VersaClock® Programmable Clock
Generator
5P35021
Datasheet
Description
Features
The 5P35021 is a VersaClock programmable clock generator and
is designed for low-power, consumer, and high-performance PCI
Express applications. The 5P35021 device is a three PLL
architecture design, and each PLL is individually programmable
and allowing for up to six unique frequency outputs.
▪ Configurable OE pin function as OE, PD#, PPS or DFC control
function
▪ Configurable PLL bandwidth; minimizes jitter peaking
▪ PPS: Proactive Power Saving features save power during the
end device power down mode
▪ PPB: Performance Power Balancing feature allows minimum
power consumption based on required performance
▪ DFC: Dynamic Frequency Control feature allows user to
dynamically switch between and up to 4 different frequencies
smoothly
The 5P35021 has built-in unique features such as Proactive
Power Saving (PPS), Performance-Power Balancing (PPB),
Overshot Reduction Technology (ORT) and Extreme Low Power
DCO. An internal OTP memory allows the user to store the
configuration in the device. After power up, the user can change
the device register settings through the I2C interface when I2C
mode is selected.
▪ Two PLLs support independent spread spectrum clocks to
lower system EMI
The device has programmable VCO and PLL source selection to
allow the user to do power-performance optimization based on the
application requirements. It also supports three single-ended
outputs and two pair of differential outputs that support LVCMOS,
LVPECL, LVDS and LP-HCSL. A Low Power 32.768kHz clock is
supported with only less than 2µA current consumption for system
RTC reference clock.
▪ Store user configuration into OTP memory
▪ I2C interface
▪ Available in Automotive Grade 2 (-40°C to +105°C) or
industrial (-40° to +85°) temperature ranges
Output Features
▪ 2 DIFF outputs with configurable LP-HSCL, LVDS, LVPECL,
Typical Applications
▪
▪
▪
▪
▪
LVCMOS output pairs. 1MHz–500MHz (160MHz with LVCMOS
mode)
▪ 1 LVCMOS outputs: 1MHz–160MHz
PCIe Gen1–3 clock generator
Consumer application crystal replacements
SmartDevice, Handheld
▪ Maximum 5 LVCMOS outputs as REF + 3 × SE + 2 × DIFF_T/C
as LVCMOS
Computing and consumer applications
Automotive applications (infotainment, dashboard,
camera/vision, computing, networking)
▪ Low power 32.768kHz clock supported for SE1 output
Key Specifications
▪ PCIe clocks phase jitter: PCIe Gen3
▪ Differential clocks < 1.5ps rms jitter integer range 12kHz–
20MHz
©2019 Integrated Device Technology, Inc.
1
October 4, 2019
5P35021 Datasheet
Contents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Output Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Power Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Output Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Device Features and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
DFC – Dynamic Frequency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
DFC Function Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
PPS – Proactive Power Saving Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
PPS Function Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Timer Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
OE Pin Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Reference Input and Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Crystal Input (X1/X2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Analog Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Digital Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
VBAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ORT–VCO Overshoot Reduction Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
PLL Features and Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Output Clock Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
PCI Express Jitter Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Spread Spectrum Generation Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
I2C Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
I2C Mode Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Glossary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Marking Diagrams (industrial) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Marking Diagrams (automotive) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
©2019 Integrated Device Technology, Inc.
2
October 4, 2019
5P35021 Datasheet
Block Diagram
DIV1/REF
OSC
MUX
DIV1
DIV3
MUX
CLKINB/X1
PLL1
CLKIN/X2
VBAT
VDD33
Power
Monitor
PLL2
MUX
VDDDIFF1
DIV1/REF
DIV2
POR
MUX
DIV3
MUX
DIV4
DIV3
VDDDIFF2
DIFF2
DIFF2B
MUX
DIFF1
DIFF1B
MUX
OE1
SE1
VDDSE1
VDDA
PLL3
MUX
VSS
DIV5
DIV4/REF
Calibration
DIV5
32K
32.768K
DCO
SCL_DFC1
SDA_DFC0
Overshoot Reduction
(ORT)
I2C Engine
OTP memory (1 configuration)
Dynamic Frequency Control Logic (DFC)
Proactive Power Saving Logic (PPS)
Timer
Pin Assignments
VSSDIFF2
DIFF2
DIFF2B
VDDDIFF2
VSSDIFF1
Figure 1. Pin Assignments for 3 x 3 mm 20-VFQFPN Package – Top View
20
19
18
17
16
VDDA
1
15
DIFF1
SDA_DFCO
2
14
DIFF1B
SEL_DFC/SCL_DFC1
3
13
VDDDIFF1
CLKIN/X2
4
12
OE1
CLKINB/X1
5
11
SE1
©2019 Integrated Device Technology, Inc.
9
10
VDDSE1
VSS
8
VSSSE1
7
VDD33
6
VBAT
5P35021
3
October 4, 2019
5P35021 Datasheet
Pin Descriptions
Table 1. Pin Descriptions
Number
Name
Type
1
VDDA
Power
2
SDA_DFC0
I/O
Description
VDD 3.3V.
I2C data pin. The pin can be DFC0 function by pin 3 SEL_DFC power-on latch status.
I2C CLK pin.
SEL_DFC is a latch input pin during the power-up.
High on power-on: I2C mode as SCLK function.
Low on power-on: SCL and SDA as DFC function control pins.
3
SEL_DFC/
SCL_DFC1
Input
4
CLKIN/X2
I/O
Crystal oscillator interface output or differential clock input pin (CLKIN).
5
CLKINB/X1
Input
Crystal oscillator interface input or differential clock input pin (CLKINB).
6
VBAT
Power
Power supply pin for 32.768kHz DCO; usually connect to coin cell battery, 2.5V–3.3V.
7
VSS
Power
Connect to ground
8
VDD33
Power
VDD 3.3V.
9
VSSSE1
Power
Connect to ground
10
VDDSE1
Power
Output power supply. Connect to 1.8V–3.3V. Sets output voltage levels for SE1.
11
SE1
Output
Output clock SE1.
12
OE1
Input
OE1’s function selected from OTP pre-programmed register bits.
OE1 pull to 6.5V when burn OTP registers.
Refer to OE Pin Functions table for details.
13
VDDDIFF1
Power
Output power supply. Connect to 2.5V–3.3V. Sets output voltage levels for DIFF1.
14
DIFF1B
Output
Differential clock output 1_Complement; can be OTP pre-programmed to
LVCMOS/LPHCSL/LVDS/LVPECL output type.
15
DIFF1
Output
Differential clock output 1_True; can be OTP pre-programmed to
LVCMOS/LP-HCSL/LVDS/LVPECL output type.
16
VSSDIFF1
Power
Connect to ground
17
VDDDIFF2
Power
Output power supply. Connect to 2.5V–3.3V. Sets output voltage levels for DIFF2.
18
DIFF2B
Output
Differential clock output 2_Complement; can be OTP pre-programmed to
LVCMOS/LPHCSL/LVDS/LVPECL output type.
19
DIFF2
Output
Differential clock output 2_True; can be OTP pre-programmed to
LVCMOS/LP-HCSL/LVDS/LVPECL output type.
20
VSSDIFF2
Power
Connect to ground.
EPAD
Power
Connect to ground pad.
©2019 Integrated Device Technology, Inc.
4
October 4, 2019
5P35021 Datasheet
Power Group
Table 2. Power Group
Power Supply
SE
DIFF
DIV
MUX
PLL
VDDSE1
SE1 1
VDDDIFF1
DIFF1
DIV3/4
MUXPLL2
PLL2
VDDDIFF2
DIFF2
DIV1
MUXPLL1
VDD33
DIV5
PLL3
VBAT 1
REF
Xtal
DCO
REF
Xtal
DCO
VDDA
1
DCO
DIV2
Xtal
PLL1
VDDSE1 for non-32kHz outputs should be OFF when VDDA/VDD33 turns OFF; VBAT mode only supports 32.768kHz outputs from SE1.
Output Sources
Table 3. Output Source
Outputs
Source
REF
SE1
Xtal REF
Xtal REF
Xtal REF
32.768kHz
DIFF1
DIFF2
PLL1
PLL1
32.768kHz
PLL1
PLL2
PLL2
PLL2
PLL2
PLL3
PLL3
PLL3
PLL3
Table 4. Output Source Selection Register Settings
SE1
B36
B36
B31
B29
From 32kHz
0
1
0
0
From PLL3 + Divider 5
1
0
0
0
From PLL2 + Divider 4
1
1
1
0
From REF + Divider 4
1
1
0
1
Table 5. DIFF1 Output
DIFF1
B34
B0
From PLL1 + Divider 1
0
0
From PLL2/3 + Divider 3
1
0
From REF + Divider 1
0
1
©2019 Integrated Device Technology, Inc.
5
October 4, 2019
5P35021 Datasheet
Table 6. DIFF2 Output
DIFF2
B35
B0
From PLL1 + Divider 1
0
0
From PLL2/3 + Divider 3
1
0
From REF + Divider 1
0
1
Device Features and Functions
DFC – Dynamic Frequency Control
▪ OTP programmable – 4 different feedback fractional dividers (4 VCO frequencies) that apply to PLL2.
▪ ORT (overshoot reduction) function will be applied automatically during the VCO frequency change.
▪ Smooth frequency incremental or decremental from current VCO to targeted VCO based on DFC hardware pins selection.
Figure 2. DFC Function Block Diagram
M divider
PLL2
OUT DIV
Selector
00
01
N divider
N divider
10
N divider
11
N divider
DFC1:0
OTP/I2C
©2019 Integrated Device Technology, Inc.
6
October 4, 2019
5P35021 Datasheet
Table 7. DFC Function Priority
DFC_EN bit (W32[4])
OE1_fun_sel
(W30[6:5])
OE3_fun_sel
(W30[3:2])
SCL_DFC1
DFC[1:0]
Notes
0
x
x
x
0
DFC disable
1
11 (DFC)
00–10 (DFC)
x
[0,OE1]
One-pin DFC–OE1
1
11 (DFC)
11 (DFC)
x
[OE3,OE1]
Two-pin DFC–OE3,
OE1 1
1
00–10
11
x
Not permitted
Not supported
1
00–10
00–10
0
[SCL_DFC1,
SDA_DFC0]
I2C pin as DFC
control pins mode
1
00–10
00–10
1
W30[1:0]
I2C control DFC mode
1
5P35021 has only OE1 pin for DFC function hardware pin selection. For OE2/OE3 two pins DFC control, use 5P35023 24-QFN package
device.
DFC Function Programming
▪ Register B63b3:2 selects DFC00–DFC11 configuration.
▪ Byte16–19 are the registers for PLL2 VCO setting, based on B63b3:2 configuration selection, the data write to B16–19 will be stored
in selected configuration OTP memory.
▪ Refer to DFC Function Priority table. Select proper control pin(s) to activate DFC function.
▪ Note the DFC function can also be controlled by I2C access.
PPS – Proactive Power Saving Function
PPS (Proactive Power Saving) is an IDT patented unique design for the clock generator that proactively detects end device power down
state and then switches output clocks between normal operation clock frequency and low power mode 32kHz clock that only consumes
< 2μA current. The system could save power when the device goes into power down or sleep mode. The PPS function diagram is shown
as below.
Figure 3. PPS Function Block Diagram
I2C
&
Logic
Xtal
Oscillator
PPS
Control
Logic
Power
Down
Control
Low
Power
DCO
XOUT
XIN
PLL
©2019 Integrated Device Technology, Inc.
Xtal
Oscillator
Logic
MHz / kHz
Switching
7
October 4, 2019
5P35021 Datasheet
Figure 4. PPS Assertion/Deassertion Timing Chart
PPS Function Programming
▪ Refer to the OE Pin Functions table to have the proper PPS function selected for OE pin(s). Note that the register default is set to
Output enable (OE) function for OE pins.
▪ Have proper setup to Byte 30 and 32 for OE1–OE3 function selection; for PPS function, select 10 to control register bits.
Timer Function Description
1. The timer function can be used together with the DFC -Dynamic Frequency Control function or with another PLL frequency
programming.
