0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
5P35023B-139NLGI

5P35023B-139NLGI

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

  • 描述:

    IC CLOCK GENERATOR 24QFN

  • 详情介绍
  • 数据手册
  • 价格&库存
5P35023B-139NLGI 数据手册
VersaClock® Programmable Clock Generator 5P35023 Datasheet Description Features The 5P35023 is a VersaClock programmable clock generator and is designed for low-power, consumer, and high-performance PCI Express applications. The 5P35023 device is a three PLL architecture design, and each PLL is individually programmable and allowing for up to six unique frequency outputs. ▪ Configurable OE pin function as OE, PD#, PPS or DFC control function ▪ Configurable PLL bandwidth; minimizes jitter peaking ▪ PPS: Proactive Power Saving features save power during the end device power down mode ▪ PPB: Performance Power Balancing feature allows minimum power consumption based on required performance ▪ DFC: Dynamic Frequency Control feature allows user to dynamically switch between and up to 4 different frequencies smoothly The 5P35023 has built-in unique features such as Proactive Power Saving (PPS), Performance-Power Balancing (PPB), Overshot Reduction Technology (ORT) and Extreme Low Power DCO. An internal OTP memory allows the user to store the configuration in the device. After power up, the user can change the device register settings through the I2C interface when I2C mode is selected. ▪ Two PLLs support independent spread spectrum clocks to lower system EMI The device has programmable VCO and PLL source selection to allow the user to do power-performance optimization based on the application requirements. It also supports three single-ended outputs and two pair of differential outputs that support LVCMOS, LVPECL, LVDS and LP-HCSL. A Low Power 32.768kHz clock is supported with only less than 2µA current consumption for system RTC reference clock. ▪ Store user configuration into OTP memory ▪ I2C interface ▪ Available in Automotive Grade 2 (-40°C to +105°C) or industrial (-40° to +85°) temperature ranges Output Features ▪ 2 DIFF outputs with configurable LP-HSCL, LVDS, LVPECL, Typical Applications ▪ ▪ ▪ ▪ ▪ LVCMOS output pairs. 1MHz–500MHz (160MHz with LVCMOS mode) ▪ 3 LVCMOS outputs: 1MHz–160MHz PCIe Gen1–3 clock generator Consumer application crystal replacements SmartDevice, Handheld ▪ Maximum 8 LVCMOS outputs as REF + 3 × SE + 2 × DIFF_T/C as LVCMOS Computing and consumer applications Automotive applications (infotainment, dashboard, camera/vision, computing, networking) ▪ Low power 32.768kHz clock supported for all SE1–SE3 Key Specifications ▪ PCIe clocks phase jitter: PCIe Gen3 ▪ Differential clocks < 1.5ps rms jitter integer range 12kHz– 20MHz ©2019 Integrated Device Technology, Inc. 1 October 4, 2019 5P35023 Datasheet Contents Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Output Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Power Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Output Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Device Features and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 DFC – Dynamic Frequency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 DFC Function Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 PPS – Proactive Power Saving Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 