W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
Convert Select
Features
138
5.43"
103
4.05"
114
4.49"
• RoHS lead-free-solder and lead-solder-exempted
products are available
• Rugged 35 mm DIN-rail snap-fit design
• Class I equipment
• Universal AC-input or DC-input (66 – 150 or 90 –
350 VDC)
with single stage conversion
• Power factor correction, harmonics IEC/EN 61000-3-2
• Virtually no inrush current
• Compliant with EMC standards EN IEC 61204-3,
EN 50121-3-2
• Emissions according to EN 55011 / 55032
• Very high efficiency; up to 89%
• Short-term output peak power capability, rectangular
current limiting characteristic
• Single or two independently regulated outputs with
12, 24, 36, or 48 V
• Outputs no-load, overload, and short-circuit proof
• PCBs coated by protective lacquer
• Very high reliability
Safety-approved to IEC/EN 62368-1 3rd edition and
UL/CSA 60950-1 2nd edition, UL 508 listed components
1
1
not EW
Table of Contents
Description............................................................................2
Model Selection.....................................................................2
Functional Description...........................................................4
Electrical Input Data..............................................................6
Electrical Output Data...........................................................9
Electromagnetic Compatibility (EMC)..................................14
Immunity to Environmental Conditions................................17
Mechanical Data..................................................................19
Safety and Installation Instructions......................................20
Description of Options.........................................................23
Accessories.........................................................................28
Battery Charging /Temperature Sensor...............................29
belfuse.com/power-solutions
BCD20020-G_AH
9 January 2023
W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
Description
The MELCHER Convert Select series represents a family of DIN-rail mountable DC-DC and AC-DC converters with power factor
correction. The converters have been designed according to the latest industry requirements and standards.
The converters are ideal for use in outdoor and other demanding applications to power building control systems, factory automation,
industrial controls, instrumentation, electromagnetic drives, fans, and other DC loads.
Different models are available with a single output or two independently regulated, electrically isolated outputs with 12, 24, 36, or 48 V.
Special models for battery charging are available. The EW models are particularly suitable for 110 V railway applications; they have
been designed in accordance with the railway standards EN 50155 and EN 50121.
Key features of the Convert Select line include power factor correction with low harmonic distortion, negligibly low inrush current, high
immunity to transients and surges, and low electromagnetic emissions. Internal protection circuits such as input over- and undervoltage
lockout, thermal protection, as well as output overvoltage protection by a second control loop ensure safe operation of the final system.
The outputs deliver an electrically-isolated Safety Extra Low Voltage (ES1) and low output noise. They are no-load, overload, and shortcircuit proof. The electronically controlled short-term peak power capability of up to 150% of the rated output power enables the front
end converters to deliver additional power to start-up motors or to safely operate subsequent circuit breakers. Built-in large sized output
capacitors absorb possible reverse energy, which may be caused by quick deceleration of electromagnetic drives connected directly to
the output. A green LED at the front cover displays the status of the output(s).
The Convert Select Series was designed according to all relevant international safety standards. The converters are approved by Nemko
and CSA and are UL 508 listed. Adequate clearances and creepage distances allow operation in pollution degree 3 environment (with
AC input). All board assemblies are coated with a protective lacquer.
The thermal concept allows operation at full load up to an ambient temperature of 60 °C (LW models) or 70 °C (EW models) in free air
without forced cooling. A rugged DIN snap-fit device allows easy and reliable fixing onto the various 35 mm DIN rail models. The converters
are fitted with cage clamp terminals which are easily accessible from the front. System connectors with screw terminals for use with preassembled harnesses, external adjustment of the output voltage as well as various auxiliary functions are available as options.
The letter E stands for improved EMC performance of LW models. Models without E are obsolete.
Model Selection
Table 1: Standard models
Output 1
Output 2
Output
Power
Operating Input
Voltage
Vi min – Vi max
Type
Designation6
Efficiency
Options3, 5
η min 8
[%]
Vo1 nom
[VDC]
Io1 nom
[A]
Vo2 nom1
[VDC]
Io2 nom
[A]
Po nom
[W]
12.35
7.5*
-
-
93*
LWR1301-6EG 3
83*
12.35
14*
-
-
173*
LWN1301-6EG
83*
24.7
5
-
-
124
LWR1601-6EG
87
3
24.7
10
-
-
247
LWN1601-6EG
87
R
37.05
3.3
-
-
123
LWR1701-6EG 3
88
D1, D2, D5
37.05
6.6
-
-
245
LWN1701-6EG 3
88
M1, M2
49.4
2.5
-
-
124
LWR1801-6EG
88
F
49.4
5
-
-
247
88
K2
12.35
7*
12.35
7*
173*
LWN2320-6EG
83*
non-G
24.7
5
24.7
5
247
LWN2660-6EG
87
37.05
3.3
37.05
3.3
245
LWN2770-6EG3
89
49.4
2.5
49.4
2.5
247
LWN2880-6EG
89
24.7
5
-
-
120
EWR1601-0G 9
87
24.7
5
24.7
5
240
EWN2660-0G
87
85 2 – 264 VAC,
47 – 63 Hz 4,
90 2 – 350 VDC 7
66 – 150 VDC
LWN1801-6EG
9
3
R, M1, M2, Q,
K2 , non-G
* Version 106 or higher
1
R-input not connected.
2
For derating at low input voltage see section Output Power Derating.
3
For minimum quantity and lead times contact the Company.
