulated 4 AK, BK, FK models are available as -7 or -9, but without opt. E. The other models CK, DK, EK, LK are available as -7 or -9E (but not -7E). 1 2 NFND: Not for new designs. Preferred for new designs tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 2 of 35 K Series 150 W DC-DC and AC-DC Converters Table 1b: Models BK, FK, CK Output 1 Output 2 Input Voltage Effic.1 Input Voltage Effic.1 Input Voltage Effic.1 Options Vo nom [VDC] Io nom [A] Vo nom [VDC] Io nom [A] Vi min – Vi max 14 - 70 VDC η min [%] Vi min – Vi max 20 - 100 VDC η min [%] Vi min – Vi max 28 - 140 VDC η min [%] 5.1 12 15 24 25 12 10 6 - - BK1001-9RG BK1301-9RG BK1501-9RG BK1601-9RG 80.5 83 84 85 FK1001-9RG FK1301-9RG FK1501-9RG FK1601-9RG 80 82 85 86 CK1001-9RG CK1301-9RG CK1501-9RG CK1601-9RG 80 82 85 86 -7 ⁴, P, D, V ², T, B, B1, non-G 12 15 24 6 5 3 12 3 15 3 24 3 6 5 3 BK2320-9RG BK2540-9RG BK2660-9RG 80 82 82 FK2320-9RG FK2540-9RG FK2660-9RG 81 83 84 CK2320-9RG CK2540-9RG CK2660-9RG 81 84 84 -7 ⁴, P, D, T, B, B1, non-G Options Table 1c: Models DK, EK, LK Output 1 Output 2 Input Voltage Effic.1 Input Voltage Effic.1 Input Voltage Effic.1 Vi min – Vi max 44 - 220 VDC η min [%] Vi min – Vi max 67 - 385 VDC η min [%] Vi min – Vi max 88 - 372 VDC 100 - 240 VAC η min [%] --EK1301-9ERG --EK1501-9ERG EK1601-9ERG 83 --84 86 EK2320-9ERG EK2540-9ERG EK2660-9ERG --- 82 83 84 --- Vo nom [VDC] Io nom [A] Vo nom [VDC] Io nom [A] 5.1 12 25 12 10 10 6 - - DK1001-9ERG DK1301-9ERG DK1740-9ERG 5 DK1501-9ERG DK1601-9ERG 80 83 83 85 86 6 5 3 2.5 12 3 15 3 24 3 6 5 3 2.5 DK2320-9ERG DK2540-9ERG DK2660-9ERG DK2740-9ERG 6 81 83 84 84 12.84 5 15 24 12 15 24 25.68 6 25.68 3, 6 --- LK1740-9ERG 5 LK1501-9ERG LK1601-9ERG 79 83 83 84 85 -7 ⁴, P, D, V ², T, B, B1, non-G LK2320-9ERG LK2540-9ERG LK2660-9ERG LK2740-9ERG 6 81 83 82 83 -7 ⁴, P, D, T, B, B1, non-G LK1001-9ERG LK1301-9ERG Min. efficiency at Vi nom, Io nom and TA = 25 °C. Typical values are approximately 2% better. Option V for models with 5.1 V outputs; excludes option D 3 Second output semi-regulated 4 AK, BK, FK models are available as -7 or -9, but without opt. E. The other models CK, DK, EK, LK are available as -7 or -9E (but not -7E). 5 Battery loader for 12 V batteries. Vo is controlled by the battery temperature sensor (see Accessories) within 12.62  – 14.12 V. Options P and D are not available. 6 Battery loader for 24 V (and 48 V batteries with series-connected outputs). Vo is controlled by the battery temperature sensor (see Accessories) within 25.25 – 28.25 V (50.5 – 56.5 V for 48 V batteries). Options P and D are not available. 7 Option K is available only for LK with 5.1 V output in order to avoid the H15S4 connector. Efficiency is approx. 1.5% worse. 1 2 NFND: Not for new designs. Preferred for new designs tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 3 of 35 K Series 150 W DC-DC and AC-DC Converters Part Number Description CK 2 5 40 -9 E  R D3  T B1 G Operating input voltage Vi: 8 – 35 VDC ................................................................ AK 14 – 70 VDC .............................................................. BK 20 – 100 VDC ............................................................ FK 28 – 140 VDC ............................................................CK 44 – 220 VDC ............................................................DK 67 – 385 VDC ............................................................ EK 100 – 240 VAC (rated voltage) or 88 – 372 VDC ...... LK Number of outputs.............................................................1, 2 Nominal voltage of output 1 (main output) Vo1 nom 5.1 V ..............................................................................0 12 V ..............................................................................3 15 V ..............................................................................5 24 V ..............................................................................6 Other voltages 1 ........................................................7, 8 Nominal voltage of output 2 Vo2 nom None (single-output models)........................................01 12 V, 12 V....................................................................20 15 V, 15 V.....................................................................40 24 V, 24 V.....................................................................60 Other specifications or additional features 1 ........ 21 – 99 Operational ambient temperature range TA: –25 to 71 °C................................................................. -7 – 40 to 71 °C..................................................................-9 Other 1 ................................................................ -0, -5, -6 Auxiliary functions and options: Inrush current limitation ...............................................E 2 Output voltage control input ...................................... R 3 Potentiometer (output voltage adjustment) .................P 3 Vi / Vo monitor (D0 – DD, to be specified 1).................. D 4 ACFAIL signal ............................................................ V ⁴ Current share control......................................................T H15 standard connector for 5.1 V output models...... K ⁵ Cooling plate standard case.................................B or B1 Cooling plate for long case 220 mm 1 ........................B2 1 RoHS-compliant for all 6 substances ........................... G 3 4 5 1 2 Customer-specific models Option E is mandatory for all -9 models, except AK, BK, FK. Feature R excludes option P and vice versa. Option P is not available for battery charger models. Option D excludes option V and vice versa; option V is available for single-output models with 5.1 V only. Option K is available for single-output models with 5.1 V output to avoid the expensive H15-S4 connector. Note: The sequence of options must follow the order above. This part number description is descriptive only; it is not intended for creating part numbers. Example: CK2540-9ERD3T B1G: DC-DC converter, operating input voltage range 28 – 140 VDC, 2 electrically isolated outputs, each providing 15 V, 5 A, input current limiter E, control input R to adjust the output voltages, undervoltage monitor D3, current share feature T, cooling plate B1, and RoHS-compliant for all six substances. Product Marking Basic type designation, applicable approval marks, CE mark, warnings, pin designation, patents and company logo, identification of LEDs, test sockets, and potentiometer. Specific type designation, input voltage range, nominal output voltages and currents, degree of protection, batch no., serial no., and data code including production site, modification status (version), and date of production. tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 4 of 35 K Series 150 W DC-DC and AC-DC Converters Functional Description The input voltage is fed via an input fuse, an input filter, a bridge rectifier (LK models only), and an inrush current limiter to the input capacitor. This capacitor sources a single-transistor forward converter with a special clamping circuit and provides also the power during the hold-up time. Each output is powered by a separate secondary winding of the main transformer. The resultant voltages are rectified and their ripple smoothed by a power choke and an output filter. The control logic senses the main output voltage Vo1 and generates, with respect to the maximum admissible output currents, the control signal for the switching transistor of the forward converter. The second output of double-output models is tracking the main output, but has its own current limiting circuit. If the main output voltage drops due to current limitation, the second output voltage will fall as well and vice versa. Standard models with a single 5.1 V output have a syn­chronous rectifier to provide good efficiency. 