0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LNK625DG-TL

LNK625DG-TL

  • 厂商:

    POWERINT(帕沃英蒂格盛)

  • 封装:

    SOIC8C_150MIL

  • 描述:

    高效节能的离线开关,具有精确的一次侧恒压(CV)控制

  • 数据手册
  • 价格&库存
LNK625DG-TL 数据手册
LNK623-626 LinkSwitch-CV Family Energy-Efficient, Off-line Switcher with Accurate Primary-side Constant-Voltage (CV) Control Product Highlights * Dramatically Simplifies CV Converters • Eliminates optocoupler and all secondary CV control circuitry • Eliminates bias winding supply – IC is self biasing Advanced Performance Features • Compensates for external component temperature variations • Very tight IC parameter tolerances using proprietary trimming technology • Continuous and/or discontinuous mode operation for design flexibility • Frequency jittering greatly reduces EMI filter cost • Even tighter output tolerances achievable with external resistor selection/trimming Wide Range High-Voltage DC Input output short-circuit and all control loop faults (open and shorted components) • Hysteretic thermal shutdown – automatic recovery reduces power supply returns from the field • Meets HV creepage requirements between Drain and all other pins, both on the PCB and at the package PI-5195-012915 (a) Typical Application Schematic ±5% VO 70 mW with optional external bias PI-5196-012315 • Easily meets all global energy efficiency regulations with no added loads – ideal for mandatory EISA and ENERGY STAR 2.0 regulations • No primary or secondary current sense resistors – maximizes efficiency Green Package • Halogen free and RoHS compliant package Applications • • • • • DVD/STB Adapters Standby and auxiliary supplies Home appliances, white goods and consumer electronics Industrial controls Description The LinkSwitchTM-CV dramatically simplifies low power, constant voltage (CV) converter design through a revolutionary control technique which eliminates the need for both an optocoupler and secondary CV control circuitry while providing very tight output voltage regulation. The combination of proprietary IC trimming and E-Shield™ transformer construction techniques enables Clampless™ designs with the LinkSwitch-CV LNK623/4. LinkSwitch-CV provides excellent cross-regulation for multiple-output flyback applications such as DVDs and STBs. A 725 V power MOSFET and ON/OFF control state machine, self-biasing, frequency jittering, cycle-by-cycle current limit, and hysteretic thermal shutdown circuitry are all incorporated onto one IC. art st Re toAu • No-load consumption 95% for D IO (b) Output Characteristic Figure 1. Typical Application Schematic (a) and Output Characteristic Envelope (b). *Optional with LNK623-624PG/DG. (see Key Application Consider- ations section for clamp and other external circuit design considerations). Output Power Table 230 VAC ±15% 85-265 VAC Adapter1 Peak or Open Frame2 Adapter1 Peak or Open Frame2 LNK623PG/DG 6.5 W 9W 5.0 W 6W LNK624PG/DG 7W 11 W 5.5 W 6.5 W LNK625PG/DG 8W 13.5 W 6.5 W 8W LNK626PG/DG 10.5 W 17 W 8.5 W 10 W Product 3 Table 1. Output Power Table. Based on 5 V Output. Notes: 1. Minimum continuous power in a typical non-ventilated enclosed adapter measured at +50 °C ambient. 2. Maximum practical continuous power in an open frame design with adequate heat sinking, measured at 50 °C ambient (see Key Application Considerations section for more information). 