4
The converters have been tested up to 440 Hz; operation at 16 2/3 Hz is also possible, but the output ripple is slightly higher. For questions
when operating at frequencies 63 Hz, consult the Company.
5
On double-output models the options R, M2, D1, D2, D5 are related to the second output only.
6
Improved EMC performance for LWN/LWR models.
7
Vi ≤ 250 VDC for models with option F
8
Min. efficiency at Vi nom, Io nom, and TA = 25 °C. Typical values are approx. 2% better.
9
EWN and EWR models are designed for railway applications according to EN 50155 and EN 50121.
Not for new designs (NFND) or End of Life (EOL).
Asia-Pacific
Europe, Middle East
North America
+86 755 298 85888
+353 61 49 8941
+1 866 513 2839
© 2023 Bel Fuse Inc.
BCD20020-G_AH
9 January 2023
Page 2 of 29
W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
Table 2: Battery charger models (M1 included)
Output Voltage
VBat
[VDC]
Vo safe1
[VDC]
Vo max
[VDC]
Vo nom5
[VDC]
12
12.84 1
14.65
13.8
24
25.68 1
29.3
27.3
3
4
5
6
7
8
1
2
Nominal Output Values
36
38.52 1
43.95
40.88
48
51.36 1
58.6
54.5
Operating Input
Voltage
Type
Designation 6
Efficiency
η min 8
[%]
Io nom 5
[A]
Po nom 5
[W]
7.5*
104*
LWR1140-6EM1G 3
83*
14*
194*
LWN1140-6EM1G 3
85*
LWR1240-6EM1G
86
4.2
115
8.4
230
2.8
115
5.6
230
Vi min – Vi max
85 2 – 264 VAC,
47 – 63 Hz 4,
90 2 – 350 VDC 7
Options 3
LWN1240-6EM1G
LWR1840-6EM1G
85
F
3
86
K2
LWN1840-6EM1G3
86
non-G
2.1
115
LWR1740-6EM1G
86
4.2
230
LWN1740-6EM1G
87
Setting voltage (typ.) with open R-input
For derating at low input voltage, see section Output Power Derating.
For minimum quantity and lead times, contact the Company.
The converters have been tested up to 440 Hz; for operating frequency 63 Hz consult the Company.
Nominal output figures, calculated with a cell voltage of 2.27 V at 20 °C.
Improved EMC performance.
Vi ≤ 250 VDC for models with option F.
Min. efficiency at Vi nom, Vo nom, Io nom, and TA = 25 °C. Typical values are approx. 2% better.
Not for new designs (NFND) or End of Life (EOL).
Part Number Description
L W N 2 6 60 -6 E D1 F K2 G
Input voltage range.............................................................E, L
Series....................................................................................W
Nominal output power
125 W................................................................ R
250 W................................................................ N
Number of outputs.............................................................. 1, 2
Type specification.....................................................000 – 999
Operational ambient temperature range TA
–40 to 60 °C......................................................-6
EW or customer-specific..............................-0, -5
Improved EMC performance..................................................E
Options
Output voltage control input 1............................ R
Save data signal 1.............................. D1, D2, D5
Multiple functions via D-SUB connector 1.. M1, M2
Built-in second fuse, input diode................... F, Q
System connector............................................K2
RoHS compliant for all six substances 2 ........... G
1
2
Only one of these options is possible.
Models without the suffix G (non-G option) do not use lead-free solder.
Note: The sequence of options must follow the order above.
Not for new designs (NFND) or End of Life (EOL).
Example:
LWN2660-6ED1FG: Power factor corrected AC-DC converter, operating input voltage range 85 – 264 VAC,
2 electrically isolated and individually regulated outputs, each providing 24.7 V, 5 A, improved EMC performance, options D1, F and
RoHS compatible for all 6 substances.
tech.support@psbel.com
belfuse.com/power-solutions
© 2023 Bel Fuse Inc.
BCD20020-G_AH
9 January 2023
Page 3 of 29
W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
Product Marking
Basic type designation, applicable safety approval and recognition marks, CE mark, warnings, pin designation, company logo.
Specific type designation, input voltage range, nominal output voltages and currents, degree of protection, batch number, serial
number and data code including production site, version, and date of production.
Functional Description
The W Series converters are primary controlled AC-DC or DC-DC flyback converters with a constant switching frequency of 130 kHz.
The power-factor-corrected single-step conversion of the input voltage to a low output voltage results in extremely high efficiency.
Depending upon the output power, the converters are fitted with one (125 W) or two (250 W) powertrains. Models with two powertrains
have one or two outputs. Double-output models exhibit individually regulated powertrains.
The input voltage is fed via fuse, filter, and rectifier to the main transformer, designed in planar technique. The input filter with very
small input capacitance generates virtually no inrush current. An input transient suppressor protects the converter against high
voltage peaks and surges. Input over- and undervoltage lockout as well as input current limitation protect the converter from operation
outside of its specification. The input voltage waveform is sensed by the primary control logic to allow active power factor correction,
forcing the input current to follow the input voltage waveform.
The secondary side of the main transformer supplies via the rectifier diode a large electrolytic output storage capacitor providing
for the hold-up time. Double-output models exhibit an individual control logic each. The output voltage and the output current are
measured and fed back to the primary control logic via an optocoupler. A second control loop monitors the output voltage. It disables
the output in the case of a failure in the control logic and limits the output voltage.