03057b 20 D/V CY 12 S+ 4 Vo+ 6 Output filter Forward converter (approx. 120 kHz) 3 22 T Control circuit Ci + 2 Fuse 4 18 i CY 1 L 16 R 4 Bridge rectifier 4 N 26 Vi+ 28 Input filter 4 Opt. P 8 CY Vo– 10 30 Vi– 32 14 S– CY 24 ¹ ² ³ ⁴ – + Transient suppressor (VDR) Suppressor diode (AK, BK, FK models) Inrush current limiter (NTC, only for models with TA min = –25 °C ) or option E (for CK, DK, EK, LK models only) LK models only Fig. 1 Block diagram of single-output converters 03058b Opt. P Vi– Ci + Forward converter (approx. 120 kHz) 22 T CY CY 3 30 32 CY 24 ¹ ² ³ ⁴ 12 Vo1+ 14 Vo1– 4 CY Output 2 filter 4 20 D 2 Fuse 1 L 18 i Output 1 filter 4 Control circuit Vi+ 28 Bridge rectifier 4 4 16 R CY Input filter N 26 CY 6 8 10 Vo2+ Vo2– – + Transient suppressor (VDR) Suppressor diode (AK, BK, FK models) Inrush current limiter (NTC, only for models with TA min = –25 °C ) or option E (for CK, DK, EK, LK models only) LK models only Fig. 2 Block diagram of double-output models tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 5 of 35 K Series 150 W DC-DC and AC-DC Converters Electrical Input Data General conditions: - TA = 25 °C, unless TC is specified. - Pin 18 connected to pin 14, Vo adjusted to Vo nom (if option P); R input not connected. - Sense line pins S+ and S– connected to Vo+ and Vo– respectively. Table 2a: Input data Model AK Characteristics Conditions min 8 BK typ max min 35 14 typ FK max min 70 20 typ Unit max Vi Operating input voltage Vi nom Nominal input voltage Io = 0 – Io max TC min – TC max Ii Input current Vi nom, I o nom 1 Pi 0 No-load input power Vi min – Vi max 2.5 2.5 2.5 P i inh Idle input power Unit inhibited 1.5 1.5 1.5 Ri Input resistance RNTC NTC resistance 2 Ci Input capacitance Vi RFI Vi abs Conducted input RFI Radiated input RFI 15 9.0 832 300 370 1200 mΩ 1500 A B A A A 40 W no NTC A 0 A 70 no NTC 1040 EN 55022, Vi nom, I o nom Input voltage limits without damage 3.75 100 no NTC VDC 50 6.0 65 TC = 25 °C 100 30 0 84 0 µF 100 VDC Table 2b: Input data Model CK Characteristics Conditions min typ 28 DK max min 140 44 typ EK max min 220 67 typ LK max min 385 88 typ Unit max 372 Vi Operating input voltage Vi nom Nominal input voltage Ii Input current Vi nom, I o nom 1 Pi 0 No-load input power Vi min – Vi max 2.5 2.5 2.5 2.5 P i inh Idle input power Unit inhibited 1.5 1.5 1.5 4.5 Ri Input resistance RNTC NTC resistance Ci Input capacitance Vi RFI Vi abs 2 Conducted input RFI Radiated input RFI Input voltage limits without damage Io = 0 – Io max TC min – TC max TC = 25 °C 85 60 110 3.0 EN 55022, Vi nom, I o nom 0 1200 264 216 270 216 B B A A A A 154 0 400 3 0 400 -400 W mΩ 270 B VAC A 4000 B VDC VDC 480 4000 330 264 0.57 180 2000 (230) 4 310 4 0.8 170 1000 960 220 1.6 150 4 µF 400 VDC Both outputs of double-output models are loaded with Io nom. Valid for -7 versions without option E (-9 versions exclude NTC). This is the nominal value at 25 °C and applies to cold converters at initial switch-on cycle. Subsequent switch-on/off cycles increase the inrush current peak value. 3 For 1 s max. 4 Rated input voltage range is 100 – 240 VAC (nominal 230 VAC). Nominal frequency range is 50 – 60 Hz; operating frequency range is 47 – 440 Hz (440 Hz for 115 V mains). For frequencies ≥ 63 Hz, refer to Installation Instructions. 1 2 tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 6 of 35 K Series 150 W DC-DC and AC-DC Converters Input Transient Protection A suppressor diode or a VDR (depending upon the input voltage range) together with the input fuse and a symmetrical input filter form an effective protection against high input transient voltages which, typically occur in most installations, but especially in battery-driven mobile applications. Standard nominal battery voltages are: 12, 24, 36, 48, 60, 72, 110, and 220 V. Railway batteries are specified with a tolerance of –30% to +25%, with short excursions up to ± 40%. In certain applications, additional surges according to RIA 12 are specified. The power supply must not switch off during these surges, and since their energy can practically not be absorbed, an extremely wide input range is required. The EK input range for 110 V batteries has been designed and tested to meet this requirement. Input Fuse A fuse mounted inside the converter protects against severe defects. This fuse may not fully protect the converter, when the input voltage exceeds 200 VDC. In applications, where the converters operate at source voltages above 200 VDC, an external fuse or a circuit breaker at system level should be installed. Table 3: Fuse Specification Model Fuse type Reference Rating AK fast-blow 1 Littlefuse 314 30 A, 125 V BK fast-blow 1 Littlefuse 314 25 A, 125 V FK slow-blow 2 Schurter SPT 16 A, 250 V CK slow-blow 2 Schurter SPT 12.5 A, 250 V DK slow-blow 2 Schurter SPT 8 A, 250 V EK, LK slow-blow 2 Schurter SPT 4 A, 250 V 1 Fuse size 6.3 × 32 mm 2 Fuse size 5 × 20 mm Inrush Current Limitation The CK, DK, EK, and LK models incorporate an NTC resistor in the input circuitry, which at initial turn-on reduces the peak inrush current value by a factor of 5 – 10, such protecting connectors and switching devices from damage. Subsequent switch-on cycles within short periods will cause an increase of the peak inrush current value due to the warming-up of the NTC resistor. See also Option E. The inrush current peak value (initial switch-on cycle) can be determined by following calculation; see also fig. 3: Vi source Iinr p = _______________ (Rs ext + Ri + RNTC) Ii inr [A] 05108a 150 05109a 100 Rs ext CK EK, LK DK + Iinr p Ri RNTC Ci int Vi source 50 0 0.1 1 2 3 t [ms] Fig. 3 Typical inrush current versus time at Vi max, Rext = 0 Ω. For AK, BK, FK, and for application-related values, use the formula in this section to get realistic results. Fig. 4 Equivalent input circuit tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 7 of 35 K Series 150 W DC-DC and AC-DC Converters Static Input Current Characteristics Ii [A] 20 04044a 10 5 AK BK 2 FK CK 1 DK 0.5 EK LK (DC input) 2 1 3 4 5 Vi ____ Vi min Fig. 5 Typical input current versus relative input voltage Reverse Polarity The converters (except LK models) are not protected against reverse polarity at the input to avoid unwanted power losses. In general, only the input fuse will trip. LK models are fully protected by the built-in bridge rectifier. Input Under-/Overvoltage Lockout If the input voltage remains below approx. 0.8 Vi min or exceeds approx. 1.1 Vi max, an internally generated inhibit signal disables the output(s). When checking this function, the absolute maximum input voltage V i abs should be observed. Between Vi min and the undervoltage lock-out level the output voltage may be below the value defined in table Electrical Output data. Hold-Up Time th [ms] 04045a EK 100 th [ms] CK/FK DK 10 AK BK 10 1 0.1 04049a 100 1 2 3 4 5 6 Vi ____ Vi min Fig. 6a Typical hold-up time t h versus relative DC input voltage. Vi/Vi min. DC-DC converters require an external series diode in the input path, if other loads are connected to the same input supply lines. 