3. Packages: P: DIP-8C, D: SO-8C. Figure 2. DIP-8C P and SO-8C D Packages. www.power.com August 2015 This Product is Covered by Patents and/or Pending Patent Applications. LNK623-626 REGULATOR 6V BYPASS (BP) FEEDBACK (FB) DRAIN (D) + + VTH D - Q FB OUT STATE MACHINE Reset - VILIMIT tSAMPLE-OUT ILIM 6V 5V Drive DCMAX 6.5 V FAULT Auto-Restart Open-Loop FB THERMAL SHUTDOWN DCMAX tSAMPLE-OUT SAMPLE DELAY OSCILLATOR SOURCE (S) + SOURCE (S) ILIM - Current Limit Comparator VILIMIT LEADING EDGE BLANKING PI-5197-012915 Figure 3 Functional Block Diagram. Pin Functional Description DRAIN (D) Pin: This pin is the power MOSFET drain connection. It provides internal operating current for both start-up and steady-state operation. BYPASS (BP) Pin: This pin is the connection point for an external bypass capacitor for the internally generated 6 V supply. FEEDBACK (FB) Pin: During normal operation, switching of the power MOSFET is controlled by this pin. This pin senses the AC voltage on the bias winding. This control input regulates the output voltage based on the flyback voltage of the bias winding. P Package (DIP-8C) FB BP 1 2 8 7 6 D 4 5 SOURCE (S) Pin: This pin is internally connected to the output MOSFET source for high-voltage power and control circuit common returns. S S D Package (SO-8C) FB BP 8 2 7 6 S S 1 D 4 5 S S S S PI-5198-012315 Figure 4. Pin Configuration. 2 Rev. H 08/15 www.power.com LNK623-626 LinkSwitch-CV Functional Description The LinkSwitch-CV combines a high-voltage power MOSFET switch with a power supply controller in one device. Similar to the LinkSwitch-LP and TinySwitch-III it uses ON/OFF control to regulate the output voltage. The LinkSwitch-CV controller consists of an oscillator, feedback (sense and logic) circuit, 6 V regulator, overtemperature protection, frequency jittering, current limit circuit, leading-edge blanking, and ON/OFF state machine for CV control. Constant Voltage (CV) Operation The controller regulates the FEEDBACK pin voltage to remain at VFBth using an ON/OFF state-machine. The FEEDBACK pin voltage is sampled 2.5 ms after the turn-off of the high-voltage switch. At light loads the current limit is also reduced to decrease the transformer flux density. Auto-Restart and Open-Loop Protection In the event of a fault condition such as an output short or an open loop condition the LinkSwitch-CV enters into an appropriate protection mode as described below. In the event the FEEDBACK pin voltage during the Flyback period falls below VFBth-0.3 V before the FEEDBACK pin sampling delay (~2.5 ms) for a duration in excess of 200 ms (auto-restart on-time (t AR-ON) the converter enters into auto-restart, wherein the power MOSFET is disabled for 2.5 seconds (~8% auto-restart duty cycle). The auto-restart alternately enables and disables the switching of the power MOSFET until the fault condition is removed. In addition to the conditions for auto-restart described above, if the sensed FEEDBACK pin current during the Forward period of the conduction cycle (switch “on” time) falls below 120 mA, the converter annunciates this as an open-loop condition (top resistor in potential divider is open or missing) and reduces the auto-restart time from 200 ms to approximately 6 clock cycles (90 ms), whilst keeping the disable period of 2.5 seconds. This effectively reduces the autorestart duty cycle to less than 0.01%. Over-Temperature Protection The thermal shutdown circuitry senses the die temperature. The threshold is set at 142 °C typical with a 60 °C hysteresis. When the die temperature rises above this threshold (142 °C) the power MOSFET is disabled and remains disabled until the die temperature falls by 60 °C, at which point the MOSFET is re-enabled. Current Limit The current limit circuit senses the current in the power MOSFET. When this current exceeds the internal threshold (ILIMIT), the power MOSFET is turned off for the remainder of that cycle. The leading edge blanking circuit inhibits the current limit comparator for a short time (tLEB) after the power MOSFET is turned on. This leading edge blanking time has been set so that current spikes caused by capacitance and rectifier reverse recovery time will not cause premature termination of the MOSFET conduction. 