2. The timer provides 4 different delay times by two bits selection: 0.5 sec – 1 sec – 2 sec – 4 sec.
3. The timeout flag will be set when timer times out and the flag can be cleared by writing 0 to timer enable bit.
4. When timer times out, RESET pin can generate a 250ms pulse signal if RESET control bit is enabled.
5. When timer times out, DFC stage will switch back to DFC00 setting if DFC function is enabled, and DFC function will be disabled after
RESET.
©2019 Integrated Device Technology, Inc.
8
October 4, 2019
5P35021 Datasheet
Figure 5. Timer Functions
Select delay time 0.5 - 4.0 seconds and enable timer
Program New VCO frequency or enable DFC
System functional check
Disable Timer
Timer continue if system is not able to stop timer
Timeout Flag set and generate RESET pulse
OE Pin Function
The OE pin in the 5P35021 has multiple functions. The OE pin can be configured as output enable control (OE) or chip power-down
control (PD#) or Proactive Power Saving function (PPS). Furthermore, the OE pin can be configured as a single Dynamic Frequency
Control (DFC), or the RESET out function that is associated with the Timer function.
Table 8. OE Pin Functions
Pin
Function
OE1
SE Output Enable/Disable
SE1 (default)
DIFF Output Enable/Disable
—
Global Power Down (PD#)
PD#
Proactive Power Saving Input
SE1_PPS
DOC Control (Only PLL2)
DFC0
RESET OUT
—
Table 9. OE Pin Function Summary
OE Pin
Description
OE1: SE1
OE1 only control SE1 enable/disable; other outputs are not affected by this pin status.
OE1: PD#
OE1 control chip global power down (PD#) except 32.768kHz on OE1 (when 32kHz is enabled). When the PD#
pin is active low, the chip goes to lowest power down mode and all outputs are disabled except 32kHz output and
only keep 32k/Xtal calibration.
OE1: SE1_PPS
OE1: DFC0
Configure OE1 as SE1_PPS (Proactive Power Saving) function pin.
Configure OE1 as DFC0 control pin 0.
©2019 Integrated Device Technology, Inc.
9
October 4, 2019
5P35021 Datasheet
Table 10. PD# Priority
PD#
I2C_OE_EN_bit
SE1, DIFF1/DIFF2,
SEx_PPS
Output
Notes
0
x
x
Stop
32kHz free run
1
0
x
Stop
1
1
0
Stop
1
1
1
Running
Reference Input and Selection
When programming, the 5P35021 accepts 8MHz–40MHz crystal input, 8MHz to 125MHz differential clocks input or 1MHz–125MHz
LVCMOS (to X1) input. See below reference circuit for details.
Crystal Input (X1/X2)
The crystal oscillators should be fundamental mode quartz crystals; overtone crystals are not suitable. Crystal frequency should be
specified for parallel resonance with 40MHz maximum.
A crystal manufacturer will calibrate its crystals to the nominal frequency with a certain load capacitance value. When the oscillator load
capacitance matches the crystal load capacitance, the oscillation frequency will be accurate as 0 PPM. When the oscillator load
capacitance is lower than the crystal load capacitance, the oscillation frequency will be higher than nominal. In order to get an accurate
oscillation frequency, the matching the oscillator load capacitance with the crystal load capacitance is required.
To set the oscillator load capacitance, 5P35021 has built-in two programmable tuning capacitors inside the chip, one at XIN and one at
XOUT. They can be adjusted independently. The value of each capacitor is composed of a fixed capacitance amount plus a variable
capacitance amount set with the XTAL[7:0] register. Adjustment of the crystal tuning capacitors allows for maximum flexibility to
accommodate crystals from various manufacturers. The range of tuning capacitor values available are in accordance with the following
table.
©2019 Integrated Device Technology, Inc.
10
October 4, 2019
5P35021 Datasheet
Table 11. Programmable Tuning Caps
Parameter
Bits
Range
Minimum (pF)
Maximum (pF)
Xtal [7:0]
4×2
+1 / +2 / +4 / +8pF
0
15pF
XTAL[4:0] = (XTAL CL - 7pF) × 2 (Eq.1)
Equation 1 and the table of XTAL[7:0] tuning capacitor characteristics show that the parallel tuning capacitance can be set between 4.5pF
to 12.5pF with a resolution of 0.25pF.
For a crystal CL = 8pF, where CL is the parallel capacity specified by the crystal vendor that sets the crystal frequency to the nominal
value. Under the assumptions that the stray capacity between the crystal leads on the circuit board is zero and that no external tuning
caps are placed on the crystal leads, then the internal parallel tuning capacity is equal to the load capacity presented to the crystal by the
device.
The internal load capacitors are true parallel-plate capacitors for ultra-linear performance. Parallel-plate capacitors were chosen to
reduce the frequency shift that occurs when non-linear load capacitance interacts with load, bias, supply, and temperature changes.
External non-linear crystal load capacitors should not be used for applications that are sensitive to absolute frequency requirements.
Spread Spectrum
The 5P35021 supports spread spectrum clocks from PLL1 and PLL2; the PLL1 built-in with analog spread spectrum and PLL2 has digital
spread spectrum.
Analog Spread Spectrum
Refer to programming guide.
©2019 Integrated Device Technology, Inc.
11
October 4, 2019
5P35021 Datasheet
Digital Spread Spectrum
Figure 6. Digital Spread Spectrum
N
Fvco
2 * Fout
period
step
Fpfd
2 * Fss
N * SSamount
period
Down spread or spread off
N = Fvco/Fpfd
Center Spread
N = Nssoff + N × SSamount/2
N: include integer and fraction
Fvco: VCOs frequency
Fpfd: PLLs pfd frequency
Fss: spread modulation rate
SSamount: spread percentage
The black line is for the down spread; N will decrease to make the center frequency is lower than spread off.
The blue line is for the center spread; there is an offset put on divider ratio to make the center frequency keep same as spread off.
Example: 0.5% down spread at 32kHz modulation rate.
VBAT
The 5P35021 supports a low-power operation 32.768kHz RTC clock with only a coin cell battery supply. The coin cell battery power
capacitance is usually 170mAhr or higher, with less than 2μA* low-power DCO operation mode will support application up to few years
clock source for date/time keeping circuit (RTC).
When main power exists (for example, VDD33 and VDDA), the 5P35021 will switch DCO power source to main power to save battery
power.
Table 12. VBAT Switching Threshold
VDD33
VBAT
DCO Power Source
> 2.5V
—
VDD33
< 2.3V
—
VBAT
VBAT needs to be 3.0V–3.3V.
VBAT
VDD33
Switch to VBAT
(VDD33 falling down to 2.3V)
©2019 Integrated Device Technology, Inc.
Switch to VDD33
(VDD33 raise up to 2.5V )
12
October 4, 2019
5P35021 Datasheet
ORT–VCO Overshoot Reduction Technology
The 5P35021 supports the VCO overshoot reduction technology (ORT) to prevent an output clock frequency spike when the device is
changing frequency on the fly or doing DFC (Dynamic Frequency Control) function. The VCO frequency changes are under control
instead of free-run to targeted frequency.
PLL Features and Descriptions
Table 13. Output 1 Divider
Output Divider bits
Output Divider bits
00
01
10
11
00
1
2
4
8
01
4
8
16
32
10
5
10
20
40
11
6
12
24
48
Table 14. Output 2, 4, and 5 Divider
Output Divider bits
Output Divider bits
00
01
10
11
00
1
2
4
5
01
3
6
12
15
10
5
10
20
25
11
10
20
40
50
Table 15. Output 3 Divider
Output Divider bits
Output Divider bits
00
01
10
11
00
1
2
4
8
01
3
6
12
24
10
5
10
20
40
11
10
20
40
80
©2019 Integrated Device Technology, Inc.
13
October 4, 2019
5P35021 Datasheet
Output Clock Test Conditions
Figure 7. LVCMOS Output Test Conditions
33 ohm
2 inches
5pF
LVCMOS
Figure 8. LP-HCSL Output Test Conditions
33 ohm
33 ohm
5 inches
2pF
LPHCSL
©2019 Integrated Device Technology, Inc.
14
2pF
October 4, 2019
5P35021 Datasheet
Absolute Maximum Ratings
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the
device. Functional operation of the 5P35021 at absolute maximum ratings is not implied. Exposure to absolute maximum rating
conditions may affect device reliability.
Table 16. Absolute Maximum Ratings
Item
Rating
Supply Voltage, VDDA, VDD33, VDDSE,VDDDIFF
3.465V
Supply Voltage, VBAT
3.465V
Inputs
XIN/CLKIN
0V to 3.3V voltage swing for both LVCMOS or DIFF CLK
Other Inputs
-0.5V to VDD33 or VDDSE1
Outputs, VDDSE1 (LVCMOS)
-0.5V to VDDSE1 or VDDDIFF + 0.5V
Outputs, IO (SDA)
10mA
Package Thermal Impedance, ΘJA
42°C/W (0mps)
Package Thermal Impedance, ΘJC
41.8°C/W (0mps)
Storage Temperature, TSTG
-65°C to 150°C
ESD Human Body Model
2000V
ESD Charge Device Model
1000V
Junction Temperature
125°C
Recommended Operating Conditions
Table 17. Recommended Operating Conditions
Symbol
Minimum
Typical
Maximum
Power supply voltage for supporting 1.8V outputs.
1.71
1.8
1.89
Power supply voltage for supporting 2.5V outputs.
2.375
2.5
2.625
Power supply voltage for supporting 3.3V outputs.
3.135
3.3
3.465
VDD33
Power supply voltage for core logic functions.
3.135
3.3
3.465
V
VDDA
Analog power supply voltage. Use filtered analog power supply
if available.
2.375
3.465
V
VBAT
Battery power supply voltage.
2.8
3.465
V
Operating temperature, ambient (industrial).
-40
85
°C
Operating temperature, ambient (automotive).
-40
105
°C
VDDSE1
TA
CLOAD_OUT
Parameter
Maximum load capacitance (LVCMOS only).
©2019 Integrated Device Technology, Inc.
3
5
15
Units
Notes
V
1,2,3
1,2,3
pF
October 4, 2019
5P35021 Datasheet
Table 17. Recommended Operating Conditions
Symbol
FIN
Parameter
Minimum
Maximum
External reference crystal.
8
40
External reference crystal with DCO used.
12
38
External single-ended reference clock CLKINB.
1
125
External differential reference clock CLKIN, CLKINB.
8
125
0.05
3
Power up time for all VDDs to reach minimum specified voltage
(power ramps must be monotonic).
tPU
Typical
Units
MHz
ms
1
Power-up sequence conditions.
2
VDDSE1 for non-32kHz outputs should be OFF when VDDA/VDD33 turn off, VBAT mode only supports 32.768kHz outputs from SE1.
3
Notes
When using a single-ended clock to CLKINB pin within differential clocking mode, CLKIN pin needs to be grounded and minimum input frequency
should be higher than 8MHz.
Electrical Characteristics
Supply voltage: all VDD ±5%, unless otherwise stated.
Table 18. Input Capacitance, LVCMOS Output Impedance, and Internal Pull-down Resistance
(TA = +25°C)
Symbol
Parameter
CIN
Input Capacitance (CLKIN, CLKINB, OE, SDA, SCL, DFC1:0)
Pull-down Resistor
ROUT
X1, X2
Minimum
Typical
Maximum
Units
3
7
pF
OE
200
kΩ
LVCMOS Output Driver Impedance (VDDSE = 1.8V)
22
Ω
LVCMOS Output Driver Impedance (VDDSE = 2.5V)
22
Ω
LVCMOS Output Driver Impedance (VDDSE = 3.3V)
22
Ω
Programmable Input Capacitance at X1 or X2
0
15
pF
Table 19. Crystal Characteristics
Parameter
Conditions
Minimum
Typical
Maximum
Units
Mode of Oscillation
—
Frequency
—
8
40
MHz
Frequency when 32.768kHz DCO is used
—
12
38
MHz
Equivalent Series Resistance (ESR)
—
10
100
Ω
Shunt Capacitance
—
2
7
pF
Load Capacitance (CL)
—
8
10
pF
Maximum Crystal Drive Level (CL = 8pF)
—
100
μW
©2019 Integrated Device Technology, Inc.