2 V 1 2 3 4 i _______ Vi min Fig. 6b Typical hold-up time t h versus relative AC input voltage (LK models) tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 8 of 35 K Series 150 W DC-DC and AC-DC Converters Electrical Output Data General Conditions: – TA = 25 °C, unless TC is specified. – Pin 18 (i) connected to pin 14 (S– or Vo1–), R input not connected, Vo adjusted to Vo nom (option P), – Sense line pins 12 (S+) and 14 (S–) connected to pins 4 (Vo1+) and 8 (Vo1–), respectively. Table 5: Output data of single-output models Model AK – LK1001 AK – LK1301/1740 5 AK – LK1501 AK – LK1601 5.1 V 12 V / 12.84 V 5 15 V 24 V Nom. output voltage Characteristics Conditions min Vi nom, Io nom  5.07 Vo Output voltage  V o BR Output protection (suppressor diode) 7 Io nom Output current nom. 1 Vi min – Vi max TC min – TC max Io L Output current limit Vi min – Vi max Vo Output noise 3 Low frequency 8 Switching frequ. Total incl. spikes typ max min 5.13 11.93 6.0 typ max 12.07 5 15.2/17.5 5 20 6/25 max min 15.09 23.86 19.6 5 typ max 24.14 V 28.5 8 6/10 10.2 5, 6/12.2 BW = 20 MHz typ 14.91 10 5, 6/12 21 6/26 Vi nom, Io nom min 5 Unit 5 6/6 8.6 6/10.2 A 5.2 6/6.2 5 5 5 10 5 5 5 80 50 70 100 mVpp ∆Vo u Static line regulation with respect to Vi nom Vi min – Vi max Io nom ±15 ±20 ±25 ±30 ∆Vo l Static load regulation 2 Vi nom (0.1 – 1) Io nom -20 2 -30 -40 -50 Vo d Dynamic load regulation 9 td αvo Voltage deviation 9 Recovery time 9 Temperature coefficient of output voltage 4 Vi nom Io nom ↔ 0.5 Io nom Io nom TC min – TC max mV ±150 ±130 ±130 ±150 0.3 0.4 0.4 0.3 ms ±0.02 ±0.02 ±0.02 ±0.02 %/K If the output voltages are increased above Vo nom through R-input control, option P setting, remote sensing or option T, the output currents should be reduced accordingly so that Po nom is not exceeded. 2 See fig. 7 below ! 3 Measured according to IEC/EN 61204 with a probe according to annex A 4 For battery charger applications, a defined negative temperature coefficient can be provided by using a temperature sensor (see Accessories), but we recommend choosing the special battery charger models. 5 Especially designed for battery charging using the temperature sensor (see Accessories). Vo is set to 12.84 V ±1% (R-input open) 6 Values for AK models 7 Breakdown voltage of the incorporated suppressor diode (1 mA; 10 mA for 5 V output). Exceeding Vo BR is dangerous for the suppressor diode. 8 LK models only (twice the input frequency) 9 See Dynamic load regulation 1 ∆VoR Vo [V] Models with diodes 5.1 Models with synchr. rectifier 0.15 JM049 1.0 Io/Io nom Fig. 7 Output voltage regulation for models with synchronous rectifier and with diode rectifier tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 9 of 35 K Series 150 W DC-DC and AC-DC Converters Table 6a: Output data of double-output models. General conditions as per table 5. Model (Nom. output voltage) Characteristics AK – LK2320 (2 x 12 V) Conditions typ min 12.07 11.82 typ Output 1 max min typ 12.18 14.91 min 15.09 14.78 typ V o BR 8 Output protection (suppressor diode) Io nom Output current nom. 2 Vi min – Vi max TC min – TC max Io L Output current limit 10 Vi min – Vi max Vo Output noise 3 ∆Vo u Static line regulation with respect to Vi nom Vi min – Vi max Io nom ±20 5 ±25 5 ∆Vo l Static load regulation Vi nom (0.1 – 1) Io nom -40 5 -50 5 Vo d Dynamic load regulation 15.2 Low frequency 9 Switching frequ. Total incl. spikes Voltage deviation 4 Recovery time 4 Temperature coefficient of output voltage 6 15.2 19.6 5 1/6 BW = 20 MHz A 4.2 1/5.2 5 5 5 5 5 5 5 40 40 50 50 ±100 Io nom TC min – TC max V 4 1/5 4.2 1/5.2 5 Vi nom, Io nom Vi nom Io1 nom ↔ 0.5 Io1 nom 0.5 Io2 nom 4 1/5 5.2 1/6.2 max 15.22 19.6 5 1/6 5.2 1/6.2 Unit Output 2 max Output voltage  αvo 11.93 Output 2 max Vo td Vi nom, Io1 nom, Io2 nom  Output 1 min AK – LK2540 (2 x 15 V) ±150 ±100 mVpp mV ±150 0.2 0.2 ms ±0.02 ±0.02 %/K Table 6b: Output data of double-output models. General conditions as per table 5. Model (Nom. output voltage) Characteristics AK – LK2660 / 2740 (2 × 24 V / 2 × 25.68 V) 7 Conditions Vo Output voltage  Vi nom, Io1 nom, Io2 nom  V o BR 8 Output protection (suppressor diode) Io nom Output current nom. 2 Vi min – Vi max TC min – TC max Io L Output current limit Vi min – Vi max Output 1 min typ 23.86 7 max min 24.14 7 23.64 7 28.5/34 7 10 Low frequency 9 Vi nom, Io nom typ V 28.5/34 7 2.5 1, 7/3 2.5 1, 7/3 2.7 /3.2 1, 7 5 5 ∆Vo u Static line regulation with respect to Vi nom Vi min – Vi max Io nom ±30 5 ∆Vo l Static load regulation Vi nom (0.1 – 1) Io nom -60 5 Vo d Dynamic load regulation td αvo Total incl. spikes Voltage deviation 4 Recovery time 4 Temperature coefficient of output voltage 6 Vi nom Io1 nom ↔ 0.5 Io1 nom 0.5 Io2 nom Io nom TC min – TC max A 2.7 /3.2 1, 7 Output noise 3 BW = 20 MHz max 24.36 7 Vo Switching frequ. Unit Output 2 5 5 80 80 ±100 mVpp mV ±150 0.2 ms ±0.02 %/K Values for AK models If the output voltages are increased above Vo nom via R-input control, option P setting, remote sensing, or option T, the output currents should be reduced accordingly, so that Po nom is not exceeded. 3 Measured according to IEC/EN 61204 with a probe annex A 4 See Dynamic Load Regulation 5 See Output Voltage Regulation of Double-Output Models 6 For battery charger applications, a defined negative temperature coefficient can be provided by using a temperature sensor; see Accessories. 7 Especially designed for battery charging using the battery temperature sensor; see Accessories. Vo1 is set to 25.68 V ±1% (R-input open-circuit). 8 Breakdown voltage of the incorporated suppressor diodes (1 m A). Exceeding Vo BR is dangerous for the suppressor diodes. 9 LK models only (twice the input frequency) 1 2 tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 10 of 35 K Series 150 W DC-DC and AC-DC Converters Thermal Considerations If a converter is located in free, quasi-stationary air (convection cooling) at the indicated maximum ambient temperature TA max (see table Temperature specifica­tions) and is operated at its nominal input voltage and output power, the temperature measured at the Measuring point of case temperature TC (see Mechanical Data) will approach the indicated value TC max after the warm-up phase. However, the relationship between TA and TC depends heavily upon the conditions of operation and integration into a system. The thermal conditions are influenced by input voltage, output current, airflow, and temperature of surrounding components and surfaces. TA max is therefore, contrary to TC max, an indicative value only. Caution: The installer must ensure that under all operating conditions TC remains within the limits stated in the table Temperature specifications. Notes: Sufficient forced cooling or an additional heat sink allows TA to be higher than 71 °C (e.g., 85 °C), as long as TC max is not exceeded. Details are specified in fig. 8. Io /Io nom 1.0 05089a 0.8 Forced cooling Convection cooling 0.6 TC max 0.4 0.2 0 TA min 50 60 70 80 90 100 TA [°C] Fig. 8 Output current derating versus temperature for -7 and -9 models. Thermal Protection A temperature sensor generates an internal inhibit signal, which disables the outputs, when the case temper­ature exceeds TC max. The outputs automatically recover, when the temperature drops below this limit. Continuous operation under simul­taneous extreme worst-case conditions of the following three parameters should be avoided: Minimum input voltage, maximum output power, and maximum temperature. Output Protection Each output is protected against overvoltages, which could occur due to a failure of the internal control circuit. Voltage suppressor diodes (which under worst case condition may become a short circuit) provide the required protection. The suppressor diodes are not designed to withstand externally applied overvoltages. Overload at any of the outputs will cause a shut-down of all outputs. A red LED indicates the overload condition. Note: Vo BR is specified in Electrical Output Data. If this voltage is exceeded, the suppressor diode generates losses and may become a short circuit. Parallel and Series Connection Single- or double-output models with equal output voltage can be connected in parallel using option T (current sharing). If the T pins are interconnected, all converters share the output current equally. Single-output models and/or main and second outputs of double-output models can be connected in series with any other (similar) output. Notes: – Parallel connection of double-output models should