6.0 V Regulator The 6 V regulator charges the bypass capacitor connected to the BYPASS pin to 6 V by drawing a current from the voltage on the DRAIN, whenever the MOSFET is off. The BYPASS pin is the internal supply voltage node. When the MOSFET is on, the device runs off of the energy stored in the bypass capacitor. Extremely low power consumption of the internal circuitry allows the LinkSwitch-CV to operate continuously from the current drawn from the DRAIN pin. A bypass capacitor value of 1 mF is sufficient for both high frequency decoupling and energy storage. 3 www.power.com Rev. H 08/15 LNK623-626 Applications Example L1 3.5 × 7.6 mm Ferrite Bead 1 R1 5.1 kΩ 1/8 W D1 FR106 D2 FR106 C3 820 pF 1 kV VR1 1N5272B T1 EEL19 3 D8 UF4003 6 F1 3.15 A D7 SB540 11 R2 390 Ω RV1 275 V N 12 C1 22 µF 400 V C2 22 µF 400 V 4 RT1 10 Ω D4 1N4007 D C8 1000 µF 10 V C11 47 µF 50 V D9 UF4003 C10 470 µF 10 V R9 39 kΩ 1/8 W 5 V, 1.7 A R7 510 Ω 1/8 W RTN -22 V, 15 mA D6 1N4148 2 D3 1N4007 C13 270 pF R10 47 Ω R8 24 kΩ 1/8 W L3 10 µH 5 D5 1N4007 85 - 265 VAC C9 47 µF 25 V 7 8,9,10 L 12 V, 0.1 A LinkSwitch-CV U1 LNK626PG R3 6.34 kΩ 1% FB BP S L2 680 µH C4 1 µF 50 V R4 6.2 kΩ C5 680 pF 50 V R5 47 kΩ 1/8 W R6 4.02 kΩ 1% C6 10 µF 50 V PI-5205-012315 Figure 5. 7 W (10 W peak) Multiple Output Flyback Converter for DVD Applications with Primary Sensed Feedback. Circuit Description This circuit is configured as a three output, primary-side regulated flyback power supply utilizing the LNK626PG. It can deliver 7 W continuously and 10 W peak (thermally limited) from an universal input voltage range (85 – 265 VAC). Efficiency is >67% at 115 VAC/230 VAC and no-load input power is 5 W, Clampless designs are not practical and an external RCD or Zener clamp should be used. 4. Ensure that worst-case, high line, peak drain voltage is below the BVDSS specification of the internal MOSFET and ideally ≤650 V to allow margin for design variation. VOR (Reflected Output Voltage), is the secondary output plus output diode forward voltage drop that is reflected to the primary via the turns ratio of the transformer during the diode conduction time. The VOR adds to the DC bus voltage and the leakage spike to determine the peak drain voltage. Pulse Grouping Pulse grouping is defined as 6 or more consecutive pulses followed by two or more timing state changes. The effect of pulse grouping is increased output voltage ripple. This is shown on the right of Figure 12 where pulse grouping has caused an increase in the output ripple. To eliminate group pulsing verify that the feedback signal settles within 2.1 ms from the turn off of the internal MOSFET. A Zener diode in the clamp circuit may be needed to achieve the desired settling time. If the settling time is satisfactory, then a RC network across RLOWER (R6) of the feedback resistors is necessary. The value of R (R5 in the Figure 13) should be an order of magnitude greater than RLOWER and selected such that R×C = 32 ms where C is C5 in Figure 13. Quick Design Checklist As with any power supply design, all LinkSwitch-CV designs should be verified on the bench to make sure that component specifications are not exceeded under worst-case conditions. The following minimum set of tests is strongly recommended: 1. Maximum drain voltage – Verify that peak VDS does not exceed 680 V at highest input voltage and maximum output power. 