Built-in temperature sensors monitor the internal temperature of each powertrain. If the temperature exceeds the limit, the converter
reduces the output power continuously to keep the temperature below its limit. A green LED on the front cover confirms the presence
of the output voltage(s).
The R input (option R, M1, or M2) allows for external adjustment of the output voltage by means of a resistor or an external voltage
source. An external sensor can be connected to the R input and allows for temperature-controlled battery charging (see Accessories).
03103b
2
1
2nd fuse
(option F)
1
EW models
have a link or a
decoupling diode
(opt. Q) in the
Vi+ line.
2 Vo+
+
Shunt
Shunt
Output filter
N
Vi–
Cy
Input filter
Input filter
3
Rectifier1
L
Vi+
Fuse
3
6
CY
4 Vo–
Cy
Cy
7
5
8
Control circuit
including
PFC and
input OVP/UVP
CY
Vo/Io control
9
1
2nd control loop (ES1)
11
10 AUX
Fig. 1
Single-output converters (125 W).
Asia-Pacific
Europe, Middle East
North America
+86 755 298 85888
+353 61 49 8941
+1 866 513 2839
© 2023 Bel Fuse Inc.
BCD20020-G_AH
9 January 2023
Page 4 of 29
W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
03104b
1
have a link or a
decoupling diode
(opt. Q) in the
Vi+ line.
2
3
Vo1+
4 Vo1–
5
Vo/Io control
2nd control loop
+
Shunt
Shunt
Cy
Cy
Cy
Control circuit
including
PFC and
input OVP/UVP
Cy
Cy
Cy
Cy
Control circuit
including
PFC and
input OVP/UVP
1 EW models
Shunt
Shunt
Output filter
Input filter
+
Output filter
2nd fuse
(option F)
Input filter
2
Cy
Rectifier1
N
Vi–
3
Input filter
L
Vi+
Fuse
Vo/Io control
6
7
8
9
Vo2+
Vo2–
1
2nd control loop
11
10 AUX
Fig. 2
250 W converters. The figure shows a double-output model.
For the pinout of 250 W single-output models, see fig. 1 or table 13.
tech.support@psbel.com
belfuse.com/power-solutions
© 2023 Bel Fuse Inc.
BCD20020-G_AH
9 January 2023
Page 5 of 29
W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
Electrical Input Data
General conditions:
TA = 25 °C, unless TC is specified.
Table 4a: Input data of LW models
LWR
Input
LWN
AC Input
Characteristics
Vi
Operating input voltage
range
Vi nom
Rated input voltage
range
fi
Rated input frequency1
Ii
Input current
P i0
Conditions
Io = 0 – Io nom
Tc – Tc max
min
typ
85 2
DC Input
max
min
264
902
typ
AC Input
max
min
3504
85 2
typ
DC Input
max
min
264
902
typ
Unit
max
3504
V
100
(230)
240
220
100
(230)
240
220
Hz
50 – 60
-
50 – 60
-
I o nom, V i = Vi nom
0.63
0.65
1.25
1.3
I o nom, V i = Vi min
1.75
1.67
3.5
3.3
No-load input power
Vi min – Vi max
1.2
0.9
1.3
1
I inrush
Inrush current
V i max , t > 0.1 ms
3
3
5
5
A
Ci
Input capacitance
5
5
6
6
µF
PF
Power factor
V i nom = 230 V, Io nom
Conducted input RFI
EN 55011 / 55032
V i nom, Io nom
Vi RFI
fswitch
Radiated input RFI
0.86 5
-
W
-
A, B
A, B
A, B
A, B3
A
A
A
A
130
130
130
130
3
Switching frequency
0.86 5
A
3
3
kHz
For operating frequencies 63 Hz consult the Company. The converters have been tested up to 440 Hz.
Output power derating at low input voltage and/or high case temperature TC (see Output power derating).
3
Models with feature E (type test with LWN1701-6EG) - peak only.
4
Vi ≤ 250 VDC for models with option F.
5
Models with 12 V output: ≥0.70 for LWR, ≥0.75 for LWN
1
2
Table 4b: Input data of EW models
Input
Characteristics
Vi
Operating input voltage
range
Vi nom
Rated input voltage
range
VUVT
Undervoltage trigger
Ii
Input current
P i0
Conditions
Io = 0 – Io nom
Tc – Tc max
min
EWR
EWN
DC Input
DC Input
typ
66
max
min
150 1
66
110
typ
54
60
54
60
2.5
I o nom, V i = 66 V
2.2
4.4
No-load input power
Vi min – Vi max
0.8
1.3
I inrush
Inrush current
V i max , t > 0.1 ms
Ci
Input capacitance
fswitch
1
Radiated input RFI
EN 55011 / 55032
V i nom, Io nom
Switching frequency
V
110
1.25
Conducted input RFI
max
150 1
I o nom, V i = Vi nom
Vi RFI
Unit
A
W
6
12
A
2.5
4.5
µF
A
A
A
A
130
130
kHz
Vi ≤ 168 VDC for 3 s. Overvoltage trigger adjusted to 170 – 182 V.
Asia-Pacific
Europe, Middle East
North America
+86 755 298 85888
+353 61 49 8941
+1 866 513 2839
© 2023 Bel Fuse Inc.
BCD20020-G_AH
9 January 2023
Page 6 of 29
W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
Output Power Derating
The output power of LW models must be decreased at low input voltage and/or powertrain temperature above 125 °C.