16
Fundamental
6
October 4, 2019
5P35021 Datasheet
Table 20. DC Electrical Characteristics (Industrial)1,2
Symbol
Parameter
Conditions
Minimum Typical Maximum Units
VDD = VDDSE1 = VDD33= 3.3; XTAL = 25MHz, PLL2/3
off, no output, PLLs disabled.
5
mA
VDD = VDDSE1 = VDD33 = 3.3V; XTAL = 25MHz, PLL2/3
off, no output, PLL1 = 600MHz.
13
mA
VDD = VDDSE1 = VDD33 = 2.5V; XTAL = 25MHz, PLL2/3
off, no output, PLL1 = 600MHz.
13
mA
VDD = VDDSE1 = VDD33 = 3.3V; XTAL = 25MHz, PLL1/3
off, no output, PLL2 = 1GHz.
11
mA
VDD = VDDSE1 = VDD33 = 2.5V; XTAL = 25MHz, PLL1/3
off, no output, PLL2 = 1GHz.
11
mA
VDD = VDDSE1 = VDD33 = 3.3V; XTAL = 25MHz, PLL1/2
off, no output, PLL3 = 480MHz.
4
mA
LVPECL, 500MHz, 3.3V VDDDIFF (DIFF1,2).
39
mA
LVPECL, 156.25MHz, 2.5V VDDDIFF (DIFF1,2).
33
mA
LVDS, 500MHz, 3.3V VDDDIFF (DIFF1,2).
13
mA
LVDS, 250MHz, 2.5V VDDDIFF (DIFF1,2).
8
mA
LPHCSL, 125MHz, 3.3V VDDDIFF, 2pF load (DIFF1,2).
7
mA
LPHCSL, 100MHz, 2.5V VDDDIFF, 2pF load (DIFF1,2).
8
mA
LVCMOS, 8MHz, 3.3V, VDDSE1 1,2 (SE1).
1
mA
(SE1).
1
mA
LVCMOS, 8MHz, 1.8V VDDSE1 1,2 (SE1).
1
mA
LVCMOS, 160MHz, 3.3V VDDSE1 (SE1).
9.5
mA
LVCMOS, 160MHz, 2.5V VDDSE1 1,2 (SE1).
5.0
mA
6.0
mA
PD asserted with VDDA, VDD33 and VDDSE1 on, I2C
programming, 32kHz running.
3.5
mA
Only VBAT = 3.3V and VDDSE1 is powered.
1.1
μA
IDDSUSPEND –
IDDSUSPEND – VDDSE1 3.3V Only VBAT = 3.3V and VDDSE1 is powered with 3.3V.
SEn 3.3V
3.4
μA
IDDSUSPEND –
IDDSUSPEND – VDDSE1 2.5V Only VBAT = 3.3V and VDDSE1 is powered with 2.5V.
SEn 2.5V
2.5
μA
IDDSUSPEND –
IDDSUSPEND – VDDSE1 1.8V Only VBAT = 3.3V and VDDSE1 is powered with 1.8V.
SEn 1.8V
1.8
μA
IDDCORE
IDD_PLL1 3
IDD_PLL2 3
IDD_PLL3 3
IDDOx
Core Supply Current
PLL1 Supply Current
PLL2 Supply Current
PLL3 Supply Current
Output Buffer Supply
Current
LVCMOS, 8MHz, 2.5V VDDSE1
1,2
1
LVCMOS, 160MHz, 1.8V VDDSE1
IDDPD
Power Down Current
IDDSUSPEND –
IDDSUSPEND – VBAT
VDD33
1
(SE1).
Single CMOS driver active.
2 SE1
3
1,2
current measured with 2 inches transmission line and 5pF load, DIFF clock current measured with 5 inches transmission line with 2pF loads.
IDDCORE = IDDA+ IDDD, no loads.
©2019 Integrated Device Technology, Inc.
17
October 4, 2019
5P35021 Datasheet
Table 21. DC Electrical Characteristics (Automotive)1,2
Symbol
Parameter
Conditions
Minimum Typical Maximum Units
VDD = VDDSE1 = VDD33= 3.3; XTAL = 25MHz, PLL2/3
off, no output, PLLs disabled.
5
mA
VDD = VDDSE1 = VDD33 = 3.3V; XTAL = 25MHz, PLL2/3
off, no output, PLL1 = 600MHz.
13
mA
VDD = VDDSE1 = VDD33 = 2.5V; XTAL = 25MHz, PLL2/3
off, no output, PLL1 = 600MHz.
13
mA
VDD = VDDSE1 = VDD33 = 3.3V; XTAL = 25MHz, PLL1/3
off, no output, PLL2 = 1GHz.
11
mA
VDD = VDDSE1 = VDD33 = 2.5V; XTAL = 25MHz, PLL1/3
off, no output, PLL2 = 1GHz.
11
mA
VDD = VDDSE = VDD33 = 3.3V; XTAL = 25MHz, PLL1/2
off, no output, PLL3 = 480MHz.
4.7
mA
LVPECL, 500MHz, 3.3V VDDDIFF (DIFF1,2).
39
mA
LVPECL, 156.25MHz, 2.5V VDDDIFF (DIFF1,2).
33
mA
LVDS, 500MHz, 3.3V VDDDIFF (DIFF1,2).
15
mA
LVDS, 250MHz, 2.5V VDDDIFF (DIFF1,2).
9
mA
LPHCSL, 125MHz, 3.3V VDDDIFF, 2pF load (DIFF1,2).
9
mA
LPHCSL, 100MHz, 2.5V VDDDIFF, 2pF load (DIFF1,2).
7
mA
LVCMOS, 8MHz, 3.3V, VDDSE1 1,2 (SE1).
1
mA
(SE1).
1
mA
LVCMOS, 8MHz, 1.8V VDDSE1 1,2 (SE1).
1
mA
9.5
mA
9
mA
6
mA
PD asserted with VDDA, VDD33 and VDDSE on, I2C
programming, 32kHz running.
3.5
mA
Only VBAT = 3.3V and VDDSE1 is powered.
1.1
μA
IDDSUSPEND –
IDDSUSPEND – VDDSE1 3.3V Only VBAT = 3.3V and VDDSE1 is powered with 3.3V.
SEn 3.3V
4.2
μA
IDDSUSPEND –
IDDSUSPEND – VDDSE1 2.5V Only VBAT = 3.3V and VDDSE1 is powered with 2.5V.
SEn 2.5V
3.2
μA
IDDSUSPEND –
IDDSUSPEND – VDDSE1 1.8V Only VBAT = 3.3V and VDDSE1 is powered with 1.8V.
SEn 1.8V
2.2
μA
IDDCORE
IDD_PLL1 3
IDD_PLL2 3
IDD_PLL3 3
IDDOx
Core Supply Current
PLL1 Supply Current
PLL2 Supply Current
PLL3 Supply Current
Output Buffer Supply
Current
LVCMOS, 8MHz, 2.5V VDDSE1
1,2
1
LVCMOS, 160MHz, 3.3V VDDSE1 (SE1).
LVCMOS, 160MHz, 2.5V VDDSE1 1,2 (SE1).
LVCMOS, 160MHz, 1.8V VDDSE1
IDDPD
Power Down Current
IDDSUSPEND –
IDDSUSPEND – VBAT
VDD33
1
(SE1).
Single CMOS driver active.
2 SE1
3
1,2
current measured with 2 inches transmission line and 5pF load, DIFF clock current measured with 5 inches transmission line with 2pF loads.
IDDCORE = IDDA+ IDDD, no loads.
©2019 Integrated Device Technology, Inc.
18
October 4, 2019
5P35021 Datasheet
Table 22. Input Parameters1,2
Symbol
Parameter
Conditions
Minimum
Typical
Maximum
Units
VIH
Input High Voltage – CLKIN
Single-ended inputs.
2.4
3.465
V
VIL
Input Low Voltage – CLKIN
Single-ended inputs.
GND - 0.3
0.8
V
Differential input.
325
3300
mV
VSWING Input Amplitude – CLKIN
dV/dt
Input Slew Rate – CLKIN
Differential input.
0.4
8
V/ns
VCM
Input Common Mode Voltage
Differential input.
200
2500
mV
IIL
Input Leakage Low Current for OE1
VIN = GND
-150
5
μA
IIH
Input Leakage High Current for OE1
VIN = 3.465V (industrial).
20
μA
IIH
Input Leakage High Current for OE1
VIN = 3.465V (automotive).
35
μA
Input Duty Cycle
Measurement from differential
waveform.
55
%
dTIN
1
Guaranteed by design and characterization, not 100% tested in production.
2
Slew rate measured through ±75mV window centered around differential zero.
45
Table 23. Power Consumption of 32.768kHz Output Only Operation
Supply voltage VDDSE = 1.8V–3.3V ±5%, TA = -40°C to +85°C.
Symbol
I_VBAT
VDDSE1
Parameter
Conditions
VBAT = 3.3V Power Input Current
Minimum Typical Maximum Units
1.1
μA
VDDSE1 = 1.8V Current
0.5 inch, no load, one output.
0.4
μA
VDDSE1 = 1.8V Current
2.0 inch, no load, one output.
1.0
μA
VDDSE1 = 1.8V Current
5.0 inch, no load, one output.
2.3
μA
VDDSE1 = 2.5V Current
0.5 inch, no load, one output.
0.6
μA
VDDSE1 = 2.5V Current
2.0 inch, no load, one output.
1.5
μA
VDDSE1 = 2.5V Current
5.0 inch, no load, one output.
3.1
μA
VDDSE1 = 3.3V Current
0.5 inch, no load, one output.
0.8
μA
VDDSE1 = 3.3V Current
2.0 inch, no load, one output.
1.9
μA
VDDSE1 = 3.3V Current
5.0 inch, no load, one output.
4.2
μA
©2019 Integrated Device Technology, Inc.
19
October 4, 2019
5P35021 Datasheet
Table 24. DC Electrical Characteristics – 3.3V LVCMOS
VDDSE = 3.3V ±5%, TA = -40°C to +105°C, unless stated otherwise.
Symbol
Parameter
Conditions
VOH
Output High Voltage
IOH = -15mA.
VOL
Output Low Voltage
IOL = 15mA.
IOZDD
Output Leakage Current
Minimum
Typical
2.4
Maximum
Units
VDDSE1
V
0.4 (industrial)
0.5 (automotive)
V
3
μA
Tri-state outputs, VDDSE1 = 3.465V.
Tri-state outputs, VDDSE1 = 0V.
-3
μA
VIH
Input High Voltage
Single-ended inputs – OE, SDA, SCL.
2
VDDSE1 + 0.3
V
VIL
Input Low Voltage
Single-ended inputs – OE, SDA, SCL.
GND - 0.3
0.8
V
VIH
Input High Voltage
Single-ended input – XIN/CLKIN
2.4
VDD33
V
VIL
Input Low Voltage
Single-ended input – XIN/CLKIN
GND - 0.3
0.8
V
Maximum
Units
VDDSE1
V
0.4 (industrial)
0.45 (automotive)
V
3
μA
Table 25. DC Electrical Characteristics – 2.5V LVCMOS
VDDSE = 2.5V ±5%, TA = -40°C to +105°C, unless stated otherwise.
Symbol
Parameter
Conditions
VOH
Output High Voltage
IOH = -12mA.
VOL
Output Low Voltage
IOL = 12mA.
IOZDD
Output Leakage Current
Minimum
Typical
0.7 × VDDSE1
Tri-state outputs, VDDSE1 = 2.625V.
Tri-state outputs, VDDSE1 = 0V.
-3
μA
VIH
Input High Voltage
Single-ended inputs – OE, SDA, SCL.
1.7
VDDSE1 + 0.3
V
VIL
Input Low Voltage
Single-ended inputs – OE, SDA, SCL.