PPS Function Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Timer Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 OE Pin Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Reference Input and Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Crystal Input (X1/X2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Analog Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Digital Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 VBAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 ORT–VCO Overshoot Reduction Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PLL Features and Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Output Clock Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 PCI Express Jitter Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Spread Spectrum Generation Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 I2C Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 I2C Mode Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Glossary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Marking Diagrams (industrial) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Marking Diagrams (automotive) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ©2019 Integrated Device Technology, Inc. 2 October 4, 2019 5P35023 Datasheet Block Diagram DIV1/REF OSC MUX DIV1 DIV3 MUX CLKINB/X1 PLL1 CLKIN/X2 VDDDIFF1 DIV1/REF DIV2 DIV3 MUX DIFF1 DIFF1B MUX OE3 SE3 VDDSE3 MUX OE2 SE2 VDDSE2 MUX OE1 SE1 VDDSE1 DIV2 VBAT VDD33 Power Monitor MUX PLL2 MUX DIV3 DIV4/REF 32K POR MUX DIV4 DIV4/REF DIV5 32K VDDA PLL3 MUX VSS DIV5 DIV4/REF Calibration DIV5 32K 32.768K DCO SCL_DFC1 SDA_DFC0 VDDDIFF2 DIFF2 DIFF2B REF Overshoot Reduction (ORT) I2C Engine OTP memory (1 configuration) Dynamic Frequency Control Logic (DFC) Proactive Power Saving Logic (PPS) Timer Pin Assignments DIFF2 DIFF2B VDDDIFF2 OE3 VDDSE3 SE3 Figure 1. Pin Assignments for 4 x 4 mm 24-VFQFPN Package – Top View 24 23 22 21 20 19 VDDA 1 18 DIFF1 SDA_DFCO 2 17 DIFF1B SEL_DFC/SCL_DFC1 3 16 VDDDIFF1 CLKIN/X2 4 15 OE1 CLKINB/X1 5 14 SE1 VBAT 6 13 VDDSE1 10 11 12 VDDSE2 SE2 REF 9 OE2 8 VDD33 7 NC 5P35023 24-VFQFPN ©2019 Integrated Device Technology, Inc. 3 October 4, 2019 5P35023 Datasheet Pin Descriptions Table 1. Pin Descriptions Number Name Type 1 VDDA Power 2 SDA_DFC0 I/O Description VDD 3.3V I2C data pin. The pin can be DFC0 function by pin 3 SEL_DFC power-on latch status. I2C CLK pin. SEL_DFC is a latch input pin during the power-up. High on power-on: I2C mode as SCLK function. Low on power-on: SCL and SDA as DFC function control pins. 3 SEL_DFC/ SCL_DFC1 Input 4 CLKIN/X2 I/O 5 CLKINB/X1 Input Crystal oscillator interface input or differential clock input pin (CLKINB) or single-ended clock input. 6 VBAT Power Power supply pin for 32.768kHz DCO; usually connect to coin cell battery, 3.0V–3.3V. 7 NC — 8 REF Output 3.3V reference clock output. 9 VDD33 Power VDD 3.3V. 10 OE2 Input Output enable control 2, multi-function pin. Refer to OE Pin Functions table. 11 VDDSE2 Power Output power supply. Connect to 1.8 –3.3V. Sets output voltage levels for SE2. 12 SE2 Output Output clock SE2. 13 VDDSE1 Power Output power supply. Connect to 1.8V–3.3V. Sets output voltage levels for SE1. 14 SE1 Output Output clock SE1. 