The powertrain temperature depends on the output power, the input voltage, and the cooling method. At low input voltage the losses
increase. At the maximum specified environment temperature TA free air convection cooling might be insufficient approaching
maximum ambient conditions. As a result, the output power has to be reduced according to the tables below.
Note: The measurements have been made by the approval boards with free air convection cooling according to 62368-1 3rd edition specified
ambient temperature TA and with the converter built in a cardboard box according to UL 508 and a specified temperature outside the box Tout.
The tables give a correlation between TA or Tout and the case temperature TC (measuring point TC see Mechanical Data). For models not
specified, please contact the Company.
EW models need no derating.
Table 5a: Po derating according to UL 60950-1 2nd edition at TA = 60 °C, or according to UL 508 at Tout = 50 °C
Model
Po nom
TC max
[W]
[°C]
Derate below
Vi [VAC]
derate by
Vi [VDC]
[W/V]
LWR1601-6E
124
80
108
98
-0.67
LWN1601/2660-6E
247
89
125
115
-1.25
LWR1701-6E
123
80
125
115
-1.25
LWN1701-6E
245
90
125
115
-1.25
LWR1801-6E
124
80
98
93
-0.67
LWN1801/2880-6E
247
89
125
115
-1.25
Table 5b: Po derating according to UL 60950-1 2nd edition at TA = 50 °C, or according to UL 508 at Tout = 40 °C
Model
Po nom
LWR1601-6E
124
76
98
LWN1601/2660-6E
247
86
LWR1801-6E
124
76
LWN1801/2880-6E
247
86
[W]
Derate below
TC max
[°C]
Vi [VAC]
derate by
Vi [VDC]
[W/V]
no derating
-0.67
115
105
-1.25
93
no derating
-0.67
105
95
-1.25
Input Fuse and Protection
A fast-blow fuse ( Schurter F 6.3A, 5 × 20 mm), protected by a sleeve, is connected to the input L or Vi+. EW models have a
smaller fuse (250 V, 4 × 9 mm, SOC NT3 6.3A V009, UL-recognized E-39265). For DC input voltages above 250 V consult the
Installation Instructions.
Converters with option F have large fuses (F6.3A, 5 × 20 mm). The DC input voltage for converters with option F is limited to 250 V.
A VDR and a symmetrical input filter form an effective protection against input transients.
An under- and an overvoltage lockout protect the converter, which is disabled below Vi min and above Vi max by an internally
generated inhibit signal.
The built-in bridge rectifier (LW models) provides reverse polarity protection at the input if operated from DC.
EW models are protected by the (blowing) input fuse in connection with the body diode of the main transistor. Option Q offers a
serial diode, but this reduces the efficiency by approx. 1%.
tech.support@psbel.com
belfuse.com/power-solutions
© 2023 Bel Fuse Inc.
BCD20020-G_AH
9 January 2023
Page 7 of 29
W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
Efficiency
04071
90
80
70
60
50
40
30
20
10
0
0
0.2
0.4
Vi = 125 VAC
Io
Io nom
0.6
0.8
1
Vi = 230 VAC
Fig. 3
Efficiency versus load (LWN2660-6)
Power Factor, Harmonics
All converters feature active power factor correction.
PF
1
mA/W
4
LWN1701-6E
04070b
04069a
0.9
0.8
0.7
Limit class D according
to IEC/EN 61000-3-2
3
0.6
0.5
2
0.4
0.3
1
0.2
0.1
0
0
3
5
7
9
11
13 Harm.
Fig. 4
Harmonic currents at input current, measured at Vi = 230 VAC,
Io = Io nom (LWN1701-6E).
0
0.2
0.4
0.6
0.8
1
Io
Io nom
Vi = 125 VAC
Vi = 230 VAC
Fig. 5
Power factor versus load (LWN2660-6)
Asia-Pacific
Europe, Middle East
North America
+86 755 298 85888
+353 61 49 8941
+1 866 513 2839
© 2023 Bel Fuse Inc.
BCD20020-G_AH
9 January 2023
Page 8 of 29
W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
Electrical Output Data
Table 6a: Output data of 125 Watt standard models. General conditions: TA = 25 °C, unless TA is specified; R input open-circuit
Model
LWR1301
Characteristics
Conditions
min
V o nom
Output voltage nominal 1
V i nom, Io nom
V o worst
Output voltage range of
tolerance
Vi min – Vi max,
Io = (0.1 – 1) Io nom
Vo L
Overvoltage protection
Po nom
Nominal output power
Io nom
Output current nominal
Io L
Output current limit
Iop
Output current boost 4
vo
Ripple & noise
max
12.27
12.35
12.0
14.25*
V i = 100 V – V i max
V i min – Vi max
typ. 1 s
LWR1701
Unit
LWR1801
min
typ
max
min
typ
max
min
typ
max
24.25
24.7
25.2
36.37
37.05
37.8
48.5
49.4
50.4
12.43
24.55
24.7
24.85
36.82
37.05
37.28
49.1
49.4
49.7
12.9
24.0
25.8
36.0
38.7
48.0
15*
28.5
30
42.75
45
57
–
*
3
typ
EWR / LWR1601
V
51.6
60
93*
124
123
124
W
7.5*
5.0
3.3
2.5
A
7.58
8.6
5.1
5.7
11.3
7.5
3.37
3.8
2.53
5.0
2.9
3.75
EWR
V i = 110 VDC, I o nom
–
500
–
–
LWR
V i = 230 VAC,
fi = 50 Hz, Io nom
100
100
100
100
11002
11002
12002
12002
mVpp
∆Vo u
Static line regulation
100 V – V i max, I o nom
±0.08
±0.1
±0.15
±0.15
∆Vo I
Static load regulation
(droop)
Vi nom
I o = (0.1 – 1) Io nom
–0.2
–0.4
–0.6
–0.8
Dynamic load regulation
Voltage deviation
Recovery time
Vi nom ,
I o = (0.5 ↔ 1) Io nom
±1
±1.2
±1.5
±1.8
40
40
80
80
ms
vod
V
Temperature coefficient
TC min – TC max
±0.02
±0.02
±0.02
±0.02
%/K
tor
Start-up time
Vi = 0 → Vi nom,Io nom
700
700
700
700
ms
t oh min
Hold-up time
Io nom,
Vo nom → 0.8 Vo nom
10
6 / 15
20
25
α vo
* Converters with feature E and version ≥ 106
1
Setting voltage with open R-input
2
Superimposed low frequency ripple at 2 • fi
3
Rectangular current limit characteristic (continuous operation)
4
Short-term peak power capability 150% of Po nom for approx. 1 s
tech.support@psbel.com
belfuse.com/power-solutions
© 2023 Bel Fuse Inc.