GND - 0.3
0.2 × VDDSE1
V
Table 26. DC Electrical Characteristics – 1.8V LVCMOS
VDDSE = 1.8V ±5%, TA = -40°C to +105°C, unless stated otherwise.
Symbol
Parameter
Conditions
VOH
Output High Voltage
IOH = -8mA.
VOL
Output Low Voltage
IOL = 8mA.
IOZDD
Output Leakage Current
Minimum
0.7 × VDDSE1
Tri-state outputs, VDDSE1 = 1.89V.
Tri-state outputs, VDDSE1 = 0V.
Typical
Maximum
Units
VDDSE1
V
0.25 × VDDSE1
V
3
μA
-3
μA
VIH
Input High Voltage
Single-ended inputs.
0.65 × VDDSE1
VDDSE1 + 0.3
V
VIL
Input Low Voltage
Single-ended inputs.
GND - 0.3
0.35 × VDDSE1
V
©2019 Integrated Device Technology, Inc.
20
October 4, 2019
5P35021 Datasheet
Table 27. Electrical Characteristics – DIF 0.7V LPHCSL Differential Outputs
VDDDIFF = 3.3 V ±5% or 2.5V ±5%, TA = -40° to +105°C.
Symbol
Parameter
Minimum
Typical
Maximum
Units
Notes
1
2.5
4
V/ns
1,2,3,8
20
%
1,2,3,8
at < = 200MHz
dV/dt
Slew Rate
ΔdV/dt
Slew Rate Mismatch
VHIGH
Voltage High
660
800
1150
mV
1,6,7,8
VLOW
Voltage Low
-150
0
150
mV
1,6
VMAX
Maximum Voltage
1150
mV
1
VMIN
Minimum Voltage
-300
mV
1
VSWING
Voltage Swing
300
mV
1,2
VCROSS
Crossing Voltage Value
250
550
mV
1,4,6
ΔVCROSS
Crossing Voltage Variation
140
mV
1,5
Jitter-Cy/Cy
Jitter-STJ
TDC
Measured Frequency
360
Cycle to Cycle Jitter
10
ps
1,2
Short Term Period Jitter
70
ps
1,2
55
%
1,2
500
MHz
1,2
Duty Cycle
45
LPHCSL at Differential Output
1
Guaranteed by design and characterization, not 100% tested in production.
2
Measured from differential waveform.
3
Slew rate is measured through the VSWING voltage range centered around differential 0V. This results in a ±150mV window around differential 0V.
4
VCROSS is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock
rising and Clock# falling).
5
The total variation of all VCROSS measurements in any particular system. Note that this is a subset of VCROSS min/max (VCROSS absolute) allowed.
The intent is to limit VCROSS induced modulation by setting ΔVCROSS to be smaller than VCROSS absolute.
6
Measured from single-ended waveform.
7
Measured with scope averaging off, using statistics function. Variation is the difference between minimum and maximum.
8
Scope average on.
9
Differential clock amplitude setting = 01.
©2019 Integrated Device Technology, Inc.
21
October 4, 2019
5P35021 Datasheet
Table 28. Electrical Characteristics – LVDS
VDDDIFF = 3.3 V ±5% or 2.5V ±5%, TA = -40° to +105°C.
Symbol
Parameter
Minimum
Typical
Units
VOT (+)
Differential Output Voltage for the TRUE Binary State
247
454
mV
VOT (-)
Differential Output Voltage for the FALSE Binary State
-454
-247
mV
ΔVOT
Change in VOT between Complimentary Output States
50
mV
VOS
Output Common Mode Voltage (Offset Voltage) at 3.3V ±5%,
2.5V ±5%
1.125
1.25
1.375
0.8
0.875
0.95
Output Common Mode Voltage (Offset Voltage) 1.8V ±5%
ΔVOS
IOS
IOSD
Jitter-Cy/Cy
Jitter-STJ
Change in VOS between Complimentary Output States
Notes
V
50
mV
Outputs Short Circuit Current, VOUT+ or VOUT- = 0V or VDDDIFF
9
24
mA
Differential Outputs Short Circuit Current, VOUT+ = VOUT-
6
12
mA
Cycle to Cycle Jitter
20
ps
1,2
Short Term Period Jitter
100
ps
1,2
55
%
1,2
500
MHz
1,2
Maximum
Units
Notes
Duty Cycle
TDC
45
Measured Frequency LVDS at Differential Output
1
Maximum
Guaranteed by design and characterization, not 100% tested in production.
2
Measured from differential waveform.
3
Differential clock amplitude setting = 01.
Table 29. Electrical Characteristics – LVPECL
VDDDIFF = 3.3 V ±5% or 2.5V ±5%, TA = -40° to +105°C.
Symbol
Parameter
Minimum
VOH
Output Voltage HIGH, terminated through 50Ω tied to
VDDDIFF - 2V
VDDDIFF - 1.19
VDDDIFF - 0.69
V
VOL
Output Voltage LOW, terminated through 50Ω tied to
VDDDIFF - 2V
VDDDIFF - 1.94
VDDDIFF - 1.4
V
1.1
2
V
2,3
VSWING
Jitter-Cy/Cy
Jitter-STJ
TDC
Output Differential Voltage Swing (see Figure 9)
Cycle to Cycle Jitter
20
ps
1,2
Short Term Period Jitter
100
ps
1,2
55
%
1,2
500
MHz
1,2
Duty Cycle
45
Measured Frequency LVPECL at Differential Output
1
Guaranteed by design and characterization, not 100% tested in production.
2
Measured from differential waveform.
3 Differential
Typical
clock amplitude setting = 01.
©2019 Integrated Device Technology, Inc.
22
October 4, 2019
5P35021 Datasheet
Figure 9. Output Differential Voltage Swing
Differential Voltage
VSWING
0V
©2019 Integrated Device Technology, Inc.
Time
23
October 4, 2019
5P35021 Datasheet
AC Electrical Characteristics
VDDSE = 3.3V ±5% or 2.5V ±5% or 1.8V ±5%, TA = -40°C to +105°C (spread spectrum off), unless stated otherwise.
Table 30. AC Electrical Characteristics
Symbol
fIN 1
fOUT
Parameter
Input Frequency
Output Frequency
Conditions
Minimum
Typical
Maximum Units
Input frequency limit (XIN).
8
40
MHz
Input frequency limit (XIN) when enable DCO.
12
38
MHz
Input frequency limit (differential CLKIN).
8
125
MHz
Input frequency limit (LVCMOS to X1).
1
125
MHz
Single-ended clock output limit (LVCMOS).
1
< 125
160
MHz
Differential clock output limit (LPHCSL).
1
< 333
500
MHz
Differential clock output limit (LVDS).
1
< 333
500
MHz
Differential clock output limit (LVPECL).
1
500
MHz
fVCO1
VCO Frequency Range of
VCO operating frequency range.
PLL1
300
600
MHz
fVCO2
VCO Frequency Range of
VCO operating frequency range.
PLL2
400
1200
MHz
fVCO3
VCO Frequency Range of
VCO operating frequency range.
PLL3
300
800
MHz
Input Duty Cycle
Duty cycle.
45
55
%
LVCMOS, Single-ended.
45
55
%
DIFF1 / DIFF2 configured as a pair of LVCMOS outputs,
180° out of phase (crossing point measurements).
40
60
%
40
60
%
t2
t3
Output Duty Cycle
Output Duty Cycle – REF Reference clock output or SE1 fan out clock.
t4
Rise/Fall, SLEW[0] = 1
Single-ended LVCMOS output clock rise and fall time,
20% to 80% of VDDSE1.8V–3.3V.
1.0
Rise/Fall, SLEW[0] = 0
Single-ended LVCMOS output clock rise and fall time,
20% to 80% of VDDSE1.8V–3.3V.
1.1
Rise Time
LVDS, 20% to 80%.
300
Fall Time
LVDS, 80% to 20%.
300
Rise Time
LVPECL, 20% to 80%.
300
Fall Time
LVPECL, 80% to 20%.
300
4
t5 5
©2019 Integrated Device Technology, Inc.
24
ns
ps
October 4, 2019
5P35021 Datasheet
Table 30. AC Electrical Characteristics (Cont.)
Symbol
Parameter
Conditions
Cycle-to-cycle jitter (peak-to-peak), multiple output
frequencies switching, differential outputs (1.8V to 3.3V
nominal output voltage).
SE1 = 25MHz
DIFF1/2 = 100MHz
Minimum
Typical
Maximum Units
50
ps
RMS phase jitter (12kHz to 20MHz integration range)
differential output, VDDSE = 3.465V, 25MHz crystal.
SE1 = 25MHz
DIFF1/2 = 100MHz
1.1
(industrial)
1.5
(automotive)
ps
RMS phase jitter (12kHz to 20 MHz integration rage)
REF output.
0.3
ps
Output Skew
Skew between the same frequencies, with outputs using
the same driver format.
75
ps
t8 2
Lock Time
PLL lock time from power-up.
t9
Lock Time
32.768kHz clock low power power-up time.
Lock Time
PLL lock time from shutdown mode.
t6
t7
t9
3
Clock Jitter
20
ms
10
100
ms
0.1
2
ms
1
Practical lower frequency is determined by loop filter settings.
2
Includes loading the configuration bits from EPROM to PLL registers. It does not include EPROM programming/write time.
3
Actual PLL lock time depends on the loop configuration.
4
t4 Rise/Fall time measurements are based on 5pF load.
5
t5 Rise/Fall time measurements are based on 2pF load.
©2019 Integrated Device Technology, Inc.
25
October 4, 2019
5P35021 Datasheet
PCI Express Jitter Specifications
VDDDIFF = 3.3V ±5% or 2.5V ±5%, TA = -40°C to +105°C.
Table 31. PCI Express Jitter Specifications
Industry
Specification
Units
Notes
30
86
ps
1,4
Phase Jitter
RMS
ƒ = 100MHz/125MHz, 25MHz
crystal input.
High band: 1.5MHz – Nyquist
(clock frequency/2).
2.56
3.10
ps
2,4
Phase Jitter
RMS
ƒ = 100MHz/125MHz, 25MHz
crystal input.
Low band: 10kHz – 1.5MHz.
0.7
3.0
ps
2,4
Phase Jitter
RMS
ƒ = 100MHz/125MHz, 25MHz
crystal input.
Evaluation band: 0Hz –
Nyquist (clock frequency/2).
0.8
1.0
ps
3,4
Symbol
Parameter
Conditions
tJ (PCIe Gen1)
Phase Jitter
Peak-to-Peak
ƒ = 100MHz/125MHz, 25MHz
crystal input.
Evaluation band: 0Hz –
Nyquist (clock frequency/2).
tREFCLK_HF_RMS
(PCIe Gen2)
tREFCLK_LF_RMS
(PCIe Gen2)
tREFCLK_RMS
(PCIe Gen3)
Minimum
Typical
Maximum
Note: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium
has been reached under these conditions.
1 Peak-to-peak
2
jitter after applying system transfer function for the common clock architecture. Maximum limit for PCI Express Gen1.
RMS jitter after applying the two evaluation bands to the two transfer functions defined in the common clock architecture and reporting the worst
case results for each evaluation band. Maximum limit for PCI Express Gen2 is 3.1ps RMS for tREFCLK_HF_RMS (high band) and 3.0ps RMS for
tREFCLK_LF_RMS (low band).
3
RMS jitter after applying system transfer function for the common clock architecture. This specification is based on the PCI_Express_Base_r3.0 10
Nov. 2010 specification, and is subject to change pending the final release version of the specification.
4
This parameter is guaranteed by characterization. Not tested in production.
Spread Spectrum Generation Specifications
Table 32. Spread Spectrum Generation Specifications
Symbol
Parameter
fOUT
fMOD
Output Frequency
1
Output frequency range.
2
Spread Value
Amount of spread value (programmable) – down spread.
Spread% Value
Variation of spread range.
1
Input frequency dependent (see programming guide).
2
Design target.
©2019 Integrated Device Technology, Inc.