always include both, main and second output to maintain good regulation. – Not more than 5 converters should be connected in parallel. – Series connection of second outputs without involving their main outputs should be avoided, as regulation may be poor. – The maximum output current is limited by the output with the lowest current limitation when several outputs are connected in series. tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 11 of 35 K Series 150 W DC-DC and AC-DC Converters Vo/Vo nom 0.98 0.5 Io1 IoL 05098a 0 1.0 0.5 Io/Io nom Fig. 9 Output characteristic Vo versus Io (single-output models or double-output models with parallel-connected outputs). Output Voltage Regulation Figure 10 applies to single-output or double-output models with parallel-connected outputs. For independent configuration, output 1 is under normal con­ditions regulated to Vo nom, irrespective of the output currents. Vo2 depends upon the load distribution. If both outputs are loaded with more than 10% of Io nom, the deviation of Vo2 remains within ± 5% of Vo1. Figures 11 to 13 show the regulation depending on load distribution. Two outputs of a double-output model connected in parallel behave like the output of a single-output model. Note: If output 2 is not used, connect it in parallel with output 1! This ensures good regulation and efficiency. Vo Vo2 [V] Vod Vo ±1 % Vo ±1 % 12.6 12.4 Vod td 12.2 td t Io /Io nom 1 0.5 05105a Io1 = 6.0 A Io1 = 4.5 A Io1 = 3.0 A Io1 = 1.5 A Io1 = 0.6 A 12.0 11.8 11.6 11.4 ≥ 10 µs ≥ 10 µs 0 05102c t Fig. 10 Typical dynamic load regulation of Vo. 11.2 0 1 2 3 4 5 6 7 Io2 [A] Fig. 11 Models with 2 outputs 12 V: Vo2 versus Io2 with various Io1 (typ) Vo2 [V] Vo2 [V] 05106a 15.75 15.5 15.25 05107a 26 Io1 = 5.0 A Io1 = 3.75 A Io1 = 2.5 A Io1 = 1.25 A Io1 = 0.5 A Io1 = 3 A Io1 = 2 A Io1 = 1 A Io1 = 0.5 A Io1 = 0.3 A 25.5 25 15.0 24.5 14.75 24 14.5 23.5 14.25 14.0 23 0 1 2 3 4 5 6 Io2 [A] 0 Fig. 12 Models with 2 outputs 15 V: Vo2 versus Io2 with various Io1 (typ) 0.5 1 1.5 2 2.5 3 3.5 Io2 [A] Fig. 13 Models with 2 outputs 24 V: Vo2 versus Io2 with various Io1 (typ) tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 12 of 35 K Series 150 W DC-DC and AC-DC Converters Auxiliary Functions Inhibit for Remote On/Off The outputs may be enabled or disabled by means of a logic signal (TTL, CMOS, etc.) applied between the inhibit input i (pin 18) and pin 14 (S– or Vo1–). In systems with several converters, this feature can be used to control the activation sequence of the converters. If the inhibit function is not required, connect the inhibit pin 18 with pin 14! Note: If pin 18 is not connected, the output is disabled. Table 7: Inhibit characteristics Characteristics 06031a Conditions V inh Inhibit voltage  Iinh Inhibit current tr Rise time tf Fall time V o = on V o = off min Vi min – Vi max typ max -50 0.8 2.4 50 V inh = 0 -400 30 Unit Vo+ Vi+ V Iinh i 18 µA Vinh ms Depending on Io S–/Vo1– 14 Vi– Fig. 14 Definition of Vinh and Iinh. Iinh [mA] 2.0 Vinh = 2.4 V Vinh = 0.8 V Vo /Vo nom 1 06032a 1.6 1.2 0.1 0 0.8 Vo = on 0.4 Vo = off tf tr –0.4 t 0 –40 –20 0 20 t Inhibit 1 0 –0.8 06001 Vinh [V] 40 Fig. 15 Typical inhibit current I inh versus inhibit voltage Vinh Fig. 16 Output response as a function of inhibit control Sense Lines (Single Output Models) Important: Sense lines must always be connected! Incorrectly connected sense lines may activate the overvoltage protection resulting in a permanent short-circuit of the output. This feature allows for compensation of voltage drops across the connector contacts and if necessary, across the load lines. We recommend connecting the sense lines directly at the female connector. To ensure correct operation, both sense lines (S+, S–) should be connected to their respective power outputs (Vo+ and Vo–), and the voltage difference between any sense line and its respective power output (as measured on the connector) should not exceed the following values: Table 7: Maximum voltage compensation allowed using sense lines Output voltage Total voltage difference between sense lines and their respective outputs Voltage difference between Vo– and S– 5.1 V < 0.5 V < 0.25 V 12 V, 15 V, 24 V < 1.0 V < 0.25 V tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 13 of 35 K Series 150 W DC-DC and AC-DC Converters Programmable Output Voltage (R-Function) As a standard feature, the converters offer an adjustable output voltage, identified by letter R in the type designation. The control input R (pin 16) accepts either a control voltage Vext or a resistor Rext to adjust the desired output voltage. When input R is not connected, the output voltage is set to Vo nom. a) Adjustment by means of an external control voltage Vext between pin 16 (R) and pin 14 (S–): The control voltage range is 0 – 2.75 VDC and allows for an adjustment in the range of approximately 0 – 110% of Vo nom. Vo Vext ≈ –––––– • 2.5 V Vo nom b) Adjustment by means of an external resistor: Depending upon the value of the required output voltage, the resistor shall be connected either: Between pin 16 and pin 14 to achieve an output voltage adjustment range of approximately 0 – 100% of Vo nom. or: Between pin 16 and pin 12 to achieve an output voltage adjustment range of 100 – 110% of Vo nom. 05074a Vi+ R 16 14 S–/Vo1– + – Vext Vi– Vi+ 12 16 14 S+/Vo1+ R S–/Vo1– R'ext Vo2+ 4 Vo2+ 6 Vo2– 8 Vo2– 10 Vo1+ 12 Vo1– 14 R 16 + 06004a 24 V Vo1 30 V 48 V Co – R'ext Rext Rext Vi– Fig. 17 Output voltage control for single-output models Fig. 18 Double-output models: Wiring of the R-input for output voltages 24 V, 30 V, or 48 V with both outputs in series. A ceramic capacitor (Co ) across the load Warnings: – Vext shall never exceed 2.75 VDC. – The value of R’ext shall never be less than the lowest value as indicated in table R’ext (for V0 > V0 nom) to avoid damage to the converter! Notes: – The R-Function excludes option P (output voltage adjustment by potentiometer). If the output voltages are increased above Vo nom via R-input control, option P setting, remote sensing, or option T, the output currents should be reduced, so that Po nom is not exceeded. – With double-output models, the second output follows the voltage of the controlled main output. – In case of parallel connection the output voltages should be individually set within a tolerance of 1 – 2%. Test Sockets Test sockets (pin diameter 2 mm) for measuring the main output voltage Vo or Vo1 are located at the front of the converter. The positive test socket is protected by a series resistor (see: Functional Description, block diagrams). The voltage measured at the test sockets is slightly lower than the value at the output terminals. tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 14 of 35 K Series 150 W DC-DC and AC-DC Converters Table 8a: Rext for Vo < Vo nom; approximate values (Vi nom, Io nom, series E 96 resistors); R’ext = not fitted Vo nom = 5.1 V Vo nom = 12 V Vo [V] R ext [kΩ] 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.432 0.976 1.65 2.61 3.83 5.76 8.66 14.7 30.1 200 Vo [V] 1 Vo nom = 15 V R ext [kΩ] 2 3 4 5 6 7 8 9 10 11 4 6 8 10 12 14 16 18 20 22 0.806 1.33 2 2.87 4.02 5.62 8.06 12.1 20 42.2 Vo [V] 1 2 4 6 8 9 10 11 12 13 14 Vo nom = 24 V R ext [kΩ] 4 8 12 16 18 20 22 24 26 28 0.619 1.47 2.67 4.53 6.04 8.06 11 16.2 26.1 56.2 Vo [V] 1 4 6 8 10 12 14 16 18 20 22 R ext [kΩ] 8 12 16 20 24 28 32 36 40 44 0.81 1.33 2.0 2.87 4.02 5.62 8.06 12.1 20 44.2 Table 8b: R’ext for Vo > Vo nom; approximate values (Vi nom, Io nom, series E 96 resistors); Rext = not fitted Vo nom = 5.1 V 1 Vo nom = 12 V Vo [V] R ’ext [kΩ] 5.15 5.20 5.25 5.30 5.35 5.40 5.45 5.50 432 215 147 110 88.7 75 64.9 57.6 Vo [V] 1 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 13.0 13.2 Vo nom = 15 V R ’ext [kΩ] 24.2 24.4 24.6 24.8 25.0 25.2 25.4 25.6 26.0 26.4 