BCD20020-G_AH
9 January 2023
Page 9 of 29
W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
Table 6b: Output data of 250 Watt single-output standard models. General conditions as in table 6a
Model
LWN1301
Characteristics
V o nom
Conditions
Output voltage nominal 1
min
Output voltage range of
tolerance
Vo L
Overvoltage protection
Po nom
Nominal output power
Io nom
Output current nominal
max
Vi min – Vi max,
Io = (0.1 – 1) Io nom
12.27
12.35
12.0
14.25*
V i = 100 V – V i max
LWN1701
min
typ
max
min
typ
max
min
typ
24.7
25.2
36.37
37.05
37.8
48.5
49.4
50.4
12.43
24.55
24.7
24.85
36.82
37.05
37.28
49.1
49.4
49.7
12.9
24.0
25.8
36.0
38.7
48.0
15*
28.5
30
42.75
45
57
173*
247
14*
245
10
max
60
247
6.6
A
V i min – Vi max
Iop
Output current boost 4
typ. 1 s
21
15
10
7.5
vo
Ripple & noise
V i = 230 VAC,
fi = 50 Hz, Io nom
100
100
100
100
2
10.1
11.4
W
5.0
Output current limit 3
16*
6.7
7.6
V
51.6
Io L
14.1*
Unit
LWN1801
24.25
–
*
V o worst
typ
V i nom, Io nom
LWN1601
5.1
5.7
mVpp
1100
1100
1200
1200
∆Vo u
Static line regulation
100 V – V i max, I o nom
±0.08
±0.1
±0.15
±0.15
∆Vo I
Static load regulation
(droop)
Vi nom,
I o = (0.1 – 1)Io nom
–0.2
–0.4
–0.6
–0.8
Dynamic load regulation
Voltage deviation
Recovery time
Vi nom ,
I o = (0.5 ↔ 1) Io nom
±1
±1.2
±1.5
±1.8
40
40
80
80
ms
vod
2
2
2
V
Temperature coefficient
TC min – TC max
±0.02
±0.02
±0.02
±0.02
%/K
tor
Start-up time
Vi = 0 → Vi nom,Io nom
700
700
700
700
ms
t oh min
Hold-up time
Io nom,
Vo nom → 0.8 Vo nom
10
15
20
25
α vo
Table 6c: Output data of 250 Watt double-output standard models. General conditions as in table 6a
Model
LWN2320
Characteristics
Conditions
min
V o nom
Output voltage nominal 1
V i nom, Io nom
*
12.27
V o worst
Output voltage range of
tolerance
Vi min – Vi max,
Io = (0.1 – 1) Io nom
12.0
Vo L
Overvoltage protection
Po nom
Nominal output power
Io nom
Output current nominal
typ
max
12.35
14.25*
V i = 100 V – V i max
typ
max
min
typ
max
min
typ
max
24.7
25.2
36.37
37.05
37.8
48.5
49.4
50.4
12.43
24.55
24.7
24.85
36.82
37.05
37.28
49.1
49.4
49.7
12.9
24.0
25.8
36.0
38.7
48.0
15*
28.5
30
42.75
45
57
173*
Output current limit
Iop
Output current boost 4
typ. 1 s
vo
Ripple & noise
V i = 230 VAC,
fi = 50 Hz, Io nom
1100
7.1*
Unit
LWN2880
min
247
2 x 7*
V i min – Vi max
LWN2770
24.25
–
Io L
3
EWN/LWN2660
245
2x5
8.0*
5.1
51.6
60
247
2 x 3.3
5.7
3.37
W
2 x 2.5
3.8
2.53
2 x 7.5
2 x 5.0
2 x 3.75
100
100 5
100
100
2
1100
1200
±0.08
±0.1
±0.15
±0.15
2
A
2.9
2 x 10.5*
2
V
1200
mVpp
2
∆Vo u
Static line regulation
100 V – V i max, I o nom
∆Vo I
Static load regulation
(droop)
Vi nom,
I o = (0.1 – 1) Io nom
–0.2
–0.4
–0.6
–0.8
Dynamic load regulation
Voltage deviation
Recovery time
Vi nom ,
I o = (0.5 ↔ 1) Io nom
±1
±1.2
±1.5
±1.8
40
40
80
80
ms
Temperature coefficient
TC min – TC max
±0.02
±0.02
±0.02
±0.02
%/K
tor
Start-up time
Vi = 0 → Vi nom,Io nom
700
700
700
700
ms
t oh min
Hold-up time
Io nom,
Vo nom → 0.8 Vo nom
10
6 / 15
20
25
vod
α vo
* Converters with feature E and version ≥ 106
1
Setting voltage with open R-input
2
Superimposed low frequency ripple at 2 • fi
V
Rectangular current limit characteristic (continuous operation)
Short-term peak power capability 150% of Po nom for approx. 1 s
5
EWN2660: 500 mV @ Vi = 110 VDC
3
4
Asia-Pacific
Europe, Middle East
North America
+86 755 298 85888
+353 61 49 8941
+1 866 513 2839
© 2023 Bel Fuse Inc.