Minimum Typical Maximum
1
Modulation Frequency Modulation frequency.
fSPREAD
%tolerance
Conditions
26
350
Units
MHz
30 to 63
kHz
-0.5% to -2%
%fOUT
±15
%
October 4, 2019
5P35021 Datasheet
I2C Bus Characteristics
Table 33. I2C Bus DC Characteristics
Symbol
Parameter
VIH
Input High Level
VIL
Input Low Level
VHYS
Conditions
Minimum
Typical
Maximum
Units
0.7 × VDD33
V
0.3 × VDD33
Hysteresis of Inputs
IIN
Input Leakage Current
VOL
Output Low Voltage
V
0.05 × VDD33
V
IOL = 3mA.
±1
μA
0.4
V
Table 34. I2C Bus AC Characteristics
Symbol
FSCLK
Parameter
Conditions
Minimum
Serial Clock Frequency (SCL)
Typical
Maximum
Units
100
400
kHz
Bus Free Time between STOP and START
1.3
μs
tSU:START
Setup Time, START
0.6
μs
tHD:START
Hold Time, START
0.6
μs
tSU:DATA
Setup Time, Data Input (SDA)
100
ns
tHD:DATA
Hold Time, Data Input (SDA)
1
0
μs
tOVD
Output Data Valid from Clock
0.9
μs
CB
Capacitive Load for Each Bus Line
400
pF
tR
Rise Time, Data and Clock (SDA, SCL)
20 + 0.1 × CB
300
ns
tF
Fall Time, Data and Clock (SDA, SCL)
20 + 0.1 × CB
300
ns
tBUF
tHIGH
High Time, Clock (SCL)
0.6
μs
tLOW
Low Time, Clock (SCL)
1.3
μs
Setup Time, STOP
0.6
μs
tSU:STOP
1
A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the VIH(MIN) of the SCL signal) to bridge the undefined
region of the falling edge of SCL.
I2C Mode Operations
The device acts as a slave device on the I2C bus using one of the four I2C addresses (0xD0, 0xD2, 0xD4, or 0xD6) to allow multiple
devices to be used in the system. The interface accepts byte-oriented block write and block read operations. Two address bytes specify
the register address of the byte position of the first register to write or read. Data bytes (registers) are accessed in sequential order from
the lowest to the highest byte (most significant bit first). Read and write block transfers can be stopped after any complete byte transfer.
During a write operation, data will not be moved into the registers until the STOP bit is received, at which point, all data received in the
block write will be written simultaneously.
For full electrical I2C compliance, it is recommended to use external pull-up resistors for SDATA and SCLK. The internal pull-down
resistors have a size of 100kΩ typical.
©2019 Integrated Device Technology, Inc.
27
October 4, 2019
5P35021 Datasheet
Figure 10. I2C Slave Read and Write Cycle Sequencing
Current Read
S
Dev Addr + R
A
Data 0
A
Data 1
A
A
Data n
Abar
P
Sequential Read
S
Dev Addr + W
A
Reg start Addr
A
A
Reg start Addr
A
Sr
Dev Addr + R
A
Data 0
Data 1
A
A
Data 1
A
A
Data n
Abar
P
Sequential Write
S
Dev Addr + W
Data 0
A
A
Data n
A
P
S = start
Sr = repeated start
A = acknowledge
Abar = none acknowledge
P = stop
from master to slave
from slave to master
Byte 0: General Control
Byte 00h
Name
Control Function
Type
0
1
PWD
Bit 7
OTP_Burned
OTP memory programming
indication
R/W
OTP memory
non-programmed
OTP memory
programmed
0
Bit 6
I2C_addr[1]
I2C address select bit 1
R/W
Bit 5
I2C_addr[0]
I2C address select bit 0
R/W
Bit 4
PLL1_SSEN
PLL1 Spread Spectrum enable
R/W
disable
enable
0
Bit 3
DIV1_src_sel
Divider 1 source clock select
R/W
PLL1
Xtal
0
Bit 2
PLL3_refin_sel
PLL3 source selection
R/W
Xtal
Seed (DIV2)
0
Bit 1
EN_CLKIN
Enable CLKIN
R/W
disable
enable
0
Bit 0
OTP_protect
OTP memory protection
R/W
read/write
write locked
0
0
00: D0 / 01: D2
10: D4 / 11: D6
0
Byte 1: Dash Code ID (optional)
Byte 01h
Name
Control Function
Type
0
1
PWD
Bit 7
DashCode ID[7]
Dash code ID
R/W
—
—
0
Bit 6
DashCode ID[6]
Dash code ID
R/W
—
—
0
Bit 5
DashCode ID[5]
Dash code ID
R/W
—
—
0
Bit 4
DashCode ID[4]
Dash code ID
R/W
—
—
0
Bit 3
DashCode ID[3]
Dash code ID
R/W
—
—
0
Bit 2
DashCode ID[2]
Dash code ID
R/W
—
—
0
Bit 1
DashCode ID[1]
Dash code ID
R/W
—
—
0
Bit 0
DashCode ID[0]
Dash code ID
R/W
—
—
0
©2019 Integrated Device Technology, Inc.
28
October 4, 2019
5P35021 Datasheet
Byte 2: Crystal Cap Setting
Byte 02h
Name
Control Function
Type
0
1
PWD
Bit 7
Xtal_Cap[7]
Xtal cap load trimming bits
R/W
0
Bit 6
Xtal_Cap[6]
Xtal cap load trimming bits
R/W
0
Bit 5
Xtal_Cap[5]
Xtal cap load trimming bits
R/W
0
x1 x2
x4 x8
total 15pf
Bit 4
Xtal_Cap[4]
Xtal cap load trimming bits
R/W
1
Bit 3
Xtal_Cap[3]
Xtal cap load trimming bits
R/W
Bit 2
Xtal_Cap[2]
Xtal cap load trimming bits
R/W
0
Bit 1
Xtal_Cap[1]
Xtal cap load trimming bits
R/W
0
Bit 0
Xtal_Cap[0]
Xtal cap load trimming bits
R/W
1
0
Byte 3: PLL3 M Divider
Byte 03h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL3_MDIV1
PLL3 source clock divider
R/W
disable M DIV1
bypadd divider (/1)
0
Bit 6
PLL3_MDIV2
PLL3 source clock divider
R/W
disable M DIV2
bypadd divider (/2)
0
Bit 5
PLL3 M_DIV[5]
PLL3 reference integer divider
R/W
3–64
default 25
0
Bit 4
PLL3 M_DIV[4]
PLL3 reference integer divider
R/W
—
—
1
Bit 3
PLL3 M_DIV[3]
PLL3 reference integer divider
R/W
—
—
1
Bit 2
PLL3 M_DIV[2]
PLL3 reference integer divider
R/W
—
—
0
Bit 1
PLL3 M_DIV[1]
PLL3 reference integer divider
R/W
—
—
0
Bit 0
PLL3 M_DIV[0]
PLL3 reference integer divider
R/W
—
—
1
Byte 4: PLL3 N Divider
Byte 04h
Name
Control Function
Type
Bit 7
PLL3 N_DIV[7]
PLL3 VCO feedback integer divider bit7
R/W
1
Bit 6
PLL3 N_DIV[6]
PLL3 VCO feedback integer divider bit6
R/W
1
Bit 5
PLL3 N_DIV[5]
PLL3 VCO feedback integer divider bit5
R/W
1
Bit 4
PLL3 N_DIV[4]
PLL3 VCO feedback integer divider bit4
R/W
Bit 3
PLL3 N_DIV[3]
PLL3 VCO feedback integer divider bit3
R/W
Bit 2
PLL3 N_DIV[2]
PLL3 VCO feedback integer divider bit2
R/W
0
Bit 1
PLL3 N_DIV[1]
PLL3 VCO feedback integer divider bit1
R/W
0
Bit 0
PLL3 N_DIV[0]
PLL3 VCO feedback integer divider bit0
R/W
0
©2019 Integrated Device Technology, Inc.
29
0
1
PWD
12–2048, default VCO setting is
480MHz
0
0
October 4, 2019
5P35021 Datasheet
Byte 5: PLL3 Loop Filter Setting and N Divider 10:8
Byte 05h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL3_R100K
PLL3 Loop filter resister 100kohm
R/W
bypass
plus 100kohm
0
Bit 6
PLL3_R50K
PLL3 Loop filter resister 50kohm
R/W
bypass
plus 50kohm
0
Bit 5
PLL3_R25K
PLL3 Loop filter resister 25kohm
R/W
bypass
plus 25kohm
0
Bit 4
PLL3_R12.5K
PLL3 Loop filter resister 12.5kohm
R/W
bypass
plus 12.5kohm
1
Bit 3
PLL3_R6K
PLL3 Loop filter resister 6kohm
R/W
bypass
only 6kohm
applied
0
Bit 2
PLL3 N_DIV[10]
PLL3 VCO feedback integer divider bit10
R/W
Bit 1
PLL3 N_DIV[9]
PLL3 VCO feedback integer divider bit9
R/W
Bit 0
PLL3 N_DIV[8]
PLL3 VCO feedback integer divider bit8
R/W
0
12–2048, default VCO setting is
480MHz
0
1
Byte 6: PLL3 Charge Pump Control
Byte 06h
Name
Control Function
Type
0
1
PWD
Bit 7
OUTDIV 3 Source
Output divider 3 source clock selection
R/W
PLL2
PLL3
0
Bit 6
PLL3_CP_8X
PLL3 charge pump control
R/W
—
x8
1
Bit 5
PLL3_CP_4X
PLL3 charge pump control
R/W
—
x4
1
Bit 4
PLL3_CP_2X
PLL3 charge pump control
R/W
—
x2
0
Bit 3
PLL3_CP_1X
PLL3 charge pump control
R/W
—
x1
1
Bit 2
PLL3_CP_/24
PLL3 charge pump control
R/W
—
/24
1
Bit 1
PLL3_CP_/3
PLL3 charge pump control
R/W
—
/3
0
Bit 0
PLL3_SIREF
PLL3 SiRef current selection
R/W
10μA
20μA
0
Formula: (iRef (10μA) × (1 + SIREF) × (1 × 1X + 2 × 2X + 4 × 4X + 8 × 8X + 16 × 16X))/((24 × /24) + (3 × /3))
Byte 7: PLL1 Control and OUTDIV5 Divider
Byte 07h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1_MDIV_Doubler
PLL1 reference clock doubler
R/W
disable
enable
0
Bit 6
PLL1_SIREF
PLL1 SiRef current selection
R/W
10.8μA
21.6μA
0
Bit 5
PLL1_EN_CH2
PLL1 output Channel 2 control
R/W
disable
enable
1
Bit 4
PLL1_EN_3rdpole
PLL1 3rd Pole control
R/W
disable
enable
0
Bit 3
OUTDIV5[3]
Output divider5 control bit 3
R/W
—
—
0
Bit 2
OUTDIV5[2]
Output divider5 control bit 2
R/W
—
—
0
Bit 1
OUTDIV5[1]
Output divider5 control bit 1
R/W
—
—
1
Bit 0
OUTDIV5[0]
Output divider5 control bit 0
R/W
—
—
1
©2019 Integrated Device Technology, Inc.