15 OE1 Input OE1’s function selected from OTP pre-programmed register bits. OE1 pull to 6.5V when burn OTP registers. Refer to OE Pin Functions table for details. 16 VDDDIFF1 Power Output power supply. Connect to 2.5V–3.3V. Sets output voltage levels for DIFF1. 17 DIFF1B Output Differential clock output 1_Complement; can be OTP pre-programmed to LVCMOS/LPHCSL/LVDS/LVPECL output type. 18 DIFF1 Output Differential clock output 1_True; can be OTP pre-programmed to LVCMOS/LP-HCSL/LVDS/LVPECL output type. 19 SE3 Output Output clock SE3. 20 VDDSE3 Power Output power supply. Connect to 1.8V–3.3V. Sets output voltage levels for SE3. 21 OE3 Input Output enable control 3, multi-function pin. Refer to OE Pin Functions table. 22 VDDDIFF2 Power Output power supply. Connect to 2.5V–3.3V. Sets output voltage levels for DIFF2. 23 DIFF2B Output Differential clock output 2_Complement; can be OTP pre-programmed to LVCMOS/LP-HCSL/LVDS/LVPECL output type. 24 DIFF2 Output Differential clock output 2_True; can be OTP pre-programmed to LVCMOS/LP-HCSL/LVDS/LVPECL output type. EPAD Power Connect to ground pad. ©2019 Integrated Device Technology, Inc. Crystal oscillator interface output or differential clock input pin (CLKIN). No connect. 4 October 4, 2019 5P35023 Datasheet Power Group Table 2. Power Group Power Supply SE DIFF DIV MUX PLL VDDSE1 SE1 1 VDDSE2 SE2 1 VDDSE3 SE3 1 VDDDIFF1 DIFF1 DIV3/4 MUXPLL2 PLL2 VDDDIFF2 DIFF2 DIV1 MUXPLL1 VDD33 DIV5 PLL3 VBAT REF Xtal DCO REF Xtal DCO VDDA 1 DCO DIV2 Xtal PLL1 VDDSEx for non-32kHz outputs should be OFF when VDDA/VDD33 turns OFF; VBAT mode only supports 32.768kHz outputs from SE1–3. Output Sources Table 3. Output Source Outputs Source REF SE1 SE2 SE3 Xtal REF Xtal REF Xtal REF Xtal REF Xtal REF 32.768kHz 32.768kHz 32.768kHz 32.768kHz PLL1 PLL2 PLL2 PLL2 PLL3 PLL3 PLL3 DIFF1 DIFF2 PLL1 PLL1 PLL1 PLL2 PLL2 PLL2 PLL3 PLL3 Table 4. Output Source Selection Register Settings SE1 B36 B36 B31 B29 From 32kHz 0 1 0 0 From PLL3 + Divider 5 1 0 0 0 From PLL2 + Divider 4 1 1 1 0 From REF + Divider 4 1 1 0 1 ©2019 Integrated Device Technology, Inc. 5 October 4, 2019 5P35023 Datasheet Table 5. Output Source Selection Register Settings SE2 B31 B31 B36 B31 B29 From 32kHz 0 0 0 0 0 From PLL3 + Divider 5 1 0 0 0 0 From PLL2 + Divider 4 1 1 1 1 0 From REF + Divider 4 1 1 1 0 1 Table 6. Output Source Selection Register Settings SE3 B33 B33 B7 B29 B36 B31 From 32kHz 0 0 0 0 0 0 From PLL3 + Divider 5 1 0 1 0 0 0 From PLL2 + Divider 4 1 1 0 0 1 1 From REF + Divider 4 1 1 0 1 1 0 Table 7. DIFF1 Output DIFF1 B34 B0 From PLL1 + Divider 1 0 0 From PLL2/3 + Divider 3 1 0 From REF + Divider 1 0 1 B35 B0 From PLL1 + Divider 1 0 0 From PLL2/3 + Divider 3 1 0 From REF + Divider 1 0 1 Table 8. DIFF2 Output DIFF2 ©2019 Integrated Device Technology, Inc. 6 October 4, 2019 5P35023 Datasheet Device Features and Functions DFC – Dynamic Frequency Control ▪ OTP programmable – 4 different feedback fractional dividers (4 VCO frequencies) that apply to PLL2. ▪ ORT (overshoot reduction) function will be applied automatically during the VCO frequency change. ▪ Smooth frequency incremental or decremental from current VCO to targeted VCO based on DFC hardware pins selection. Figure 2. DFC Function Block Diagram M divider PLL2 OUT DIV Selector 00 N divider 01 N divider 10 N divider 11 N divider DFC1:0 OTP/I2C Table 9. DFC Function Priority DFC_EN bit (W32[4]) OE1_fun_sel (W30[6:5]) OE3_fun_sel (W30[3:2]) SCL_DFC1 DFC[1:0] Notes 0 x x x 0 DFC disable 1 11 (DFC) 00–10 (DFC) x [0,OE1] One-pin DFC–OE1 1 11 (DFC) 11 (DFC) x [OE3,OE1] Two-pin DFC–OE3, OE1 1 00–10 11 x Not permitted Not supported 1 00–10 00–10 0 [SCL_DFC1, SDA_DFC0] I2C pin as DFC control pins mode 1 00–10 00–10 1 W30[1:0] I2C control DFC mode DFC Function Programming ▪ Register B63b3:2 selects DFC00–DFC11 configuration. ▪ Byte16–19 are the registers for PLL2 VCO setting, based on B63b3:2 configuration selection, the data write to B16–19 will be stored in selected configuration OTP memory. ▪ Refer to DFC Function Priority table. Select proper control pin(s) to activate DFC function. ▪ Note the DFC function can also be controlled by I2C access. ©2019 Integrated Device Technology, Inc. 7 October 4, 2019 5P35023 Datasheet PPS – Proactive Power Saving Function PPS (Proactive Power Saving) is an IDT patented unique design for the clock generator that proactively detects end device power down state and then switches output clocks between normal operation clock frequency and low power mode 32kHz clock that only consumes < 2μA current. The system could save power when the device goes into power down or sleep mode. The PPS function diagram is shown as below. Figure 3. PPS Function Block Diagram I2C & Logic Xtal Oscillator PPS Control Logic Power Down Control Low Power DCO XOUT XIN PLL Xtal Oscillator Logic MHz / kHz Switching Figure 4. PPS Assertion/Deassertion Timing Chart ©2019 Integrated Device Technology, Inc. 8 October 4, 2019 5P35023 Datasheet PPS Function Programming ▪ Refer to the OE Pin Functions table to have the proper PPS function selected for OE pin(s). Note that the register default is set to Output enable (OE) function for OE pins. ▪ Have proper setup to Byte 30 and 32 for OE1–OE3 function selection; for PPS function, select 10 to control register bits. Timer Function Description 1. The timer function can be used together with the DFC -Dynamic Frequency Control function or with another PLL frequency programming. 2. The timer provides 4 different delay times by two bits selection: 0.5 sec – 1 sec – 2 sec – 4 sec. 3. The timeout flag will be set when timer times out and the flag can be cleared by writing 0 to timer enable bit. 4. When timer times out, RESET pin can generate a 250ms pulse signal if RESET control bit is enabled. 5. When timer times out, DFC stage will switch back to DFC00 setting if DFC function is enabled, and DFC function will be disabled after RESET. Figure 5. Timer Functions Select delay time 0.5 - 4.0 seconds and enable timer Program New VCO frequency or enable DFC System functional check Disable Timer Timer continue if system is not able to stop timer Timeout Flag set and generate RESET pulse OE Pin Function The OE pins in the 5P35023 have multiple functions. The OE pins can be configured as output enable control (OE) or chip power-down control (PD#) or Proactive Power Saving function (PPS). Furthermore, the OE pins can be configured as a single or two-pin Dynamic Frequency Control (DFC), or the RESET out function that is associated with the Timer function. Table 10. OE Pin Functions Pin Function OE1 OE2 OE3 SE Output Enable/Disable SE1 (default) SE2 (default) SE3 (default) DIFF Output Enable/Disable — DIFF1/DIFF2 — Global