1820 931 619 475 383 316 274 243 196 169 Vo [V] 1 15.2 15.4 15.6 15.8 16.0 16.2 16.4 16.5 Vo nom = 24 V R ’ext [kΩ] 30.4 30.8 31.2 31.6 32.0 32.4 32.8 33.0 1500 768 523 392 316 267 232 221 Vo [V] 1 24.25 24.50 24.75 25.00 25.25 25.50 25.75 26.00 26.25 26.40 R ’ext [kΩ] 48.5 49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 52.8 3320 1690 1130 845 698 590 511 442 402 383 First column: Vo or Vo1; second column: double-output models with series-connected outputs Display Status of LEDs Vo1 > 0.95 to 0.98 Vo1 adj 06002a OK i Io L Vi uv Vi min Vi max Vi ov Vo1 > 0.95 to 0.98 Vo1 adj Vi Vi abs LEDs “OK ”, “i ” and “Io L” status versus input voltage Conditions: Io ≤ Io nom, TC ≤ TC max, Vinh ≤ 0.8 V Vi uv = undervoltage lock-out, Vi ov = overvoltage lock-out Vo1 < 0.95 to 0.98 Vo1 adj OK Io L Io nom Io IoL i TC max LEDs “OK” and “Io L” status versus output current Conditions: Vi min – Vi max, TC ≤ TC max, Vinh ≤ 0.8 V TC LED “i ” versus case temperature Conditions: Vi min – Vi max , Io ≤ Io nom, Vinh ≤ 0.8 V Vi inh LED “i ” versus Vinh Conditions: Vi min – Vi max, Io ≤ Io nom, TC ≤ TC max TPTC threshold Vinh threshold i -50 V LED off +0.8 V +2.4 V LED Status undefined +50 V LED on Fig. 19 LED indicators tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 15 of 35 K Series 150 W DC-DC and AC-DC Converters Battery Charging / Temperature Sensor All converters with an R-input are suitable for battery charger applications, but we recommend choosing the models especially designed for this application DK/LK1740 or DK/LK2740; see Model Selection. For optimal battery charging and life expectancy of the battery an external temperature sensor can be connected to the R-input. The sensor is mounted as close as possible to the battery and adjusts the output voltage according to the battery temperature. Depending upon cell voltage and the temperature coefficient of the battery, different sensor types are available, see Accessories. Cell voltage [V] 2.45 Input Power supply 03099d Vo+ Vo– Load R 06139b 2.40 2.35 2.30 2.25 + – Temperature sensor + Battery 2.20 2.15 Vo safe 2.10 –20 –10 0 10 VC = 2.27 V, –3 mV/K VC = 2.23 V, –3 mV/K Fig. 20 Connection of a temperature sensor 20 30 40 50 °C VC = 2.27 V, –3.5 mV/K VC = 2.23 V, –3.5 mV/K Fig. 21 Trickle charge voltage versus temperature for defined temp. coefficient. Vo nom is the output voltage with open R-input. tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 16 of 35 K Series 150 W DC-DC and AC-DC Converters Electromagnetic Compatibility (EMC) A metal oxide VDR together with the input fuse and an input filter form an effective protection against high input transient voltages, which typically occur in most installations. The con­verters have been successfully tested to the following specifications: Electromagnetic Immunity Table 9: Electromagnetic immunity (type tests) Phenomenon Standard Supply related surge RIA 12 3 Level Value applied Waveform 3.5 VBat 2/20/2 ms 1.5 VBat 0.1/1/0.1 s C 960 Vp 10/100 μs D3 1800 Vp 5/50 μs 3600 Vp 0.5/5 μs 4800 Vp 0.1/1 μs 8400 Vp 0.05/0.1 μs 1800 Vp 5/50 μs 3600 Vp 0.5/5 μs 4800 Vp 0.1/1 μs 8400 Vp 0.05/0.1 μs A4 B Direct transients E Coupling mode 1 +i/–i +i/–i, –i/c F G Indirect couples transients 3 H J K +o/c, –o/c L Electrostatic discharge (to case) IEC/EN 61000-4-2 Electromagnetic field  IEC/EN 61000-4-3 45 contact discharge ±8000 Vp air discharge ±15000 Vp x6 antenna 7 antenna 20 V/m 1/50 ns Source imped. Test procedure In oper. Perf. crit. 2 0.2 Ω 1 positive surge yes A 5 pos. & 5 neg. yes B 10 pos. & 10 neg. discharges yes A yes A yes A 5Ω 100 Ω 330 Ω 150 pF AM 80% / 1 kHz N/A 80 – 1000 MHz AM 80% / 1 kHz N/A 1400 – 2100 MHz 20 V/m 10 V/m 800 – 1000 MHz 5 V/m Electrical fast transients / burst Surges IEC/EN 61000-4-4 IEC/EN 61000-4-5 10 V/m 3 antenna 38 capacitive, o/c ±2000 Vp 4 ±i/c, +i/–i direct ±4000 Vp ±i/c ±2000 Vp +i/– i ±1000 Vp 39 Conducted disturbances IEC/EN 61000-4-6 3 10 i, o, signal wires Power frequency magnetic field IEC/EN 61000-4-8 3 11 - 10 VAC (140 dBµV) 2100 – 2500 MHz 50% duty cycle, 200 Hz rep. rate bursts of 5/50 ns; 2.5 / 5 kHz over 15 ms; burst period: 300 ms 1.2 / 50 µs AM 80% / 1 kHz N/A 900 ±5 MHz yes A 50 Ω 60 s positive 60 s negative transients per coupling mode yes A 2Ω 5 pos. & 5 neg. surges per coupling mode yes A 150 Ω 0.15 – 80 MHz yes A 60 s in all 3 axes yes A 12 Ω 300 A/m i = input, o = output, c = case A = normal operation, no deviation from specs.; B = temporary loss of function or deviation from specs possible 3 RIA 12 covers or exceeds IEC 60571-1 and EN 50155:2017. Surge D corresponds to EN 50155:2017, waveform A; surge G corres­ponds to EN 50155:2001, waveform B 4 Only met with extended input voltage range of CS (for 48 V battery) and ES (for 110 V battery) model types. Such CS models are available on customer’s request. Standard DS models types (on 110 V battery) will shut down during the surge and recover automatically. 5 Exceeds EN 50121-3-2:2015 table 6.3 and EN 50121-4:2016 table 2.4. 6 Corresponds to EN 50121-3-2:2015 table 6.1 and exceeds EN 50121-4:2016 table 2.1. 7 Corresponds to EN 50121-3-2:2015 table 6.2 and EN 50121-4:2016 table 2.2 (compliance with digital communication devices). 8 Corresponds or exceeds EN 50121-3-2:2015 table 4.2 and EN 50121-4:2016 table 4.2. 9 Covers or exceeds EN 50121-3-2:2015 table 4.3 and EN 50121-4:2016 table 4.3. 10 Corresponds to EN 50121-3-2:2015 table 4.1 and EN 50121-4:2016 table 4.1 (radio frequency common mode). 11 Corresponds to EN 50121-4:2016 table 2.3. 1 2 tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 17 of 35 K Series 150 W DC-DC and AC-DC Converters Electromagnetic Emissions dBµV PMM 8000 PLUS: Peak, conducted Vi+, QP + AV, 2009-11-20, 13:00 h DK1601-9ERB1, U i =110 V, U o =24 V I o = 6 A dBµV PMM 8000 PLUS: Peak, conducted Vi+, QP + AV, 2009-11-20, 12:35 h BK1601-9R, U i =30 V, U o =24 V I o = 6 A JM053 JM052a 80 80 EN 55022 A (qp) EN 55022 A (av) 60 60 EN 55022 B (qp) EN 55022 B (av) 40 40 20 20 0 0 0.2 0.5 1 2 5 10 Fig. 22a Conducted emissions (peak/quasipeak and average) at the phase input according to EN 55011/32, measured at Vi nom and Io nom (BK1601-9R). The neutral line performs quite similar. dBµV/m 50 0.2 0.5 1 2 5 10 Fig. 22b Conducted emissions (peak/quasipeak and average) at the phase input according to EN 55011/32, measured at Vi nom and Io nom (DK1601-9ERB1). The neutral line performs quite similar. dBµV/m TÜV-Divina, ESVS 30:R&S, BBA 9106/UHALP 9107:Schwarzb., QP, 2009-11-20 Testdistance 10 m, BK1601-9R, U i =24 V, U o =24 V I o = 6 A 50 EN 55011 A TÜV-Divina, ESVS 30:R&S, BBA 9106/UHALP 9107:Schwarzb., QP, 2009-11-20 Testdistance 10 m, DK1601-9ERB1, U i =110 V, U o =24 V I o = 6 A EN 55011 A 40 40 JM051 JM050 30 30 300 >100 2 MΩ --- --- mm According to EN 50514 and IEC/EN 60950, subassemblies connecting input to output are pre-tested with 5.6 kVDC or 4 kVAC. 2 Tested at 150 VDC 3 Input to outputs: 6.