30
October 4, 2019
5P35021 Datasheet
Byte 8: PLL1 M Divider
Byte 08h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1_MDIV1
PLL3 VCO reference clock divider 1
R/W
disable M DIV1
bypass divider (/1)
0
Bit 6
PLL1_MDIV2
PLL3 VCO reference clock divider 2
R/W
disable M DIV2
bypass divider (/2)
0
Bit 5
PLL1 M_DIV[5]
PLL1 reference clock divider control bit 5
R/W
0
Bit 4
PLL1 M_DIV[4]
PLL1 reference clock divider control bit 4
R/W
1
Bit 3
PLL1 M_DIV[3]
PLL1 reference clock divider control bit 3
R/W
Bit 2
PLL1 M_DIV[2]
PLL1 reference clock divider control bit 2
R/W
Bit 1
PLL1 M_DIV[1]
PLL1 reference clock divider control bit 1
R/W
0
Bit 0
PLL1 M_DIV[0]
PLL1 reference clock divider control bit 0
R/W
1
1
3–64, default is 25
0
Byte 9: PLL1 VCO N Divider
Byte 09h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1 N_DIV[7]
PLL1 VCO feedback divider control bit 7
R/W
0
Bit 6
PLL1 N_DIV[6]
PLL1 VCO feedback divider control bit 6
R/W
1
Bit 5
PLL1 N_DIV[5]
PLL1 VCO feedback divider control bit 5
R/W
0
Bit 4
PLL1 N_DIV[4]
PLL1 VCO feedback divider control bit 4
R/W
Bit 3
PLL1 N_DIV[3]
PLL1 VCO feedback divider control bit 3
R/W
Bit 2
PLL1 N_DIV[2]
PLL1 VCO feedback divider control bit 2
R/W
0
Bit 1
PLL1 N_DIV[1]
PLL1 VCO feedback divider control bit 1
R/W
0
Bit 0
PLL1 N_DIV[0]
PLL1 VCO feedback divider control bit 0
R/W
0
1
12–2048, default is 600
1
Byte 10: PLL Loop Filter and N Divider
Byte 0Ah
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1_R100K
PLL1 Loop filter resister 100kohm
R/W
bypass
plus 100kohm
1
Bit 6
PLL1_R50K
PLL1 Loop filter resister 50kohm
R/W
bypass
plus 50kohm
0
Bit 5
PLL1_R25K
PLL1 Loop filter resister 25kohm
R/W
bypass
plus 25kohm
1
Bit 4
PLL1_R12.5K
PLL1 Loop filter resister 12.5kohm
R/W
bypass
plus 12.5kohm
1
Bit 3
PLL1_R1.0K
PLL1 Loop filter resister 1kohm
R/W
bypass
only 1.0kohm applied
0
Bit 2
PLL1 N_DIV[10]
PLL1 VCO feedback integer divider bit10
R/W
Bit 1
PLL1 N_DIV[9]
PLL1 VCO feedback integer divider bit9
R/W
Bit 0
PLL1 N_DIV[8]
PLL1 VCO feedback integer divider bit8
R/W
©2019 Integrated Device Technology, Inc.
31
0
12–2048, default is 600
1
0
October 4, 2019
5P35021 Datasheet
Byte 11: PLL1 Charge Pump
Byte 0Bh
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1_CP_32X
PLL1 charge pump control
R/W
—
x32
0
Bit 6
PLL1_CP_16X
PLL1 charge pump control
R/W
—
x16
0
Bit 5
PLL1_CP_8X
PLL1 charge pump control
R/W
—
x8
0
Bit 4
PLL1_CP_4X
PLL1 charge pump control
R/W
—
x4
0
Bit 3
PLL1_CP_2X
PLL1 charge pump control
R/W
—
x2
0
Bit 2
PLL1_CP_1X
PLL1 charge pump control
R/W
—
x1
1
Bit 1
PLL1_CP_/24
PLL1 charge pump control
R/W
—
/24
1
Bit 0
PLL1_CP_/3
PLL1 charge pump control
R/W
—
/3
0
Byte 12: PLL1 Spread Spectrum Control
Byte 0Ch
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1_SS_REFDIV23
PLL1 Spread Spectrum control - Ref divider 23
R/W
—
—
0
Bit 6
PLL1_SS_REFDIV[6]
PLL1 Spread Spectrum control - Ref divider 6
R/W
—
—
0
Bit 5
PLL1_SS_REFDIV[5]
PLL1 Spread Spectrum control - Ref divider 5
R/W
—
—
0
Bit 4
PLL1_SS_REFDIV[4]
PLL1 Spread Spectrum control - Ref divider 4
R/W
—
—
0
Bit 3
PLL1_SS_REFDIV[3]
PLL1 Spread Spectrum control - Ref divider 3
R/W
—
—
0
Bit 2
PLL1_SS_REFDIV[2]
PLL1 Spread Spectrum control - Ref divider 2
R/W
—
—
0
Bit 1
PLL1_SS_REFDIV[1]
PLL1 Spread Spectrum control - Ref divider 1
R/W
—
—
0
Bit 0
PLL1_SS_REFDIV[0]
PLL1 Spread Spectrum control - Ref divider 0
R/W
—
—
0
Byte 13: PLL1 Spread Spectrum Control
Byte 0Dh
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1_SS_FBDIV[7]
PLL1 Spread Spectrum - feedback divider 7
R/W
—
—
0
Bit 6
PLL1_SS_FBDIV[6]
PLL1 Spread Spectrum - feedback divider 6
R/W
—
—
0
Bit 5
PLL1_SS_FBDIV[5]
PLL1 Spread Spectrum - feedback divider 5
R/W
—
—
0
Bit 4
PLL1_SS_FBDIV[4]
PLL1 Spread Spectrum - feedback divider 4
R/W
—
—
0
Bit 3
PLL1_SS_FBDIV[3]
PLL1 Spread Spectrum - feedback divider 3
R/W
—
—
0
Bit 2
PLL1_SS_FBDIV[2]
PLL1 Spread Spectrum - feedback divider 2
R/W
—
—
0
Bit 1
PLL1_SS_FBDIV[1]
PLL1 Spread Spectrum - feedback divider 1
R/W
—
—
0
Bit 0
PLL1_SS_FBDIV[0]
PLL1 Spread Spectrum - feedback divider 0
R/W
—
—
0
©2019 Integrated Device Technology, Inc.
32
October 4, 2019
5P35021 Datasheet
Byte 14: PLL1 Spread Spectrum Control
Byte 0Eh
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1_SS_FBDIV[15]
PLL1 Spread Spectrum - feedback divider 15
R/W
—
—
0
Bit 6
PLL1_SS_FBDIV[14]
PLL1 Spread Spectrum - feedback divider 14
R/W
—
—
0
Bit 5
PLL1_SS_FBDIV[13]
PLL1 Spread Spectrum - feedback divider 13
R/W
—
—
0
Bit 4
PLL1_SS_FBDIV[12]
PLL1 Spread Spectrum - feedback divider 12
R/W
—
—
0
Bit 3
PLL1_SS_FBDIV[11]
PLL1 Spread Spectrum - feedback divider 11
R/W
—
—
0
Bit 2
PLL1_SS_FBDIV[10]
PLL1 Spread Spectrum - feedback divider 10
R/W
—
—
0
Bit 1
PLL1_SS_FBDIV[09]
PLL1 Spread Spectrum - feedback divider 9
R/W
—
—
0
Bit 0
PLL1_SS_FBDIV[08]
PLL1 Spread Spectrum - feedback divider 8
R/W
—
—
0
Byte 15: Output Divider1 Control
Byte 0Fh
Name
Control Function
Type
0
1
PWD
Bit 7
OUTDIV1[3]
Output divider1 control bit 3
R/W
—
—
0
Bit 6
OUTDIV1[2]
Output divider1 control bit 2
R/W
—
—
0
Bit 5
OUTDIV1[1]
Output divider1 control bit 1
R/W
—
—
1
Bit 4
OUTDIV1[0]
Output divider1 control bit 0
R/W
—
—
1
Bit 3
OUTDIV2[3]
Output divider2 control bit 3
R/W
—
—
0
Bit 2
OUTDIV2[2]
Output divider2 control bit 2
R/W
—
—
0
Bit 1
OUTDIV2[1]
Output divider2 control bit 1
R/W
—
—
1
Bit 0
OUTDIV2[0]
Output divider2 control bit 0
R/W
—
—
1
0
1
Byte 16: PLL2 Integer Feedback Divide
Byte 10h
Name
Control Function
Type
PWD
Bit 7
Reserved
0
Bit 6
Reserved
0
Bit 5
Reserved
0
Bit 4
Reserved
0
Bit 3
Reserved
0
Bit 2
PLL2_FB_INT[10]
PLL2 feedback integer divider 10
R/W
—
—
0
Bit 1
PLL2_FB_INT[9]
PLL2 feedback integer divider 9
R/W
—
—
0
Bit 0
PLL2_FB_INT[8]
PLL2 feedback integer divider 8
R/W
—
—
0
©2019 Integrated Device Technology, Inc.
33
October 4, 2019
5P35021 Datasheet
Byte 17: PLL2 Integer Feedback Divider
Byte 11h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_FB_INT_DIV[7]
PLL2 feedback integer divider 7
R/W
—
—
0
Bit 6
PLL2_FB_INT_DIV[6]
PLL2 feedback integer divider 6
R/W
—
—
0
Bit 5
PLL2_FB_INT_DIV[5]
PLL2 feedback integer divider 5
R/W
—
—
1
Bit 4
PLL2_FB_INT_DIV[4]
PLL2 feedback integer divider 4
R/W
—
—
0
Bit 3
PLL2_FB_INT_DIV[3]
PLL2 feedback integer divider 3
R/W
—
—
1
Bit 2
PLL2_FB_INT_DIV[2]
PLL2 feedback integer divider 2
R/W
—
—
0
Bit 1
PLL2_FB_INT_DIV[1]
PLL2 feedback integer divider 1
R/W
—
—
0
Bit 0
PLL2_FB_INT_DIV[0]
PLL2 feedback integer divider 0
R/W
—
—
0
Byte 18: PLL2 Fractional Feedback Divider
Byte 12h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_FB_FRC_DIV[7]
PLL2 feedback fractional divider 7
R/W
—
—
0
Bit 6
PLL2_FB_FRC_DIV[6]
PLL2 feedback fractional divider 6
R/W
—
—
0
Bit 5
PLL2_FB_FRC_DIV[5]
PLL2 feedback fractional divider 5
R/W
—
—
0
Bit 4
PLL2_FB_FRC_DIV[4]
PLL2 feedback fractional divider 4
R/W
—
—
0
Bit 3
PLL2_FB_FRC_DIV[3]
PLL2 feedback fractional divider 3
R/W
—
—
0
Bit 2
PLL2_FB_FRC_DIV[2]
PLL2 feedback fractional divider 2
R/W
—
—
0
Bit 1
PLL2_FB_FRC_DIV[1]
PLL2 feedback fractional divider 1
R/W
—
—
0
Bit 0
PLL2_FB_FRC_DIV[0]
PLL2 feedback fractional divider 0
R/W
—
—
0
Byte 19: PLL2 Fractional Feedback Divider
Byte 13h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_FB_FRC_DIV[15]
PLL2 feedback fractional divider 15
R/W
—
—
0
Bit 6
PLL2_FB_FRC_DIV[14]
PLL2 feedback fractional divider 14
R/W
—
—
0
Bit 5
PLL2_FB_FRC_DIV[13]
PLL2 feedback fractional divider 13
R/W
—
—
0
Bit 4
PLL2_FB_FRC_DIV[12]
PLL2 feedback fractional divider 12
R/W
—
—
0
Bit 3
PLL2_FB_FRC_DIV[11]
PLL2 feedback fractional divider 11
R/W
—
—
0
Bit 2
PLL2_FB_FRC_DIV[10]
PLL2 feedback fractional divider 10
R/W
—
—
0
Bit 1
PLL2_FB_FRC_DIV[9]
PLL2 feedback fractional divider 9
R/W
—
—
0
Bit 0
PLL2_FB_FRC_DIV[8]
PLL2 feedback fractional divider 8
R/W
—
—
0
©2019 Integrated Device Technology, Inc.