5 D6 1N4148 4 2 D R3 6.34 kΩ 1% LinkSwitch-CV U1 LNK626PG FB BP S C4 1 µF 50 V R4 6.2 kΩ R5 47 kΩ R6 1/8 W 4.02 kΩ C5 1% 680 pF 50 V C6 10 µF 50 V PI-5268-110608 Figure 13. RC Network Across RBOTTOM (R6) to Reduce Pulse Grouping. Top Trace: Drain Waveform (200 V/div) Bottom Trace: Output Ripple Voltage (50 mV/div) Figure 12. Not Pulse Grouping (5 Consecutive Switching Cycles). 9 www.power.com Rev. H 08/15 LNK623-626 2. Maximum drain current – At maximum ambient temperature, maximum input voltage and maximum output load, verify drain current waveforms at start-up for any signs of transformer saturation and excessive leading edge current spikes. LinkSwitch-CV has a leading edge blanking time of 215 ns to prevent premature termination of the ON-cycle. Verify that the leading edge current spike is below the allowed current limit envelope for the drain current waveform at the end of the 215 ns blanking period. 3. Thermal check – At maximum output power, both minimum and maximum input voltage and maximum ambient temperature; verify that temperature specifications are not exceeded for LinkSwitch-CV, transformer, output diodes and output capacitors. Enough thermal margin should be allowed for the part-to-part variation of the RDS(ON) of LinkSwitch-CV, as specified in the data sheet. It is recommended that the maximum SOURCE pin temperature does not exceed 110 °C. Design Tools Up-to-date information on design tools can be found at the Power Integrations web site: www.power.com 10 Rev. H 08/15 www.power.com LNK623-626 Absolute Maximum Ratings1,5 DRAIN Voltage .........................................................-0.3 V to 725 V DRAIN Peak Current: LNK623..................................400 (600) mA4 LNK624..................................400 (600) mA4 LNK625..................................528 (790) mA4 LNK626................................ 720 (1080) mA4 Peak Negative Pulsed DRAIN Current ..................................-100 mA2 Feedback Pin Voltage ................................................... -0.3 V to 9 V Feedback Pin Current ...........................................................100 mA BYPASS Pin Voltage ..................................................... -0.3 V to 9 V BYPASS Pin Current................................................................10 mA Storage Temperature .................................................-65 °C to 150 °C Operating Junction Temperature...............................-40 °C to 150 °C Lead Temperature(3) ............................................................... 260 °C Notes: 1. All voltages referenced to SOURCE, TA = 25 °C. 2. Duration not to exceed 2 msec. 3. 1/16 in. from case for 5 seconds. 4. The higher peak DRAIN current is allowed while the DRAIN voltage is simultaneously less than 400 V. 5. Maximum ratings specified may be applied, one at a time without causing permanent damage to the product. Exposure to Absolute Maximum ratings for extended periods of time may affect product reliability. Thermal Resistance Thermal Resistance: P Package: (qJA) ......................................... 70 °C/W2; 60 °C/W3 (qJC)1 ....................................................... 11 °C/W D Package: (qJA) ......................................100 °C/W2; 80 °C/W3 (qJC)1........................................................ 30 °C/W Parameter Notes: 1. Measured on pin 8 (SOURCE) close to plastic interface. 