Power Down (PD#) PD# — — Proactive Power Saving Input SE1_PPS SE2_PPS SE3_PPS DOC Control (Only PLL2) DFC0 — DFC1 RESET OUT — RESET OUT — ©2019 Integrated Device Technology, Inc. 9 October 4, 2019 5P35023 Datasheet Table 11. OE Pin Function Summary OE Pin Description OE1: SE1 OE1 only control SE1 enable/disable; other outputs are not affected by this pin status. OE2: SE2 OE2 only control SE2 enable/disable; other outputs are not affected by this pin status. OE3: SE3 OE3 only control SE3 enable/disable; other outputs are not affected by this pin status. OE2: DIFF1/DIFF2 OE1: PD# OE2 control differential outputs 1 and 2 only. Other SE outputs are not affected by this pin status. OE1 control chip global power down (PD#) except 32.768kHz on OE1 (when 32kHz is enabled). When the PD# pin is active low, the chip goes to lowest power down mode and all outputs are disabled except 32kHz output and only keep 32k/Xtal calibration. OE1: SE1_PPS Configure OE1 as SE1_PPS (Proactive Power Saving) function pin. OE2: SE2_PPS Configure OE2 as SE2_PPS (Proactive Power Saving) function pin. OE3: SE3_PPS Configure OE3 as SE3_PPS (Proactive Power Saving) function pin. OE1: DFC0 Configure OE1 as DFC0 control pin 0. OE3: DFC1 Configure OE3 as DFC1 control pin 1. Table 12. PD# Priority PD# I2C_OE_EN_bit SE1/2/3, DIFF1/DIFF2, SEx_PPS Output Notes 0 x x Stop 32kHz free run 1 0 x Stop 1 1 0 Stop 1 1 1 Running Reference Input and Selection When programming, the 5P35023 accepts 8MHz–40MHz crystal input, 8MHz to 125MHz differential clocks input or 1MHz–125MHz LVCMOS (to X1) input. See below reference circuit for details. Crystal Input (X1/X2) The crystal oscillators should be fundamental mode quartz crystals; overtone crystals are not suitable. Crystal frequency should be specified for parallel resonance with 40MHz maximum. A crystal manufacturer will calibrate its crystals to the nominal frequency with a certain load capacitance value. When the oscillator load capacitance matches the crystal load capacitance, the oscillation frequency will be accurate as 0 PPM. When the oscillator load capacitance is lower than the crystal load capacitance, the oscillation frequency will be higher than nominal. In order to get an accurate oscillation frequency, the matching the oscillator load capacitance with the crystal load capacitance is required. To set the oscillator load capacitance, 5P35023 has built-in two programmable tuning capacitors inside the chip, one at XIN and one at XOUT. They can be adjusted independently. The value of each capacitor is composed of a fixed capacitance amount plus a variable capacitance amount set with the XTAL[7:0] register. Adjustment of the crystal tuning capacitors allows for maximum flexibility to accommodate crystals from various manufacturers. The range of tuning capacitor values available are in accordance with the following table. ©2019 Integrated Device Technology, Inc. 10 October 4, 2019 5P35023 Datasheet Table 13. Programmable Tuning Caps Parameter Bits Range Minimum (pF) Maximum (pF) Xtal [7:0] 4×2 +1 / +2 / +4 / +8pF 0 15pF XTAL[4:0] = (XTAL CL - 7pF) × 2 (Eq.1) Equation 1 and the table of XTAL[7:0] tuning capacitor characteristics show that the parallel tuning capacitance can be set between 4.5pF to 12.5pF with a resolution of 0.25pF. For a crystal CL = 8pF, where