34
October 4, 2019
5P35021 Datasheet
Byte 20: PLL2 Spread Spectrum Control
Byte 14h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_STEP[7]
PLL2 spread step size control bit 7
R/W
—
—
0
Bit 6
PLL2_STEP[6]
PLL2 spread step size control bit 6
R/W
—
—
0
Bit 5
PLL2_STEP[5]
PLL2 spread step size control bit 5
R/W
—
—
0
Bit 4
PLL2_STEP[4]
PLL2 spread step size control bit 4
R/W
—
—
0
Bit 3
PLL2_STEP[3]
PLL2 spread step size control bit 3
R/W
—
—
0
Bit 2
PLL2_STEP[2]
PLL2 spread step size control bit 2
R/W
—
—
0
Bit 1
PLL2_STEP[1]
PLL2 spread step size control bit 1
R/W
—
—
0
Bit 0
PLL2_STEP[0]
PLL2 spread step size control bit 0
R/W
—
—
0
Byte 21: PLL2 Spread Spectrum Control
Byte 15h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_STEP[15]
PLL2 spread step size control bit 15
R/W
—
—
0
Bit 6
PLL2_STEP[14]
PLL2 spread step size control bit 14
R/W
—
—
0
Bit 5
PLL2_STEP[13]
PLL2 spread step size control bit 13
R/W
—
—
0
Bit 4
PLL2_STEP[12]
PLL2 spread step size control bit 12
R/W
—
—
0
Bit 3
PLL2_STEP[11]
PLL2 spread step size control bit 11
R/W
—
—
0
Bit 2
PLL2_STEP[10]
PLL2 spread step size control bit 10
R/W
—
—
0
Bit 1
PLL2_STEP[9]
PLL2 spread step size control bit 9
R/W
—
—
0
Bit 0
PLL2_STEP[8]
PLL2 spread step size control bit 8
R/W
—
—
0
Byte 22: PLL2 Spread Spectrum Control
Byte 16h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_STEP_DELTA[7]
PLL2 spread step size control delta bit 7
R/W
—
—
0
Bit 6
PLL2_STEP_DELTA[6]
PLL2 spread step size control delta bit 6
R/W
—
—
0
Bit 5
PLL2_STEP_DELTA[5]
PLL2 spread step size control delta bit 5
R/W
—
—
0
Bit 4
PLL2_STEP_DELTA[4]
PLL2 spread step size control delta bit 4
R/W
—
—
0
Bit 3
PLL2_STEP_DELTA[3]
PLL2 spread step size control delta bit 3
R/W
—
—
0
Bit 2
PLL2_STEP_DELTA[2]
PLL2 spread step size control delta bit 2
R/W
—
—
0
Bit 1
PLL2_STEP_DELTA[1]
PLL2 spread step size control delta bit 1
R/W
—
—
0
Bit 0
PLL2_STEP_DELTA[0]
PLL2 spared step size control delta bit 0
R/W
—
—
0
©2019 Integrated Device Technology, Inc.
35
October 4, 2019
5P35021 Datasheet
Byte 23: PLL2 Period Control
Byte 17h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_PERIOD[7]
PLL2 period control bit 7
R/W
—
—
0
Bit 6
PLL2_PERIOD[6]
PLL2 period control bit 6
R/W
—
—
0
Bit 5
PLL2_PERIOD[5]
PLL2 period control bit 5
R/W
—
—
0
Bit 4
PLL2_PERIOD[4]
PLL2 period control bit 4
R/W
—
—
0
Bit 3
PLL2_PERIOD[3]
PLL2 period control bit 3
R/W
—
—
0
Bit 2
PLL2_PERIOD[2]
PLL2 period control bit 2
R/W
—
—
0
Bit 1
PLL2_PERIOD[1]
PLL2 period control bit 1
R/W
—
—
0
Bit 0
PLL2_PERIOD[0]
PLL2 period control bit 0
R/W
—
—
0
Byte 24: PLL2 Control Register
Byte 18h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_PERIOD[9]
PLL2 period control bit 9
R/W
—
—
0
Bit 6
PLL2_PERIOD[8]
PLL2 period control bit 8
R/W
—
—
0
Bit 5
PLL2_SSEN
PLL2 spread spectrum enable
R/W
disable
enable
0
Bit 4
PLL2_R100K
PLL2 Loop filter resister 100kohm
—
bypass
plus 100kohm
0
Bit 3
PLL2_R50K
PLL2 Loop filter resister 50kohm
—
bypass
plus 50kohm
0
Bit 2
PLL2_R25K
PLL2 Loop filter resister 25kohm
—
bypass
plus 25kohm
0
Bit 1
PLL2_R12.5K
PLL2 Loop filter resister 12.5kohm
—
bypass
plus 12.5kohm
0
Bit 0
PLL2_R6K
PLL2 Loop filter resister 6kohm
—
bypass
only 6kohm applied
0
Byte 25: PLL2 Charge Pump Control
Byte 19h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_CP_16X
PLL2 charge pump control
R/W
—
x16
0
Bit 6
PLL2_CP_8X
PLL2 charge pump control
R/W
—
x8
0
Bit 5
PLL2_CP_4X
PLL2 charge pump control
R/W
—
x4
1
Bit 4
PLL2_CP_2X
PLL2 charge pump control
R/W
—
x2
0
Bit 3
PLL2_CP_1X
PLL2 charge pump control
R/W
—
x1
0
Bit 2
PLL2_CP_/24
PLL2 charge pump control
R/W
—
/24
1
Bit 1
PLL2_CP_/3
PLL2 charge pump control
R/W
—
/3
0
Bit 0
PLL2_SIREF
PLL2 SiRef current selection
R/W
10μA
20μA
0
©2019 Integrated Device Technology, Inc.
36
October 4, 2019
5P35021 Datasheet
Byte 26: PLL2 M Divider Setting
Byte 1Ah
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_MDIV_Doubler
PLL2 reference divider - doubler
R/W
disable
enable
0
Bit 6
PLL2_MDIV1
PLL2 reference divider 1
R/W
disable M DIV1
bypadd divider (/1)
1
Bit 5
PLL2_MDIV2
PLL2 reference divider 2
R/W
disable M DIV2
bypadd divider (/2)
0
Bit 4
PLL2_MDIV[4]
PLL2 reference divider control bit 4
R/W
0
Bit 3
PLL2_MDIV[3]
PLL2 reference divider control bit 3
R/W
0
Bit 2
PLL2_MDIV[2]
PLL2 reference divider control bit 2
R/W
Bit 1
PLL2_MDIV[1]
PLL2 reference divider control bit 1
R/W
0
Bit 0
PLL2_MDIV[0]
PLL2 reference divider control bit 0
R/W
0
3–64, default is 25
0
Byte 27: Output Divider 4
Byte 1Bh
Name
Control Function
Type
0
1
PWD
Bit 7
OUTDIV3[3]
Out divider 3 control bit 3
R/W
—
—
0
Bit 6
OUTDIV3[2]
Out divider 3 control bit 2
R/W
—
—
0
Bit 5
OUTDIV3[1]
Out divider 3 control bit 1
R/W
—
—
1
Bit 4
OUTDIV3[0]
Out divider 3 control bit 0
R/W
—
—
1
Bit 3
OUTDIV4[3]
Out divider 4 control bit 3
R/W
—
—
0
Bit 2
OUTDIV4[2]
Out divider 4 control bit 2
R/W
—
—
0
Bit 1
OUTDIV4[1]
Out divider 4 control bit 1
R/W
—
—
1
Bit 0
OUTDIV4[0]
Out divider 4 control bit 0
R/W
—
—
1
Byte 28: PLL Operation Control Register
Byte 1Ch
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_HRS_EN
PLL2 spread high resolution selection enable
R/W
normal
enable (shift 4 bits)
0
Bit 6
PLL2_refin_sel
PLL2 reference clock source select
R/W
Xtal
DIV2
0
Bit 5
PLL3_PDB
PLL3 Power Down
R/W
Power Down
running
1
Bit 4
PLL3_LCKBYPSSB
PLL3 lock bypass
R/W
bypass lock
lock
1
Bit 3
PLL2_PDB
PLL2 Power Down
R/W
Power Down
running
1
Bit 2
PLL2_LCKBYPSSB
PLL2 lock bypass
R/W
bypass lock
lock
1
Bit 1
PLL1_PDB
PLL1 Power Down
R/W
Power Down
running
1
Bit 0
PLL1_LCKBYPSSB
PLL1 lock bypass
R/W
bypass lock
lock
1
©2019 Integrated Device Technology, Inc.
37
October 4, 2019
5P35021 Datasheet
Byte 29: Output Control
Byte 1Dh
Name
Control Function
Bit 7
DIFF1_SEL
Bit 6
Type
0
1
PWD
Differential clock 1 output OE2 control
not controlled
controlled
0
DIFF2_SEL
Differential clock 2 output OE2 control
not controlled
controlled
0
Bit 5
DIFF1_EN
Differential clock 1 output enable
R/W
disable
enable
1
Bit 4
DIFF2_EN
Differential clock 2 output enable
R/W
disable
enable
1
Bit 3
OUTDIV4_Source
Output divider 4 source clock selection
R/W
PLL2
Xtal
0
Bit 2
SE1_SLEW
SE 1 slew rate control
R/W
normal
strong
0
Bit 1
VDD1_SEL[1]
VDD1 level control bit 1
R/W
Bit 0
VDD1_SEL[0]
VDD1 level control bit 0
R/W
00/01: 3.3V 10: 2.5V 11: 1.8
0
0
Byte 30: OE and DFC Control
Byte 1Eh
Name
Control Function
Type
0
1
PWD
Bit 7
SE1_EN
SE1 output enable control
R/W
disable
enable
1
Bit 6
OE1_fun_sel[1]
OE1 pin function selection bit 1
R/W
OE1_fun_sel[0]
OE1 pin function selection bit 0
R/W
10: SE1_PPS
00: SE1 OE
0
Bit 5
11:DFC0
01: PD#
0
Bit 4
SE3_EN
SE3 output enable control
R/W
disable
enable
1
Bit 3
OE3_fun_sel[1]
OE3 pin function selection bit 1
R/W
Bit 2
OE3_fun_sel[0]
OE3 pin function selection bit 0
R/W
Bit 1
DFC_SW_Sel[1]
DFC frequency select bit 1
R/W
Bit 0
DFC_SW_Sel[0]
DFC frequency select bit 0
R/W
11:DFC1 10: SE3_PPS
01: xx 00: SE3 OE
00: N0 01: N1 10:N2 11:N3
0
0
0
0
5P35021 only features OE1 and SE1 hardware pins. To use the functionality of OE2, OE3 and SE2, SE3, use the 5P35023 device.
Byte 31: Control Register
Byte 1Fh
Name
Control Function
Bit 7
SE2_Freerun_32K
Bit 6
Type
0
1
PWD
SE2 32K free run
freerun 32K
B31 bit6 control
source
1
SE2_CLKSEL1
SE2 source clock selection
DIV5
DIV4
0
Bit 5
VDD2_SEL[1]
VDD2 level control bit 1
R/W
Bit 4
VDD2_SEL[0]
VDD2 level control bit 0
R/W
Bit 3
SE2_SLEW
SE2 slew rate control
R/W
Bit 2
PLL2_3rd_EN_CFG
PLL2 3rd order control
Bit 1
PLL2_EN_CH2
PLL2 channel 2 enable control
Bit 0
PLL2_EN_3rdpole
PLL2 3rd Pole control
00/01: 3.3V 10: 2.5V 11: 1.8V
0
0
normal
strong
0
1st order
3rd order
1
R/W
disable
enable
0
R/W
disable
enable
1
5P35021 only features OE1 and SE1 hardware pins. To use the functionality of OE2, OE3 and SE2, SE3, use the 5P35023 device.
©2019 Integrated Device Technology, Inc.
38
October 4, 2019
5P35021 Datasheet
Byte 32: Control Register
Byte 20h
Name
Control Function
Type
0
1
PWD
Bit 7
SE2_EN
SE2 output enable control
R/W
disable
enable
1
Bit 6
OE2_fun_sel[1]
OE2 pin function selection bit 1
R/W
Bit 5
OE2_fun_sel[0]
OE2 pin function selection bit 0
R/W
Bit 4
DFC_EN
DFC function control
R/W
disable
enable
0
Bit 3
WD_EN
Watchdog timer control
R/W
disable
enable
0
Bit 2
Timer_sel
Watchdog timer select bit 1
R/W
Bit 1
Timer_sel
Watchdog timer select bit 0
R/W
Bit 0
Alarm_Flag
Alarm Status (Read Only)
R
11:RESET 10: SE2_PPS
01: DIFF1/2 OE 00: SE2 OE
0
0
00: 250ms 01: 500ms
10: 2s 11: 4s
No alarm
0
0
Alarmed
0
5P35021 only features OE1 and SE1 hardware pins. To use the functionality of OE2, OE3 and SE2, SE3, use the 5P35023 device.