BCD20020-G_AH
9 January 2023
Page 10 of 29
W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
Table 7a: Output data of 125 Watt battery charger models. General conditions: TA = 25 °C, unless TA is specified; R input left
open-circuit, unless otherwise specified
Model
LWR1140-6EM1
Characteristics
Conditions
Output setting voltage 1
V i nom, Io nom
V Bat
Output voltage (max)
controlled by R input
Vi min – Vi max,
Io = (0.1 – 1) Io nom
Vo L
Overvoltage protection
Po nom
Nominal output power
Io nom
Output current nominal
V o safe
LWR1240-6EM1
LWR1840-6EM1
LWR1740-6EM1
min
typ
max
min
typ
max
min
typ
max
min
typ
max
12.25
12.84
13.15
24.5
25.68
26.3
36.75
38.52
39.45
49
51.36
52.6
14.65
29.3
15.45*
V i = 100 V – V i max
16.25*
43.95
30.9
32.5
46.35
48.75
61.8
65
104*
115
115
115
W
7.5*
4.2
2.8
2.1
A
Output current limit
Iop
Output current boost 4
typ. 1 s
11.3*
vo
Ripple & noise
V i = 230 VAC,
fi = 50 Hz, Io nom
100
100
100
100
11002
11002
12002
12002
V i min – Vi max
V
58.6
Io L
3
Unit
7.58*
8.6*
4.24
4.8
2.9
3.3
6.3
2.2
4.2
2.5
3.2
mVpp
∆Vo u
Static line regulation
100 V – V i max, I o nom
±0.08
±0.1
±0.15
±0.15
∆Vo I
Static load regulation
(droop)
Vi nom,
I o = (0.1 – 1)Io nom
–0.2
–0.4
–0.6
–0.8
vod
Dynamic load regulation
Voltage deviation
Recovery time
Vi nom ,
I o = (0.5 ↔ 1) Io nom
±1.2
±1.2
±1.6
±1.9
40
40
80
80
ms
α vo
Temperature coefficient
TC min – TC max
±0.02
±0.02
±0.02
±0.02
%/K
Start-up time
Vi = 0 → Vi nom,Io nom
700
700
700
700
ms
LWN1840-6EM1
LWN1740-6EM1
Unit
tor
V
Table 7b: Output data of 250 Watt battery charger models. General conditions as in table 7a
Model
LWN1140-6EM1
Characteristics
Conditions
Output setting voltage 1
V i nom, Io nom
V Bat
Output voltage (max)
controlled by R input
Vi min – Vi max,
Io = (0.1 – 1) Io nom
V o safe
Vo L
Overvoltage protection
Po nom
Nominal output power
Io nom
Output current nominal
LWN1240-6EM1
min
typ
max
min
typ
max
min
typ
max
min
typ
max
12.25
12.84
13.15
24.5
25.68
26.3
36.75
38.52
39.45
49
51.36
52.6
14.65
15.45*
V i = 100 V – V i max
29.3
16.25*
30.9
194*
43.95
32.5
46.35
230
14*
58.6
48.75
61.8
230
8.4
65
230
5.6
Output current limit 3
V i min – Vi max
Iop
Output current boost 4
typ. 1 s
21*
12.6
8.4
6.3
vo
Ripple & noise
V i = 230 VAC,
fi = 50 Hz, Io nom
100
100
100
100
2
16.0*
8.48
9.6
W
4.2
Io L
14.1*
5.69
V
6.4
A
4.3
5.0
mVpp
1100
1100
1200
1200
∆Vo u
Static line regulation
100 V – V i max, I o nom
±0.08
±0.1
±0.15
±0.15
∆Vo I
Static load regulation
(droop)
Vi nom,
I o = (0.1 – 1)Io nom
–0.2
–0.4
–0.6
–0.8
Dynamic load regulation
Voltage deviation
Recovery time
Vi nom ,
I o = (0.5 ↔ 1) Io nom
±1.2
±1.2
±1.6
±1.9
40
40
80
80
ms
Temperature coefficient
TC min – TC max
±0.02
±0.02
±0.02
±0.02
%/K
Start-up time
Vi = 0 → Vi nom,Io nom
700
700
700
700
ms
vod
α vo
tor
2
2
2
V
* Converters with feature E and version ≥ 106
1
Setting voltage with open R-input = Vo safe
2
Superimposed low frequency ripple at 2 • f i
3
Rectangular current limit characteristic (continuous operation)
4
Short-term peak power capability 150% of Po nom for approx. 1 s
tech.support@psbel.com
belfuse.com/power-solutions
© 2023 Bel Fuse Inc.