2. Soldered to 0.36 sq. in. (232 mm2), 2 oz. (610 g/m2) copper clad. 3. Soldered to 1 sq. in. (645 mm2), 2 oz. (610 g/m2) copper clad. Conditions SOURCE = 0 V; TJ = -40 to 125 °C (Unless Otherwise Specified) Symbol Min Typ Max Units 93 100 106 kHz Control Functions Output Frequency fOSC TJ = 25 °C, VFB = VFBth Frequency Jitter LNK623/6 Peak-Peak Jitter Compared to Average Frequency, TJ = 25 °C ±7 % 80 % Ratio of Output Frequency at AutoRestart fOSC(AR) TJ = 25 °C Relative to fOSC , See Note C Maximum Duty Cycle DCMAX TJ = 25 °C See Notes B, C FEEDBACK Pin Voltage TJ = 25 °C See Figure 15 CBP = 1 mF See Note D VFBth 54 % LNK623-624P 1.815 1.840 1.865 LNK623-624D 1.855 1.880 1.905 LNK625P, LNK625D 1.835 1.860 1.885 LNK626P, LNK626D 1.775 1.800 1.825 V FEEDBACK Pin Voltage Temperature Coefficient TC VFB -0.01 %/°C FEEDBACK Pin Voltage at Turn-Off Threshold VFB(AR) 1.45 V Power Coefficient I2f = I2LIMIT(TYP) × fOSC(TYP) LNK623/6P TJ = 25 °C 0.9 × I2f I2 f 1.17 × I2f If=I LNK623/6D TJ = 25 °C 0.9 × I f If 1.21 × I f I2 f 2 2 LIMIT(TYP) × fOSC(TYP) A2Hz 2 2 2 11 www.power.com Rev. H 08/15 LNK623-626 Symbol Conditions SOURCE = 0 V; TJ = -40 to 125 °C (Unless Otherwise Specified) Minimum Switch “On”-Time tON(min) See Note C FEEDBACK Pin Sampling Delay tFB Parameter Min Typ Max Units Control Functions (cont.) DRAIN Supply Current 700 2.35 IS1 FB Voltage > VFBth IS2 FB Voltage = VFBth -0.1, Switch ON-Time = tON (MOSFET Switching at fOSC) ICH1 VBP = 0 V BYPASS Pin Charge Current ICH2 VBP = 4 V ns 2.55 2.75 280 330 LNK623/4 440 520 LNK625 480 560 LNK626 520 600 LNK623/4 -5.0 -3.4 -1.8 LNK625/6 -7.0 -4.5 -2.0 LNK623/4 -4.0 -2.3 -1.0 LNK625/6 -5.6 -3.2 -1.4 ms mA mA BYPASS Pin Voltage VBP 5.65 6.00 6.25 V BYPASS Pin Voltage Hysteresis VBPH 0.70 1.00 1.20 V VSHUNT 6.2 6.5 6.8 V LNK623 di/dt = 50 mA/ms , TJ = 25 °C 196 210 225 LNK624 di/dt = 60 mA/ms , TJ = 25 °C 233 250 268 LNK625 di/dt = 80 mA/ms , TJ = 25 °C 307 330 353 LNK626 di/dt = 110 mA/ms , TJ = 25 °C 419 450 482 TJ = 25 °C See Note C 170 215 135 142 BYPASS Pin Shunt Voltage Circuit Protection Current Limit ILIMIT Leading Edge Blanking Time tLEB Thermal Shutdown Temperature TSD Thermal Shutdown Hysteresis TSDH mA 60 ns 150 °C °C 12 Rev. H 08/15 www.power.com LNK623-626 Parameter Symbol Conditions SOURCE = 0 V; TJ = -40 to 125 °C (Unless Otherwise Specified) Min Typ Max TJ = 25 °C 24 28 TJ = 100 °C 36 42 TJ = 25 °C 24 28 TJ = 100 °C 36 42 TJ = 25 °C 16 19 TJ = 100 °C 24 28 TJ = 25 °C 9.6 11 TJ = 100 °C 14 17 Units Output LNK623 ID = 50 mA ON-State Resistance LNK624 ID = 50 mA RDS(ON) LNK625 ID = 62 mA LNK626 ID = 82 mA OFF-State Leakage IDSS1 IDSS2 Breakdown Voltage BVDSS VDS = 560 V, See Figure 20 t AR-ON Auto-Restart OFF-Time t AR-OFF Open-Loop FEEDBACK Pin Current Threshold IOL Open-Loop ON-Time mA VDS = 375 V, See Figure 20 15 TJ = 50 °C DRAIN Supply Voltage Auto-Restart ON-Time 50 TJ = 125 °C, See Note A TJ = 25 °C See Figure 20 VFB = 0 See Note C W 725 V 50 V 200 ms LNK623/624/626 2 s LNK625 1 See Note C -120 mA See Note C 90 ms NOTES: A. IDSS1 is the worst-case OFF-state leakage specification at 80% of BVDSS and maximum operating junction temperature. IDSS2 is a typical specification under worst-case application conditions (rectified 265 VAC) for no-load consumption calculations. B. When the duty cycle exceeds DCMAX the LinkSwitch-CV operates in on-time extension mode. C. This parameter is derived from characterization. D. Mechanical stress induced during the assembly may cause shift in this parameter. This shift has not impact on the ability of LinkSwitch-CV to meet CV = ±5% in mass production given the design follows recommendation in AN-45 and good manufacturing practice. 13 www.power.com Rev. H 08/15 LNK623-626 Typical Performance Characteristics Feedback Voltage (Normalized to 25 °C) 1.000 0.800 0.600 0.400 0.200 10 35 60 85 0.800 0.600 0.400 0.200 0.000 -40 110 135 -15 Figure 14. Output Frequency vs. Temperature. 1.0 300 Drain Current (mA) PI-2213-012315 Breakdown Voltage (Normalized to 25 °C) 35 250 25 50 150 100 Scaling Factors: LNK623 1.0 LNK624 1.0 LNK625 1.5 LNK626 2.5 0 75 100 125 150 2 4 6 8 10 DRAIN Voltage (V) Junction Temperature (°C) Figure 17. Output Characteristic. Scaling Factors: LNK623 1.0 LNK624 1.0 LNK625 1.5 LNK626 2.5 50 PI-5201-012615 Figure 16. Breakdown vs. Temperature. 