­­4 mm 1 Leakage Currents Leakage currents flow due to internal leakage capacitances and Y-capacitors. The current values are proportional to the supply voltage and are specified in the table below. Table 15: Earth leakage currents for LK models Characteristics Max. leakage current Class I Permissible accord. to IEC/EN 60950 3.5 Typ. value at 264 V, 50 Hz 1.43 Unit mA LK Models Operated at Greater than 63 Hz Above 63 Hz, the earth leakage current may exceed 3.5 mA, the maximum value allowed in IEC 60950. Frequencies ≥ 350 Hz only permitted with Vi ≤ 200 VAC. The built-in Y-caps are approved for ≤100 Hz. Safety approvals and CB scheme cover only 50 – 60 Hz. Safety of Operator-Accessible Output Circuits If the output circuit of a DC-DC converter is operator-accessible, it shall be an SELV circuit according to the standard IEC 60950-1. The following table shows some possible installation configurations, compliance with which causes the output circuit of the converter to be an SELV circuit according to IEC 60950-1 up to a configured output voltage (sum of nominal voltages if in series or +/– configuration) of 36 V. However, it is the sole responsibility of the installer to assure the compliance with the rapplicable safety regulations. ≤150 VAC or VDC for AK, BK ≤250 VAC or VDC for CK, DK, EK, FK, LK Mains AC-DC front end + 10044a Fuse Battery Fuse DC-DC converter + SELV – ≤150 VAC or VDC for AK, BK ≤250 VAC or VDC for CK, DK, EK, FK, LK Earth connection Fig. 28 Schematic safety concept. Use earth connections as per the table below. tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 24 of 35 K Series 150 W DC-DC and AC-DC Converters Table 16: Safety concept leading to an SELV output circuit Conditions Front end DC-DC converter Result Nominal supply voltage Minimum required grade of insulation, to be provided by the AC-DC front end, including mains supplied battery charger Nominal DC output voltage from the front end Minimum required safety status of the front end output circuit Types Measures to achieve the specified safety status of the output circuit Safety status of the DC-DC converter output circuit Mains ≤150 VAC Functional (i.e. there is no need for electrical insulation between the mains supply voltage and the DC-DC converter input voltage) ≤ 100 V (The nominal voltage between any input pin and earth can be up to 150 VAC or DC) Primary circuit AK BK Double or reinforced insulation, based on the mains voltage and 2 (provided by the DC-DC converter) and earthed case 3 SELV circuit Basic ≤ 400 V Mains ≤ 250 VAC ≤ 400 V (The nominal voltage between any input pin and earth can be up to 250 VAC or 400 VDC) CK DK EK FK Unearthed hazardous voltage secondary circuit Earthed hazardous voltage secondary circuit Double or reinforced 3 4 1 2 AK BK CK DK EK FK Supplementary insulation, based on 250 VAC and double or reinforced insulation 2 (provided by DC-DC converter) and earthed case 3. Double or reinforced insulation 2 (provided by the DC-DC converter) earthed case 3 ≤ 60 V SELV circuit Functional insulation (provided by the DC-DC converter) 4 ≤ 120 V TNV-3 circuit Basic insulation (provided by the DC-DC converter) 4 The front end output voltage should match the specified input voltage range of the DC-DC converter. Based on the maximum nominal output voltage from the front end. The earth connection has to be provided by the installer according to the relevant safety standard, e.g. IEC/EN 60950-1. Earthing of the case is recommended, but not mandatory. If the output circuit of an AC-DC converter is operator-accessible, it shall be an SELV circuit according to standard IEC 60950-1. The following table shows some possible installation configurations, compliance with which causes the output circuit of LK models to be SELV according to IEC 60950-1 up to a configured output voltage (sum of nominal voltages if in series or +/– configuration) of 36 V. If the LK converter is used as DC-DC converter, refer to the previous section. Mains ~ ~ Fuse Fuse Earth connection 10021a + AC-DC converter SELV – Fig. 29 Schematic safety concept. Use earth connection as per table 17. Use fuses if required by the application; see also Instal. Instructions. Table 17: Safety concept leading to an SELV output circuit Conditions AC-DC converter Installation Result Nominal voltage Grade of insulation between input and output provided by the AC-DC converter Measures to achieve the resulting safety status of the output circuit Safety status of the AC-DC converter output circuit Mains ≤ 250 VAC Double or reinforced Earthed case1 and installation SELV circuit 1 The earth connection has to be provided by the installer according to the relevant safety standards, e.g. IEC/EN 60950. tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 25 of 35 K Series 150 W DC-DC and AC-DC Converters Description of Options Table 18: Survey of options Option Function of option Characteristics -7 Extended operational ambient temperature range TA = – 25 to 71 °C E Electronic inrush current limitation circuitry Active inrush current limitation P Potentiometer for fine adjustment of output voltage Adjustment range +10/– 60% of Vo nom, excludes R-input D1 Input and/or output undervoltage monitoring circuitry Safe data signal output (D0 – DD) V 2 Input and/or output undervoltage monitoring circuitry ACFAIL signal according to VME specifications (V0, V2, V3) T Current sharing Interconnect T-pins for parallel connection (max 5 converters) K Standard H15 Connector H15 standard connector instead H15-S4 for models with Vo = 5.1 V) Cooling plate (160 or 220 mm long) Replaces the standard heat sink, allowing direct chassis-mounting RoHS-compliant for 5 substances Tin-lead solder 1 B, B1, B2 non-G Option D excludes option V and vice versa; option V only for 5.1 V outputs. Option P is not available for battery charger models. 1 2 -7  Temperature Range Option -7 designates converters with an operational ambient temperature range of – 25 to 71 °C. Not for new designs. E  Inrush Current Limitation CK/DK/EK/LK models may be supplemented by an electronic circuit (option E, replacing the standard built-in NTC resistor) to achieve an enhanced inrush current limiting function (not available with AK/BK/FK types). Option E is mandatory for all CK/DK/ EK/LK models with option -9. The figure below shows two consecutive peaks of the inrush current, the first one is caused by Vi /Rv and the second one by the rising current across the FET. The shape of the curve depends on model, but the tables below show the higher of both peaks. Iinr [A] 10017b Normal operation (FET fully conducting) V i / Rv Ci Control FET Rs Converter Input Filter LK models Capacitor Ci fully charged Ii = Pi / Vi RSt 0 11039a t [ms] tinr 0 Fig. 30 Block diagram of option E Current limiting resistance Rv = Rs + RSt = 15 Ω Fig. 31 Inrush current with option E (DC supply) 2 different wave shapes depending on model Table 19 a: Inrush current at Vi nom (DC supply) and I o nom Table 19 b: Inrush current at Vi max (DC supply) and I o nom Characteristics CK DK EK LK Unit Characteristics CK EK LK Unit Input voltage 60 110 220 310 V Vo max 140 220 385 372 V Iinr p Peak inrush current 6.5 7.4 14.6 21 A Iinr p Peak inrush current 9 14.5 25.7 24.8 A tinr Inrush current duration 25 14 16 12 ms tinr Inrush current duration 30 14 12 12 ms Vo nom Input voltage DK CK models fitted with option E and option D6 (input voltage monitor) meet the standard ETS 300132-2 for 48 VDC supplies. Option D6 is necessary to disable the converter at low input voltage, such avoiding an excessive input current. Connect output D (pin 20) with inhibit (pin 18). Option D6 should be adjusted with the potentiometer to a threshold of 36 – 40.5 V for 48 V batteries and to 44 – 50 V for 60 V batteries. Refer also to the description of option D. Note: Subsequent switch-on cycles at start-up are limited to max. 10 cycles during the first 20 s (cold converter) and then to max. 1 cycle every 8 s. tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 26 of 35 K Series 150 W DC-DC and AC-DC Converters LK models powered by 230 VAC/ 50 Hz exhibit an inrush current as per the fig. below, when switched on at the peak of Vi. In this case, the inrush current I inr p is 21.7 A and its duration tinr is 5 ms. This is the worst case. If the LK converter is switched on in a different moment, Iinr p is much lower, but t inr rises up to 10 ms. Ii [A] 20 15 Capacitor Ci fully charged 10 Normal operation (FET fully conducting) 5 0 –5 –10 tinr –15 0 20 10065a 40 60 t [ms] 80 Fig. 32 Inrush current for LK models with option E (AC supply); Vi = 230 VAC, f i = 50 Hz, Po = Po nom P Potentiometer A potentiometer provides an output voltage adjustment range of +10/– 60% of Vo nom. It is accessible through a hole in the front cover. Option P is not available for battery charger models and is not recommended for converters connected in parallel. Option P excludes the R-function. With double-output models, both outputs are influenced by the potentiometer setting (doubling the voltage, if the outputs are in series). Note: If the output voltages are increased above Vo nom via R input control, option P setting, remote sensing, or option T, the output current(s) should be reduced, so that Po nom is not exceeded. T  Current Sharing This option ensures that the output currents are approximately shared between all parallel-connected converters, hence increasing system reliability. To use this facility, simply interconnect the T pins of all converters and make sure that the reference for the T signal, pin 14 (S– or Vo1–), are also connected together. The load lines should have equal length and cross section to ensure equal voltage drops. Not more than 5 converters should be connected in parallel. The R pins should be left open-circuit. If not, the output voltages must be individually adjusted prior to paralleling within 1 to 2% or the R pins should be con­­nected together. Note: Parallel connection of con­verters with option P is not recom­men­ded. Vo+ Vo– 11003a Load Vo+ Vo– Vo+ Vo– Fig.33 Example of poor wiring for parallel connection (unequal length of load lines) tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 27 of 35 K Series 150 W DC-DC and AC-DC Converters 11036b Vo+ 11037b 1 2 S+ Vo2+ Vo2– T Converter Power bus + – 1 T Converter S– Vo1+ Vo– Vo1– Load Vo+ Load 2 Vo2+ S+ T Converter Vo2– 1 T Converter S– Vo– Vo1+ 1 Vo1– Max. 5 converters in parallel connection Lead lines should have equal length and cross section, and should run in the same cable loom. Diodes recommended in redundant operation only 1 2 Max. 5 converters in parallel connection Fig. 34 Parallel connection of single-output models using option T with the sense lines connected at the load Fig. 35 Parallel connection of double-output models with the outputs connected in series, using option T. The signal at the T pins is referenced to Vo1–. D Undervoltage Monitor The input and/or output undervoltage monitor operates in­dependently of the built-in input undervoltage lockout circuit. A logic “low” signal (output with self-conducting JFET) or “high” signal (NPN open-collector output) is generated at the D output (pin 20), when one of the monitored voltages drops below the preselected threshold level V t. This signal is referenced to S– / Vo1–. The D output recovers, when the monitored voltages exceed Vt + Vh. The threshold levels Vti and Vto are either adjusted by a potentio­meter, accessible through a hole in the front cover, or adjusted in the factory to a fixed value specified by the customer. Option D exists in various versions D0 – DD, as shown in table 21. D0 and D9 are adjusted according to customer’s request and receive a customer-specific model number. Output type Monitoring Minimum adjustment range of threshold level Vt Typ. hysteresis Vho [% of Vt ] for Vt min – Vt max Number of potentiometers JFET NPN Vi Vo or Vo1 Vt i Vt o Vhi Vho D1 D5 no yes --- 3.5 V – Vo BR 1 --- 2.5 – 0.6 V 1 D2 D6 yes no Vi min – Vi max 1 --- 3.4 – 0.4 V --- 1 D3 D7 yes yes Vi min – Vi max 3.4 – 0.4 V “0” 1 D4 D8 no yes --- --- “0” --- D0 5 D9 5 no yes --- 3.5 V – Vo BR 3 --- 2.5 – 0.6 V --- yes no Vi min – Vi max 3, 4 --- 3.4 – 0.4 V --- yes yes Vi min – Vi max 3, 4 3.5 V – Vo BR 3, 4 3.4 – 0.4 V 2.5 – 0.6 V yes yes Vi min – Vi max 3, 4 (0.95 – 0.985 Vo) 2 3.4 – 0.4 V “0” yes yes 3.5 V – Vo BR 3.4 – 0.4 V 2.5 – 0.6 V --- DD 1 (0.95 – 0.985 Vo) 2 (0.95 – 0.985 Vo) 2 Vi min – Vi max 1 1 2 Threshold level adjustable by potentiometer; see Electrical Output Data for Vo BR. Fixed value. Tracking if Vo/Vo1 is adjusted via R-input, option P, or sense lines. 3 The threshold level permanently adjusted according to customer specification ±2% at 25 °C. Any value within the specified range is basically possible, but causes a special type designation in addition to the standard option designations (D0/D9). See Electrical Output Data for Vo BR. 4 Adjustment at Io nom. 5 Customer-specific part number 1 2 tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 28 of 35 K Series 150 W DC-DC and AC-DC Converters JFET output (D0 – D4): Pin D is internally connected via the drain-source path of a JFET (self-conducting type) to the negative potential of output 1. VD ≤ 0.4 V (logic low) corresponds to a monitored voltage level (Vi and/or Vo1)  Vt + Vh. The current ID through the open collector should not exceed 20 mA. The NPN output is not protected against external overvoltages. VD should not exceed 40 V. Table 21: JFET output (D0 -- D4) Table 22: NPN output (D5 – DD) Vb, Vo1 status D output, VD Vb, Vo1 status D output, VD Vb or Vo1 < Vt low, L, VD ≤ 0.4 V at I D = 2.5 mA Vb or Vo1 < Vt high, H, I D ≤ 25 µA at VD = 40 V Vb and Vo1 > Vt + Vh high, H, ID ≤ 25 µA at VD = 5.25 V Vb and Vo1 > Vt + Vh low, L, VD ≤ 0.4 V at ID = 20 mA 11006a 11007a Vo+/Vo1+ Vo+/Vo1+ 20 Self-conducting junction FET Rp D NPN open collector VD 14 Rp ID Input Input ID 20 VD 14 S–/Vo1– Fig. 36 Option D0 – D4: JFET output, I D ≤ 2.5 mA D S–/Vo1– Fig. 37 Option D5 – DD: NPN output, Vo ≤ 40, ID ≤ 2.5 mA Threshold tolerances and hysteresis: If Vi is monitored, the internal input voltage after the input filter is measured. Consequently this voltage differs from the voltage at the connector pins by the voltage drop ∆V ti across the input filter. The threshold levels of the D0 and D9 options are factory adjusted at nominal output current Io nom and TA = 25 °C. The value of ∆V ti depends upon input voltage range (CK, DK, ..), threshold level Vt, temperature, and input current. The input current is a function of the input voltage and the output power. VD ∆Vti Vhi 11021a Po = Po nom Po = 0 Po = 0 Po = Po nom VD high VD low Vi Vti Fig. 38 Definition of Vti, ∆Vt i and ∆Vhi (JFET output) Table 23: D-output logic signals Version of D Vi < Vt or Vo < Vt Vi > Vt + Vh or Vo > Vt Configuration D1, D2, D3, D4, D0 low high JFET D5, D6, D7, D8, D9, DD high low NPN tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 29 of 35 K Series 150 W DC-DC and AC-DC Converters Input voltage monitoring NPN VD VD high 11008a 3 VD low 3 3 3 t 0 ID ID high ID low 0 t JFET VD VD high VD low 0 th1 Vo1 Vo1 nom 1 0.95 t tlow min4 tlow min4 tlow min4 thigh min th1 0 t Vi [VDC] Vti+Vhi Vti 0 Input voltage failure Input voltage sag Switch-on cycle t Switch-on cycle and subsequent input voltage failure Output voltage monitoring NPN VD VD high 2 3 3 VD low t 0 ID 1 Hold-up time see Electrical Input Data 2 With output voltage monitoring, hold-up time t = 0 h ID high 3 The signal remains high, if the D output is connected ID low 0 t to an external source 4 t l ow min = 100 – 170 ms, typ. 130 ms JFET VD VD high VD low 0 t tlow min4 Vo1 Vo1 nom Vto+Vho Vto t 0 Output voltage failure Fig. 39 Relationship between Vi, Vo, V D, Vo /Vo nom versus time Table 24: Option V: Factory potentiometer setting of Vti with resulting hold-up time Model AK BK FK CK DK EK LK Unit Vt i 9.5 19.5 39 39 61 97 120 VDC th 0.1 0.1 3.4 1.1 1.1 2.7 4.2 ms tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 30 of 35 K Series 150 W DC-DC and AC-DC Converters V ACFAIL signal (VME) Available for units with Vo nom = 5.1 V only. This option defines an undervoltage monitoring circuit for the input or for the input and main output voltage ( 5.1 V) similar to option D and generates an ACFAIL signal (V signal), which conforms to the VME standard. The low state level of the ACFAIL signal is specified at a sink current of I V ≤ 48 mA to VV ≤ 0.6 V (open-collector output of an NPN transistor). The pull-up resistor feeding the