BCD20020-G_AH
9 January 2023
Page 11 of 29
W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
Parallel Operation
Double-output models exhibit an independent control logic each. Both outputs can be connected in parallel, provided that options
S (included in M1) and R are not used, since they influence only the 2 nd output. The two power trains share the current due to their
output voltage droop characteristic.
Up to 3 converters with the same output voltage may be operated in parallel. It is possible to parallel W Series with X Series
converters.
Reasonable current sharing is achieved by the droop characteristic. Correct mode of operation is highly dependent upon the wiring
of the converters and the impedance of these wires. Use wires with equal length and equal cross sections of min. 1.5 mm 2. The
best results for parallel operation can be achieved with the wiring shown in fig. 6.
Parallel operation of single-output models using the option R (output voltage adjust) is possible, but not recommended. Refer to
fig. 6; the connections between the pins 8 and 9 (both Vo–) should be as short as possible.
Note: Parallel operation is not possible, if a temperature sensor is connected, as the sensor eliminates the output voltage
droop.
Note: For ORing diodes, we recommend to use Schottky diodes, mounted on a common heatsink to avoid thermal run
away (or the use of double diodes).
11054b
AUX 10
Vi
Vo- 9
Vo- 8
Vo+ 7
VR
Vo+ 6
Vo- 5
Vo- 4
Vo+ 3
Vo+ 2
AUX 10
Vi
Vo- 9
Vo- 8
Vo+ 7
+
Load
_
Vo+ 6
Vo- 5
Vo- 4
Vo+ 3
Vo+ 2
AUX 10
Vi
Vo- 9
Vo- 8
Vo+ 7
Vo+ 6
Vo- 5
Vo- 4
Vo+ 3
Vo+ 2
Additional wiring for output currents Io ≥ 10 A
Additional wiring, if using the R-input
Fig. 6
Wiring for single-output converters connected in parallel.
Additional wiring for higher output currents and with the use of option R is shown.
Series Connection
Series connection of several outputs up to 150 V is possible. Exceeding an output voltage of 60 V, the output is not ES1.
Asia-Pacific
Europe, Middle East
North America
+86 755 298 85888
+353 61 49 8941
+1 866 513 2839
© 2023 Bel Fuse Inc.
BCD20020-G_AH
9 January 2023
Page 12 of 29
W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
Output Characteristic and Protection
The output characteristic, individual for each powertrain, is rectangular with a droop to ease parallel operation; see fig. 7.
However, a 50% higher output current is possible for a short time, such allowing start-up of loads or charging of capacitors; see fig. 8.
Each output is independently protected against internal overvoltage by means of a second control loop. When the output voltage
exceeds Vo L, the respective output is disabled.
Vo /Vo nom
Io / Io nom
1.6
05181a
1.0
1.4
0.8
1.2
0.6
1.0
0.4
0.8
0.2
0
05194b
0
0.4
0.2
0.6
0.8
1.0
1.2
Io /Io nom
Fig. 7
Vo versus Io (single-output model, typical values).
0.6
- 0.5
0
1
0.5
1.5
2
2.5 s
Fig. 8
Short term peak power characteristic: overcurrent versus
time (typical values).
Overtemperature Protection
A built-in temperature sensor protects each powertrain is independently protected against overtemperature. When a certain
temperature is reached, the concerned powertrain reduces its output power continuously.
Thermal Considerations
The thermal conditions are influenced by input voltage, output current, airflow, and temperature of surrounding components.
TA max is therefore, contrary to TC max, an indicative value only.
Caution: The installer must ensure that under all operating conditions TC remains within the limits stated in the table
Temperature specifications.
Note: Sufficient forced cooling allows TA to be higher than TA max provided that TC max is not exceeded. It is recommended that continuous
operation under worst case conditions of the following 3 parameters be avoided: Minimum input voltage, maximum output power, and
maximum temperature.
Battery Charging and Temperature Sensor
The battery charger models exhibit the option M1 and have been designed to charge lead-acid batteries. The R-input allows for
connecting a battery-specific temperature sensor, which provides temperature controlled adjust of the trickle charge voltage.
This optimizes charging as well as battery life time. Depending upon the cell voltage and the temperature coefficient of the
battery, different sensor types are available; see Accessories.
Note: Parallel operation is not possible, if the temperature sensor is connected to the paralleled outputs Vo+, as the sensor eliminates the
output voltage droop.
However, it is possible to insert bleeding resistors in the Vo+ output lines of each converter in order to create a droop of approx. 0.6 V @
Io nom for 24 V outputs (1.2 V @ Io nom for 48V outputs), but this creates considerable power losses.
Cell voltage [V]
2.45
06139b
Input
2.40
Power
supply
03099d
Vo+
Vo–
2.35
Load
R
2.30
2.25
+
–
2.20
2.15 Vo safe
2.10
–20
–10
0
10
VC = 2.27 V, –3 mV/K
VC = 2.23 V, –3 mV/K
20
30
40
50 °C
Temperature sensor
VC = 2.27 V, –3.5 mV/K
VC = 2.23 V, –3.5 mV/K
Fig. 9
Trickle charge voltage versus temperature for different temperature coefficients (Vo safe with disconnected sensor)
+
Battery
Fig. 10
Schematic circuit diagram of a system with battery backup
and temperature-controlled charging.
tech.support@psbel.com
belfuse.com/power-solutions
© 2023 Bel Fuse Inc.
BCD20020-G_AH
9 January 2023
Page 13 of 29
W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
Electromagnetic Compatibility (EMC)
Compliant with EMC standards EN IEC 61204-3 / EN 50121-3-2.