CL is the parallel capacity specified by the crystal vendor that sets the crystal frequency to the nominal value. Under the assumptions that the stray capacity between the crystal leads on the circuit board is zero and that no external tuning caps are placed on the crystal leads, then the internal parallel tuning capacity is equal to the load capacity presented to the crystal by the device. The internal load capacitors are true parallel-plate capacitors for ultra-linear performance. Parallel-plate capacitors were chosen to reduce the frequency shift that occurs when non-linear load capacitance interacts with load, bias, supply, and temperature changes. External non-linear crystal load capacitors should not be used for applications that are sensitive to absolute frequency requirements. Spread Spectrum The 5P35023 supports spread spectrum clocks from PLL1 and PLL2; the PLL1 built-in with analog spread spectrum and PLL2 has digital spread spectrum. Analog Spread Spectrum Refer to programming guide. ©2019 Integrated Device Technology, Inc. 11 October 4, 2019 5P35023 Datasheet Digital Spread Spectrum Figure 6. Digital Spread Spectrum N  Fvco 2 * Fout period step   Fpfd 2 * Fss N * SSamount period Down spread or spread off N = Fvco/Fpfd Center Spread N = Nssoff + N × SSamount/2 N: include integer and fraction Fvco: VCOs frequency Fpfd: PLLs pfd frequency Fss: spread modulation rate SSamount: spread percentage The black line is for the down spread; N will decrease to make the center frequency is lower than spread off. The blue line is for the center spread; there is an offset put on divider ratio to make the center frequency keep same as spread off. Example: 0.5% down spread at 32kHz modulation rate. VBAT The 5P35023 supports a low-power operation 32.768kHz RTC clock with only a coin cell battery supply. The coin cell battery power capacitance is usually 170mAhr or higher, with less than 2μA* low-power DCO operation mode will support application up to few years clock source for date/time keeping circuit (RTC). When main power exists (for example, VDD33 and VDDA), the 5P35023 will switch DCO power source to main power to save battery power. Table 14. VBAT Switching Threshold VDD33 VBAT DCO Power Source > 2.5V — VDD33 < 2.3V — VBAT VBAT needs to be 3.0V–3.3V. VBAT VDD33 Switch to VBAT (VDD33 falling down to 2.3V) ©2019 Integrated Device Technology, Inc. Switch to VDD33 (VDD33 raise up to 2.5V ) 12 October 4, 2019 5P35023 Datasheet ORT–VCO Overshoot Reduction Technology The 5P35023 supports the VCO overshoot reduction technology (ORT) to prevent an output clock frequency spike when the device is changing frequency on the fly or doing DFC (Dynamic Frequency Control) function. The VCO frequency changes are under control instead of free-run to targeted frequency. PLL Features and Descriptions Table 15. Output 1 Divider Output Divider bits Output Divider bits 00 01 10 11 00 1 2 4 8 01 4 8 16 32 10 5 10 20 40 11 6 12 24 48 Table 16. Output 2, 4, and 5 Divider Output Divider bits Output Divider bits 00 01 10 11 00 1 2 4 5 01 3 6 12 15 10 5 10 20 25 11 10 20 40 50 Table 17. Output 3 Divider Output Divider bits Output Divider bits 00 01 10 11 00 1 2 4 8 01 3 6 12 24 10 5 10 20 40 11 10 20 40 80 ©2019 Integrated Device Technology, Inc. 13 October 4, 2019 5P35023 Datasheet