Byte 33: SE3 and DIFF1 Control Register
Byte 21h
Name
Control Function
Bit 7
SE3_Freerun_32K
Bit 6
Type
0
1
PWD
SE3 32K free run
freerun 32K
DIC2 or DIV4 selected by B33
bit6
1
SE3_CLKSEL1
SE3 source clock selection
DIV2
DIV4
0
Bit 5
VDD3_SEL[1]
VDD3 level control bit 1
R/W
Bit 4
VDD3_SEL[0]
VDD3 level control bit 0
R/W
Bit 3
SE3_SLEW
SE3 slew rate control
R/W
Bit 2
DIFF_PDBHiZEN
Differential output high-Z at power down R/W
0
11: 1.8V 10: 2.5V 0x: 3.3V
0
normal
strong
0
TBD
output tri-state, bias off
0
Bit 1
DIFF1_CMOS2_FLIP Differential 1/2 LVCMOS output control R/W DIFF1_B inverted
DIFF1_B non-inverted
0
Bit 0
DIFF2_CMOS2_FLIP Differential 1/2 LVCMOS output control R/W DIFF2_B inverted
DIFF2_B non-inverted
0
5P35021 only features OE1 and SE1 hardware pins. To use the functionality of OE2, OE3 and SE2, SE3, use the 5P35023 device.
©2019 Integrated Device Technology, Inc.
39
October 4, 2019
5P35021 Datasheet
Byte 34: DIFF1 Control Register
Byte 22h
Name
Control Function
Type
0
1
PWD
Bit 7
DIFF1_CLK_SEL
Differential clock 1 source selection
R/W
DIV1
DIV3
1
Bit 6
DIFF1_io_pwr_sel
Differential clock 1 output power
R/W
2.5V
3.3V
1
Bit 5
DIFF1_OUTPUT_TYPE[1]
Differential clock 1 type select bit 1
R/W
1
Bit 4
DIFF1_OUTPUT_TYPE[0]
Differential clock 1 type select bit 0
R/W
00: LVMOS 01: LVDS
10: LVPECL 11: LPHCSL
Bit 3
DIFF1_AMP[1]
Differential clock 1 amplitude control bit 1
R/W
Bit 2
DIFF1_AMP[0]
Differential clock 1 amplitude control bit 0
R/W
Bit 1
DIFF1_CMOS_SLEW
Differential clock 1 LVCMOS slew rate control
R/W
normal
strong
0
Bit 0
D1FF1_CMOS2_EN
Differential clock 1 LVCMOS output_B control
R/W
disable
enable
0
LPHCSL: 00 = 740mV, 01 = 800mV,
10 = 855mV, 11 = 910mV
LVPECL: 00 = 710mV, 01 = 810mV,
10 = 875mV, 11 = 920mV
LVDS: 00 = 311mV, 01 = 344mV,
10 = 376mV, 11 = 408mV
1
0
1
Byte 35: DIFF2 Control Register
Byte 23h
Name
Control Function
Type
0
1
PWD
Bit 7
DIFF2_CLK_SEL
Differential clock 2 source selection
R/W
DIV1
DIV3
0
Bit 6
DIFF2_IO_PWR_SEL
Differential clock 2 output power
R/W
2.5V
3.3V
1
Bit 5
DIFF2_OUTPUT_TYPE[1]
Differential clock 2 type select bit 1
R/W
1
Bit 4
DIFF2_OUTPUT_TYPE[0]
Differential clock 2 type select bit 0
R/W
00: LVMOS 01: LVDS
10: LVPECL 11: LPHCSL
Bit 3
DIFF2_AMP[1]
Differential clock 2 amplitude control bit 1
R/W
Bit 2
DIFF2_AMP[0]
Differential clock 2 amplitude control bit 0
R/W
Bit 1
DIFF2_CMOS_SLEW
Differential clock 2 LVCMOS slew rate control
R/W
normal
strong
0
Bit 0
DIFF2_CMOS2_EN
Differential clock 2 LVCMOS output_B control
R/W
disable
enable
0
©2019 Integrated Device Technology, Inc.
40
LPHCSL: 00 = 740mV, 01 = 800mV,
10 = 855mV, 11 = 910mV
LVPECL: 00 = 710mV, 01 = 810mV,
10 = 875mV, 11 = 920mV
LVDS: 00 = 311mV, 01 = 344mV,
10 = 376mV, 11 = 408mV
1
0
1
October 4, 2019
5P35021 Datasheet
Byte 36: SE1 and DIV4 control
Byte 24h
Name
Control Function
Type
0
1
PWD
Bit 7
I2C_PDB
chip power down control bit
R/W
power down
normal
1
Bit 6
Ref_free_run
Reference clock output (SE2/SE3)
R/W
stop
free run
0
Bit 5
free_run_output_config
SE clocks free run control
R/W
SE2 free run
SE2/3 free run
0
Bit 4
SE1_Freerun_32K
SE1 clock output default
R/W
32k free run
B36bit3 control
0
Bit 3
SE1_CLKSEL1
SEL1 output select
R/W
DIV5
DIV4
1
Bit 2
REF_EN
REF output enable
R/W
disable
enable
1
Bit 1
DIV4_CH3_EN
DIV4 channel 3 output control
R/W
disable
enable
0
Bit 0
DIV4_CH2_EN
DIV4 channel 2 output control
R/W
disable
enable
0
5P35021 only features OE1 and SE1 hardware pins. To use the functionality of OE2, OE3 and SE2, SE3, use the 5P35023 device.
Glossary of Features
Table 35. Glossary of Features
Term
Function Description
Apply to
DFC
Dynamic Frequency Control; from selected PLL to support four VCO frequencies; means two different output
frequencies by assigned H/W pin state changes (H-L or L-H) needs to have frequency change Glitch-Free
function in order to not crash application system.
PLL2
ORT
Overshoot Reduction; when the DFC dynamic frequency change is functional, the VCO changes frequencies
smoothly to target frequency without overshoot or undershoot.
PLL2
OE
Output enable function; each output can be controlled by assigned OE pin and the dedicated OE pin can be
OTP programmable as global Power Down function (PD#) or Output Enable (OE) or Proactive Power Saving
function (PPS) or RESET pin function.
OE1
SS
Spread spectrum clock.
Slew Rate
PPS
PLL1/PLL2
LVCMOS outputs with slew rate control – slow and fast.
LVCMOS
Proactive Power Saving; utilize OE pin as monitor pin for end device X2 clock status. See PPS – Proactive
Power Saving Function description for details.
SE1
Package Outline Drawings
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information
is the most current data available.
www.idt.com/document/psc/20-vfqfpn-package-outline-drawing-30-x-30-x-090-mm-040mm-pitch-165-x-165-mm-epad-ndg20p2
©2019 Integrated Device Technology, Inc.
41
October 4, 2019
5P35021 Datasheet
Marking Diagrams (industrial)
▪ Line 1 and 2 is the truncated part number.
-000
35021
YW**$
• “-000” denotes the blank part.
• “-ddd” denotes the dash code.
-ddd
35021
YW**$
▪ “YW” is the last digit of the year and work week that the part was
assembled.
▪ “**” denotes lot sequence number.
▪ “$” denotes mark code.
-000
5021B
YW**$
-ddd
5021B
YW**$
Marking Diagrams (automotive)
▪ Line 1 and 2 is the truncated part number.
-000
50212
YW**$
• “-000” denotes the blank part.
• “-ddd” denotes the dash code.
-ddd
50212
YW**$
▪ “YW” is the last digit of the year and work week that the part was
assembled.
▪ “**” denotes lot sequence number.
▪ “$” denotes mark code.
Ordering Information
Orderable Part Number
Package
Carrier Type
Temperature
5P35021-000NDGI
3 × 3 mm, 0.4mm pitch 20-VFQFPN
Trays
-40 to +85°C, Industrial
5P35021-000NDGI8
3 × 3 mm, 0.4mm pitch 20-VFQFPN
Tape and Reel
-40 to +85°C, Industrial
5P35021-dddNDGI
3 × 3 mm, 0.4mm pitch 20-VFQFPN
Trays
-40 to +85°C, Industrial
5P35021-dddNDGI8
3 × 3 mm, 0.4mm pitch 20-VFQFPN
Tape and Reel
-40 to +85°C, Industrial
5P35021B-000NDGI
3 × 3 mm, 0.4mm pitch 20-VFQFPN
Trays
-40 to +85°C, Industrial
5P35021B-000NDGI8
3 × 3 mm, 0.4mm pitch 20-VFQFPN
Tape and Reel
-40 to +85°C, Industrial
5P35021B-dddNDGI
3 × 3 mm, 0.4mm pitch 20-VFQFPN
Trays
-40 to +85°C, Industrial
5P35021B-dddNDGI8
3 × 3 mm, 0.4mm pitch 20-VFQFPN
Tape and Reel
-40 to +85°C, Industrial
5P35021-000NDG2
3 × 3 mm, 0.4mm pitch 20-VFQFPN
Trays
-40 to +105°C, Automotive Grade 2
5P35021-000NDG28
3 × 3 mm, 0.4mm pitch 20-VFQFPN
Tape and Reel
-40 to +105°C, Automotive Grade 2
5P35021-dddNDG2
3 × 3 mm, 0.4mm pitch 20-VFQFPN
Trays
-40 to +105°C, Automotive Grade 2
5P35021-dddNDG28
3 × 3 mm, 0.4mm pitch 20-VFQFPN
Tape and Reel
-40 to +105°C, Automotive Grade 2
©2019 Integrated Device Technology, Inc.
42
October 4, 2019
5P35021 Datasheet
Revision History
Revision Date
Description of Change
October 4, 2019
Removed comment “VBAT power ramp-up should be same or earlier time than other VDD power rail.” from
Power Group table, Recommended Operating Conditions and VBAT description section.
September 27, 2019
▪ Added revision B orderable part numbers (non-automotive) and marking diagrams.
August 23, 2019
▪
▪
▪
▪
May 15, 2019
▪ Added information for automotive parts.
▪ Correcting error in LVCMOS test load.
November 30, 2017
Updated I2C section.
January 25, 2017
▪ Updates/corrected typos in Byte 27.
▪ Updated package outline drawings.
September 20, 2016
Changed package outline drawing EPAD reference from 1.10mm to 1.65mm.
May 26, 2016
Initial release.
Updated Figure 4 PPS Assertion/Deassertion Timing Chart.
Updated LVCMOS 3.3V VOL maximum and 2.5V VIL maximum.
Updated LVDS VOS specifications.
Updated LVCMOS 1.8V VIL maximum.
Corporate Headquarters
Sales
Tech Support
6024 Silver Creek Valley Road
San Jose, CA 95138 USA
www.IDT.com
1-800-345-7015 or 408-284-8200
Fax: 408-284-2775
www.IDT.com/go/sales
www.IDT.com/go/support
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products and/or specifications described herein at any time,
without notice, at IDT’s sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same
way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability
of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not
convey any license under intellectual property rights of IDT or any third parties.
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property
of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc. All rights reserved.
©2019 Integrated Device Technology, Inc.
43
October 4, 2019
20-VFQFPN Package Outline Drawing
3.0 x 3.0 x 0.90 mm, 0.40mm Pitch, 1.65 x 1.65 mm Epad
NDG20P2, PSC-4179-02, Rev 01, Page 1
© Integrated Device Technology, Inc.
20-VFQFPN Package Outline Drawing
3.0 x 3.0 x 0.90 mm, 0.40mm Pitch, 1.65 x 1.65 mm Epad
NDG20P2, PSC-4179-02, Rev 01, Page 2
Package Revision History
© Integrated Device Technology, Inc.
Description
Date Created
Rev No.
Sept 13, 2018
Rev 01
Change QFN to VFQFPN
Mar 30, 2016
Rev 00
Initial Release