1000 110 135 200 0 0 85 TCASE=25 °C TCASE=100 °C 50 0.9 -50 -25 60 Figure 15. Feedback Voltage vs. Temperature. 1.1 100 10 Scaling Factors: LNK623 1.0 LNK624 1.0 LNK625 1.5 LNK626 2.5 40 Power (mW) Drain Capacitance (pF) 10 Temperature (°C) Temperature (°C) PI-5211-080708 -15 1.000 PI-5212-012615 0.000 -40 PI-5089-012315 1.200 PI-5086-012315 Frequency (Normalized to 25 °C) 1.200 30 20 10 0 1 0 100 200 300 400 Drain Voltage (V) Figure 18. COSS vs. Drain Voltage. 500 600 0 200 400 600 DRAIN Voltage (V) Figure 19. Drain Capacitance Power. 14 Rev. H 08/15 www.power.com LNK623-626 LinkSwitch-CV 5 µF 50 kΩ 10 kΩ 1 µF FB S BP S D S .1 µF 4 kΩ VIN 16 V S1 S S2 + Curve Tracer To measure BVDSS, IDSS1, and IDSS2 follow these steps: 1) Close S1, open S2 2) Power-up VIN source (16 V) 3) Open S1, close S2 4) Measure I/V characteristics of DRAIN pin using the curve tracer PI-5203-012615 Figure 20. Test Set-up for Leakage and Breakdown Tests. 15 www.power.com Rev. H 08/15 LNK623-626 PDIP-8C (P Package) -E- ⊕ D S .004 (.10) .240 (6.10) .260 (6.60) Pin 1 -D- .367 (9.32) .387 (9.83) .057 (1.45) .068 (1.73) (NOTE 6) .125 (3.18) .145 (3.68) -T- Notes: 1. Package dimensions conform to JEDEC specification MS-001-AB (Issue B 7/85) for standard dual-in-line (DIP) package with .300 inch row spacing. 2. Controlling dimensions are inches. Millimeter sizes are shown in parentheses. 3. Dimensions shown do not include mold flash or other protrusions. Mold flash or protrusions shall not exceed .006 (.15) on any side. 4. Pin locations start with Pin 1, and continue counter-clockwise to Pin 8 when viewed from the top. The notch and/or dimple are aids in locating Pin 1. Pin 3 is omitted. 5. Minimum metal to metal spacing at the package body for the omitted lead location is .137 inch (3.48 mm). 6. Lead width measured at package body. 7. Lead spacing measured with the leads constrained to be perpendicular to plane T. .015 (.38) MINIMUM SEATING PLANE .120 (3.05) .140 (3.56) .100 (2.54) BSC .014 (.36) .022 (.56) .048 (1.22) .053 (1.35) ⊕T .137 (3.48) MINIMUM E D S .010 (.25) M .008 (.20) .015 (.38) .300 (7.62) BSC (NOTE 7) .300 (7.62) .390 (9.91) P08C PI-3933-012315 16 Rev. H 08/15 www.power.com LNK623-626 SO-8C (D Package) 4 B 0.10 (0.004) C A-B 2X 2 DETAIL A 4.90 (0.193) BSC A 4 8 D 5 2 3.90 (0.154) BSC GAUGE PLANE SEATING PLANE 6.00 (0.236) BSC o 0-8 C 0.25 (0.010) BSC 1.04 (0.041) REF 2X 0.10 (0.004) C D 1 Pin 1 ID 4 2X 7X 0.31 - 0.51 (0.012 - 0.020) 0.25 (0.010) M C A-B D 1.27 (0.050) BSC 1.35 (0.053) 1.75 (0.069) 0.40 (0.016) 1.27 (0.050) 0.20 (0.008) C 1.25 - 1.65 (0.049 - 0.065) DETAIL A 0.10 (0.004) 0.25 (0.010) 0.10 (0.004) C H 7X SEATING PLANE 0.17 (0.007) 0.25 (0.010) C Reference Solder Pad Dimensions + 2.00 (0.079) + 4.90 (0.193) + + 1.27 (0.050) D07C Notes: 1. JEDEC reference: MS-012. 2. Package outline exclusive of mold flash and metal burr. 3. Package outline inclusive of plating thickness. 4. Datums A and B to be determined at datum plane H. 5. Controlling dimensions are in millimeters. Inch dimensions are shown in parenthesis. Angles in degrees. 0.60 (0.024) PI-4526-012315 Part Ordering Information • LinkSwitch Product Family • CV Series Number • Package Identifier P Plastic DIP D Plastic SO-8 • Package Material G GREEN: Halogen Free and RoHS Compliant • Tape & Reel and Other Options Blank LNK 625 D G - TL TL Standard Configurations Tape & Reel, 2.5 k pcs for D Package. Not available for P Package. 17 www.power.com Rev. H 08/15 Revision Notes Date B C Release data sheet. Correction made to Figure 5. 