Output Clock Test Conditions Figure 7. LVCMOS Output Test Conditions 33 ohm 2 inches 5pF LVCMOS Figure 8. LP-HCSL Output Test Conditions 33 ohm 33 ohm 5 inches 2pF LPHCSL ©2019 Integrated Device Technology, Inc. 14 2pF October 4, 2019 5P35023 Datasheet Absolute Maximum Ratings The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 5P35023 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 18. Absolute Maximum Ratings Item Rating Supply Voltage, VDDA, VDD33, VDDSE,VDDDIFF 3.465V Supply Voltage, VBAT 3.465V Inputs XIN/CLKIN 0V to 3.3V voltage swing for both LVCMOS or DIFF CLK Other Inputs -0.5V to VDD33 or VDDSEx Outputs, VDDSEx (LVCMOS) -0.5V to VDDSEx or VDDDIFF + 0.5V Outputs, IO (SDA) 10mA Package Thermal Impedance, ΘJA 50.1°C/W (0mps) Package Thermal Impedance, ΘJC 61.68°C/W (0mps) Storage Temperature, TSTG -65°C to 150°C ESD Human Body Model 2000V ESD Charge Device Model 1000V Junction Temperature 125°C Recommended Operating Conditions Table 19. Recommended Operating Conditions Symbol Minimum Typical Maximum Power supply voltage for supporting 1.8V outputs. 1.71 1.8 1.89 Power supply voltage for supporting 2.5V outputs. 2.375 2.5 2.625 Power supply voltage for supporting 3.3V outputs. 3.135 3.3 3.465 VDD33 Power supply voltage for core logic functions. 3.135 3.3 3.465 V VDDA Analog power supply voltage. Use filtered analog power supply if available. 2.375 3.465 V VBAT Battery power supply voltage. 2.8 3.465 V Operating temperature, ambient (industrial). -40 85 °C Operating temperature, ambient (automotive). -40 105 °C VDDSEx TA CLOAD_OUT Parameter Maximum load capacitance (LVCMOS only). ©2019 Integrated Device Technology, Inc. 3 5 15 Units Notes V 1,2,3 1,2,3 pF October 4, 2019 5P35023 Datasheet Table 19. Recommended Operating Conditions Symbol FIN Parameter Minimum Maximum External reference crystal. 8 40 External reference crystal with DCO used. 12 38 External single-ended reference clock CLKINB. 1 125 External differential reference clock CLKIN, CLKINB. 8 125 0.05 3 Power up time for all VDDs to reach minimum specified voltage (power ramps must be monotonic). tPU Typical Units MHz ms 1 Power-up sequence conditions. 2 VDDSEx for non-32kHz outputs should be OFF when VDDA/VDD33 turn off, VBAT mode only supports 32.768kHz outputs from SE1–3. 3 Notes When using a single-ended clock to CLKINB pin within differential clocking mode, CLKIN pin needs to be grounded and minimum input frequency should be higher than 8MHz. Electrical Characteristics Supply voltage: all VDD ±5%, unless otherwise stated. Table 20. Input Capacitance, LVCMOS Output Impedance, and Internal Pull-down Resistance (TA = +25°C) Symbol Parameter CIN Input Capacitance (CLKIN, CLKINB, OE, SDA, SCL, DFC1:0) Pull-down Resistor ROUT X1, X2 Minimum Typical Maximum Units 3 7 pF OE 200 kΩ LVCMOS Output Driver Impedance (VDDSE = 1.8V) 22 Ω LVCMOS Output Driver Impedance (VDDSE = 2.5V) 22 Ω LVCMOS Output Driver Impedance (VDDSE = 3.3V) 22 Ω Programmable Input Capacitance at X1 or X2 0 15 pF Table 21. Crystal Characteristics Parameter Conditions Minimum Typical Maximum Units Mode of Oscillation — Frequency — 8 40 MHz Frequency when 32.768kHz DCO is used — 12 38 MHz Equivalent Series Resistance (ESR) — 10 100 Ω Shunt Capacitance — 2 7 pF Load Capacitance (CL) — 8 10 pF Maximum Crystal Drive Level (CL = 8pF) — 100 μW ©2019 Integrated Device Technology, Inc. 16 Fundamental 6 October 4, 2019 5P35023 Datasheet Table 22. DC Electrical Characteristics (Industrial)1,2 Symbol Parameter Conditions Minimum Typical Maximum Units VDD = VDDSE = VDD33= 3.3; XTAL = 25MHz, PLL2/3 off, no output, PLLs disabled. 