Electromagnetic Immunity
The W Series has been successfully tested to the following specifications:
Table 8: Electromagnetic immunity (type tests)
Phenomenon
Standard
Level
Coupling mode 1
Value
applied
Waveform
Source
imped.
Test procedure
In
oper.
Perf.
crit. 2
Electrostatic
discharge
(to case)
IEC/EN
61000-4-2
43
contact discharge
8000 Vp
1/50 ns
330 Ω
A
15000 Vp
10 positive and
10 negative
discharges
yes
air discharge
Electromagnetic
field RF
IEC/EN
61000-4-3
34
antenna
10 V/m 4
AM 80%,
1 kHz sinusoidal
N/A
80 – 1000 MHz
yes
A
ENV 50204
3
antenna
10 V/m
N/A
900 ± 5 Mhz
yes
A
IEC/EN
61000-4-3
(EW models)
5
antenna
20 V/m
AM 80%,
1 kHz sinusoidal
N/A
80 – 1000 MHz
yes
A
IEC/EN
61000-4-4
3
capacitive, o/c
±2000 Vp
50 Ω
A
±i/c, +i/–i
direct coupling
±2000 Vp 6
60 s positive
60 s negative
transients per
coupling mode
yes
36
bursts of 5/50 ns
5 kHz over 15 ms;
burst period: 300 ms
IEC/EN
61000-4-5
37
+i/c, – i/c
±2000 Vp
1.2 / 50 µs
12 Ω
yes
B
+i/– i
±1000 Vp
1.2 / 50 µs
2Ω
5 pos. & 5 neg.
surges per
coupling mode
Conducted
disturbances
IEC/EN
61000-4-6
38
i, o, signal wires
10 VAC
(140 dBµV)
AM 80%
1 kHz
150 Ω
0.15 – 80 MHz
yes
A
Power frequency
magnetic field
IEC/EN
61000-4-8
–
–
100 A/m
50 and 60 Hz
yes
A
Surges
(EW models)
IEC/EN
50155:2001
wave
A9
+i/c, – i/c
1800 Vp
yes
A
Electrical fast
transients/burst
Surges
10 V/m
50% duty cycle,
200 Hz repet. frequ.
1400 – 2100 MHz
5 V/m
2100 – 2500 MHz
5/50 µs
–
5Ω
x, y, and z axis
5 pos. and 5
neg. pulses
i = input, o = output, c = case.
A = Normal operation, no deviation from specifications, B = Normal operation, temporary loss of function or deviation from specs. possible.
3
Exceeds EN 50121-3-2:2006 table 9.3 and EN 50121-4:2006 table 1.4.
4
EW models: 20 V/m, which corresponds to EN 50121-3-2:2006 table 9.1 and exceeds EN 50121-4:2006 table 1.1.
5
EW models only. Corresponds to EN 50121-3-2:2006 table 9.2 and EN 50121-4:2006 table 1.2 (compliance with digital mobile phones).
6
Corresponds to EN 50121-3-2:2006 table 7.2 and EN 50121-4:2006 table 2.2.
7
Complies with EN 50121-3-2:2006 table 7.3 and EN 50121-4:2006 table 2.3.
8
Corresponds to EN 50121-3-2:2006 table 8.1 and EN 50121-4:2006 table 3.1 (radio frequency common mode).
9
Corresponds to EN 50121-3-2:2000. Covers EN 50155:1995, RIA12, direct transients, waveform D (EW models only).
1
2
Asia-Pacific
Europe, Middle East
North America
+86 755 298 85888
+353 61 49 8941
+1 866 513 2839
© 2023 Bel Fuse Inc.
BCD20020-G_AH
9 January 2023
Page 14 of 29
W Series
125, 250 Watt AC-DC and DC-DC DIN-Rail Converters
Emissions
Table 9: Electromagnetic emissions for LW models with feature E: (type tests with LWN1701-6EG)
Phenomenon
Standards
Conditions
Results
Harmonics
EN 61000-3-2:2006
Vi = 230 V, Vo nom, Io nom
Class A, D
Voltage fluctuation and flicker
EN 61000-3-3 + A2:2005
Vi = 230 V, Vo nom, Io nom
Complied
Note: An external toroid ferrite core across the input lines reduces the emissions considerably.
Fig. 11a
Conducted emissions of LW models with feature E:
Disturbances at the phase input according to EN 55032,
measured at Vi nom and Io nom. (LWN1701-6EG)
PMM 8000 PLUS
dBµV
Fig. 11b
Radiated emissions measured according to EN 55032 for
LW models with feature E
(LWN1701-6EG), antenna 3 m distance, horizontal polarized)
dBµV/m
50
Limit: 61204bqp Detector: Peak, conducted Vi+, 6.6.06
EWN2660-0 U i =110VDC, I o =10A, outputs in parallel configuration
EN 55011 A
EN 55011 B
60
40
30
20
20
0
10
0.2
0.5
1
2
5
10
20 MHz
Fig. 12a
Conducted emissions of EW models:
Disturbances (peak) at the phase input according to
EN 55011, measured at Vi nom and Io nom. (EWN2660- 0)
JM038a
JM008
40
TÜV-Divina, ESVS 30:R&S, BBA 9106/UHALP 9107:Schwarzb., QP, 2006-05-29
Testdistance 10 m, EWN2660-0 Ui =110 V, U o =24 V I o = 2 x 5 A
0
30