11/08 12/08 D Introduced Max Current Limit when V DRAIN is below 400 V. 07/09 E Introduced LNK626DG. 09/09 F Added Note 4 to Parameter Table 02/10 F Specified Max BYPASS Pin Current. 03/14 G Figure removed “Test Set-up for FEEDBACK Pin Measurements” from previous version. Updated t AR-OFF parameter. Updated to latest Brand Style. 02/15 H Update BVDSS from 700 V to 725 V 08/15 For the latest updates, visit our website: www.power.com Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. Patent Information The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm. Life Support Policy POWER INTEGRATIONS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF POWER INTEGRATIONS. As used herein: 1. A Life support device or system is one which, (i) is intended for surgical implant into the body, or (ii) supports or sustains life, and (iii) whose failure to perform, when properly used in accordance with instructions for use, can be reasonably expected to result in significant injury or death to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. The PI logo, TOPSwitch, TinySwitch, LinkSwitch, LYTSwitch, InnoSwitch, DPA-Switch, PeakSwitch, CAPZero, SENZero, LinkZero, HiperPFS, HiperTFS, HiperLCS, Qspeed, EcoSmart, Clampless, E-Shield, Filterfuse, FluxLink, StakFET, PI Expert and PI FACTS are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2015, Power Integrations, Inc. Power Integrations Worldwide Sales Support Locations World Headquarters 5245 Hellyer Avenue San Jose, CA 95138, USA. Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: usasales@power.com China (Shanghai) Rm 2410, Charity Plaza, No. 88 North Caoxi Road Shanghai, PRC 200030 Phone: +86-21-6354-6323 Fax: +86-21-6354-6325 e-mail: chinasales@power.com China (Shenzhen) 17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057 Phone: +86-755-8672-8689 Fax: +86-755-8672-8690 e-mail: chinasales@power.com Germany Lindwurmstrasse 114 80337 Munich Germany Phone: +49-895-527-39110 Fax: +49-895-527-39200 e-mail: eurosales@power.com India #1, 14th Main Road Vasanthanagar Bangalore-560052 India Phone: +91-80-4113-8020 Fax: +91-80-4113-8023 e-mail: indiasales@power.com Italy Via Milanese 20, 3rd. Fl. 20099 Sesto San Giovanni (MI) Italy Phone: +39-024-550-8701 Fax: +39-028-928-6009 e-mail: eurosales@power.com Japan Kosei Dai-3 Bldg. 2-12-11, Shin-Yokohama, Kohoku-ku Yokohama-shi Kanagwan 222-0033 Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: japansales@power.com Taiwan 5F, No. 318, Nei Hu Rd., Sec. 1 Nei Hu Dist. Taipei 11493, Taiwan R.O.C. Phone: +886-2-2659-4570 Fax: +886-2-2659-4550 e-mail: taiwansales@power.com UK Cambridge Semiconductor, Korea a Power Integrations company RM 602, 6FL Westbrook Centre, Block 5, 2nd Floor Korea City Air Terminal B/D, 159-6 Milton Road Samsung-Dong, Kangnam-Gu, Cambridge CB4 1YG Seoul, 135-728, Korea Phone: +44 (0) 1223-446483 Phone: +82-2-2016-6610 e-mail: eurosales@power.com Fax: +82-2-2016-6630 e-mail: koreasales@power.com Singapore 51 Newton Road #19-01/05 Goldhill Plaza Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: singaporesales@power.com
LNK625DG-TL 价格&库存

很抱歉,暂时无法提供与“LNK625DG-TL”相匹配的价格&库存,您可以联系我们找货

免费人工找货
LNK625DG-TL
  •  国内价格 香港价格
  • 2500+5.719922500+0.69332

库存:0

LNK625DG-TL
  •  国内价格 香港价格
  • 1+8.857781+1.07366
  • 100+7.30404100+0.88533
  • 1000+6.215821000+0.75343

库存:0

LNK625DG-TL
  •  国内价格 香港价格
  • 1+8.734501+1.05880
  • 10+8.6529010+1.04890
  • 25+8.2564025+1.00080
  • 100+7.20690100+0.87360
  • 250+7.12520250+0.86370
  • 500+6.91530500+0.83830
  • 1000+6.134001000+0.74350
  • 2500+5.679202500+0.68840
  • 5000+5.457605000+0.66160

库存:0

LNK625DG-TL
  •  国内价格
  • 1+4.91550
  • 30+4.74600
  • 100+4.40700
  • 500+4.06800
  • 1000+3.89850

库存:0