open-collector output should be placed on the VME back plane. After the ACFAIL signal has gone low, the VME standard requires a hold-up time t h of at least 4 ms, before the 5.1 V output drops to 4.875 V, when the output is fully loaded. This hold-up time th is provided by the internal input capacitance. Consequently the working input voltage and the threshold level Vti should be adequately above Vi min of the converter, so that enough energy is remaining in the input capacitance. If V i is below the required level, an external hold-up capacitor (Ci ext) should be added; refer to the formulas below:    Vt i = √ where as: C i min = C i ext = Po = η = t h = V i min = V ti = 2 • Po • (t h + 0.3 ms) • 100 _______________________ + Vi min2 Ci min • η 2 • Po • (t h + 0.3 ms) • 100   Ci ext = –––––––––––––––––––––– – Ci min η • (Vti 2 – Vi min2 ) 1 internal input capacitance [mF]; see table 2 external input capacitance [mF] output power [W] efficiency [%] hold-up time [ms] minimum input voltage [V] 1 threshold level [V] V i min see Electrical Input Data. For output voltages Vo > Vo nom, Vi min increases proportionally to Vo/Vo nom. Note: Option V2 and V3 can be adjusted by the potentiometer to a threshold level between Vi min and Vi max. A decoupling diode should be connected in series with the input of AK – FK converters to avoid the input capacitance discharging through other loads connected to the same source voltage. Table 25: Undervoltage monitor functions Option Monitoring Minimum adjustment range of threshold level Vt Typical hysteresis Vh [% of Vt ] for Vt min – Vt max Vi Vo or Vo1 Vt i Vt o Vhi Vho V2 yes no Vi min – Vi max 1 --- 3.4 – 0.4 V --- V3 yes yes Vi min – Vi max 3.4 – 0.4 V “0” V0 yes no Vi min – Vi max 3, 4 yes yes Vi min – Vi max 3, 4 1 0.95 – 0.985 Vo1 2 --0.95 – 0.985 Vo1 2 3.4 – 0.4 V --- 3.4 – 0.4 V “0” Threshold level adjustable by potentiometer.  Fixed value between 95% and 98.5% of Vo1 (tracking).  3 Adjusted at Io nom. 4 Fixed value, resistor-adjusted (±2% at 25°C) accord. to customer’s specification; individual type number is determined by the company. 1 2 Option V operates independently of the built-in input under­ voltage lockout circuit. A logic “low” signal is generated at pin 20, as soon as one of the monitored voltages drops below the pre­selected threshold level V t. The return for this signal is S–. The V output recovers, when the monitored voltages exceed V t + Vh. The threshold level Vt i is either adjustable by a potentiometer, accessible through a hole in the front cover, or adjusted in the factory to a determined customer-specific value. Refer to table 26. V output (V0, V2, V3): Pin V is internally connected to the open collector of an NPN transistor. The emitter is connected to S–. V V ≤ 0.6 V (logic low) corresponds to a monitored voltage level (Vi and/or Vo) Vt + Vh high, H, IV ≤ 25 µA at VV = 5.1 V tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 31 of 35 K Series 150 W DC-DC and AC-DC Converters VV high Vi Vti Fig. 41 Definition of Vti, ∆Vti and Vhi tlow min 2 tlow min 2 tlow min 2 3 Po = Po nom VV low S– Input voltage monitoring VV Po = 0 V Fig. 40 Output configuration of options V0, V2 and V3 V2 11023a VV 14 Vhi Po = 0 Input 20 ∆Vti VV high Rp IV NPN open collector VV 11009a Po = Po nom Vo+ 3 3 11010a 4 4 2 2 VV low t 0 V3 tlow min VV VV high 3 tlow min 3 3 VV low t 0 th Vo 5.1 V 4.875 V th 1 1 2.0 V 0 t Vi [VDC] Vti + Vhi Vti 0 Input voltage failure Input voltage sag Switch-on cycle Switch-on cycle and subsequent input voltage failure Output voltage monitoring V2 VV VV high 4 VV low 4 t 0 V3 t VV VV high tlow min 2 3 1 3 4 2 3 VV low 0 t Vo 5.1 V 4.875 V 2.0 V 0 4 VME request: minimum 4 ms t low min = 40 – 200 ms, typ 80 ms VV level not defined at Vo < 2.0 V The V signal drops simultaneously with Vo, if the pull-up resistor R P is connected to Vo+; the V signal remains high if R P is connected to an external source. t Vi Vti + Vhi Vti 0 Output voltage failure t Fig. 42 Relationship between Vb, Vo, VD, Vo /Vo nom versus time tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 32 of 35 K Series 150 W DC-DC and AC-DC Converters K Standard H15 Connector Option K is available only for 5.1 V output models in order to avoid the connector with high current contacts. Efficiency is approx. 1.5% worse. B, B1, B2  Cooling Plate Where a cooling surface is available, we recommend the use of a cooling plate instead of the standard heat sink. The mounting system should ensure that the maximum case temperature TC max is not exceeded. The cooling capacity is calculated by (η see Model Selection): (100% – η) PLoss = –––––––––– • Vo • Io η For the dimensions of the cooling plates, see Mechanical Data. Option B2 is for customer-specific models with elongated case (for 220 mm DIN-rack depth). G RoHS RoHS-compliant for all six substances. tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 33 of 35 K Series 150 W DC-DC and AC-DC Converters Accessories A variety of electrical and mechanical accessories are available including: – Front panels for 19” DIN-rack: Schroff or Intermas, 12 TE / 3U; see fig. 43. – Mating H15 connectors with screw, solder, faston, or press-fit terminals, code key system and coding wedges HZZ00202-G; see fig. 44. – Pair of connector retention clips HZZ01209-G; see fig. 45 – Connector retention brackets HZZ01216-G; see fig. 46 – Cage clamp adapter HZZ00144-G; see fig. 47 – Different cable hoods for H15 connectors (fig. 48): - HZZ00141-G, screw version - HZZ00142-G, use with retention brackets HZZ01218-G - HZZ00143-G, metallic version providing fire protection – Chassis or wall-mounting plate K02 (HZZ01213-G) for models with option B1. Mating connector (HZZ00107-G) with screw terminals; see fig. 49 – DIN-rail mounting assembly HZZ0615-G (DMB-K/S); see fig. 50 – Additional external input and output filters – Different battery sensors S-KSMH... for using the converter as a battery charger. Different cell characteristics can be selected; see fig. 51, table 27, and Battery Charging / Temperature Sensors. For additional accessory product information, see the accessory data sheets listed with each product series or individual model at our web site. Fig. 44 Different mating connectors Fig. 43 Different front panels Fig.45 Connector retention clips to fasten the H15 connector to the rear plate; see fig. 24. HZZ01209-G consists of 2 clips. 20 to 30 Ncm Fig. 46 Connector retention brackets HZZ01216-G (CRB-HKMS) Fig. 47 Cage clamp adapter HZZ00144-G tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 34 of 35 K Series 150 W DC-DC and AC-DC Converters Fig. 48 Different cable hoods Fig. 49 Chassis- or wall-mounting plate HZZ01213-G (Mounting plate K02) European Projection 9.8 (0.4") 26 (1.02") 09125a L 56 (2.2") L = 2 m (standard length) other cable lengths on request Fig. 50 DIN-rail mounting assembly HZZ00615-G (DMB-K/S) adhesive tape Fig. 51 Battery temperature sensor Table 27: Battery temperature sensors Battery voltage nom. [V] Sensor type Cell voltage [V] Cell temp. coefficient [mV/K] Cable length [m] 12 S-KSMH12-2.27-30-2 2.27 –3.0 2 12 S-KSMH12-2.27-35-2 2.27 –3.5 2 24 S-KSMH24-2.27-30-2 2.27 –3.0 2 24 S-KSMH24-2.27-35-2 2.27 –3.5 2 24 S-KSMH24-2.31-35-0 2.31 –3.5 4.5 24 S-KSMH24-2.31-35-2 2.31 –3.5 2 24 S-KSMH24-2.35-35-2 2.35 –3.5 2 48 S-KSMH48-2.27-30-2 2.27 –3.0 2 48 S-KSMH48-2-27-35-2 2.27 –3.5 2 Note: Other temperature coefficients and cable lengths are available on request. NUCLEAR AND MEDICAL APPLICATIONS - These products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems. TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice. tech.support@psbel.com belfuse.com/power-solutions BCD20002-G Rev AG, 19-Jul-2018 © 2018 Bel Power Solutions & Protection Page 35 of 35
BK2660-9RG 价格&库存

很抱歉,暂时无法提供与“BK2660-9RG”相匹配的价格&库存,您可以联系我们找货

免费人工找货