5 mA VDD = VDDSE = VDD33 = 3.3V; XTAL = 25MHz, PLL2/3 off, no output, PLL1 = 600MHz. 13 mA VDD = VDDSE = VDD33 = 2.5V; XTAL = 25MHz, PLL2/3 off, no output, PLL1 = 600MHz. 13 mA VDD = VDDSE = VDD33 = 3.3V; XTAL = 25MHz, PLL1/3 off, no output, PLL2 = 1GHz. 11 mA VDD = VDDSE = VDD33 = 2.5V; XTAL = 25MHz, PLL1/3 off, no output, PLL2 = 1GHz. 11 mA VDD = VDDSE = VDD33 = 3.3V; XTAL = 25MHz, PLL1/2 off, no output, PLL3 = 480MHz. 4 mA LVPECL, 500MHz, 3.3V VDDDIFF (DIFF1,2). 39 mA LVPECL, 156.25MHz, 2.5V VDDDIFF (DIFF1,2). 33 mA LVDS, 500MHz, 3.3V VDDDIFF (DIFF1,2). 13 mA LVDS, 250MHz, 2.5V VDDDIFF (DIFF1,2). 8 mA LPHCSL, 125MHz, 3.3V VDDDIFF, 2pF load (DIFF1,2). 7 mA LPHCSL, 100MHz, 2.5V VDDDIFF, 2pF load (DIFF1,2). 8 mA LVCMOS, 8MHz, 3.3V, VDDSE 1,2 (SE1). 1 mA (SE1). 1 mA LVCMOS, 8MHz, 1.8V VDDSEx 1,2 (SE1). 1 mA LVCMOS, 160MHz, 3.3V VDDSEx (SE1). 9.5 mA LVCMOS, 160MHz, 2.5V VDDSEx 1,2 (SE1). 5.0 mA 6.0 mA PD asserted with VDDA, VDD33 and VDDSE on, I2C programming, 32kHz running. 3.5 mA Only VBAT = 3.3V and VDDSEn is powered. 1.1 μA IDDSUSPEND – IDDSUSPEND – VDDSEn 3.3V Only VBAT = 3.3V and VDDSEn is powered with 3.3V. SEn 3.3V 3.4 μA IDDSUSPEND – IDDSUSPEND – VDDSEn 2.5V Only VBAT = 3.3V and VDDSEn is powered with 2.5V. SEn 2.5V 2.5 μA IDDSUSPEND – IDDSUSPEND – VDDSEn 1.8V Only VBAT = 3.3V and VDDSEn is powered with 1.8V. SEn 1.8V 1.8 μA IDDCORE IDD_PLL1 3 IDD_PLL2 3 IDD_PLL3 3 IDDOx Core Supply Current PLL1 Supply Current PLL2 Supply Current PLL3 Supply Current Output Buffer Supply Current LVCMOS, 8MHz, 2.5V VDDSEx 1,2 1 LVCMOS, 160MHz, 1.8V VDDSEx IDDPD Power Down Current IDDSUSPEND – IDDSUSPEND – VBAT VDD33 1 1,2 (SE1). Single CMOS driver active. 2 SE1–3 current measured with 2 inches transmission line and 5pF load, DIFF clock current measured with 5 inches transmission line with 2pF loads. 3 IDDCORE = IDDA+ IDDD, no loads. ©2019 Integrated Device Technology, Inc. 17 October 4, 2019 5P35023 Datasheet Table 23. DC Electrical Characteristics (Automotive)1,2 Symbol Parameter Conditions Minimum Typical Maximum Units VDD = VDDSE = VDD33= 3.3; XTAL = 25MHz, PLL2/3 off, no output, PLLs disabled. 5 mA VDD = VDDSE = VDD33 = 3.3V; XTAL = 25MHz, PLL2/3 off, no output, PLL1 = 600MHz. 13 mA VDD = VDDSE = VDD33 = 2.5V; XTAL = 25MHz, PLL2/3 off, no output, PLL1 = 600MHz. 13 mA VDD = VDDSE = VDD33 = 3.3V; XTAL = 25MHz, PLL1/3 off, no output, PLL2 = 1GHz. 11 mA VDD = VDDSE = VDD33 = 2.5V; XTAL = 25MHz, PLL1/3 off, no output, PLL2 = 1GHz. 11 mA VDD = VDDSE = VDD33 = 3.3V; XTAL = 25MHz, PLL1/2 off, no output, PLL3 = 480MHz. 4.7 mA LVPECL, 500MHz, 3.3V VDDDIFF (DIFF1,2). 39 mA LVPECL, 156.25MHz, 2.5V VDDDIFF (DIFF1,2). 33 mA LVDS, 500MHz, 3.3V VDDDIFF (DIFF1,2). 15 mA LVDS, 250MHz, 2.5V VDDDIFF (DIFF1,2). 9 mA LPHCSL, 125MHz, 3.3V VDDDIFF, 2pF load (DIFF1,2). 9 mA LPHCSL, 100MHz, 2.5V VDDDIFF, 2pF load (DIFF1,2). 7 mA LVCMOS, 8MHz, 3.3V, VDDSE 1,2 (SE1). 1 mA (SE1). 1 mA LVCMOS, 8MHz, 1.8V VDDSEx 1,2 (SE1). 1 mA 9.5 mA 9 mA 6 mA PD asserted with VDDA, VDD33 and VDDSE on, I2C programming, 32kHz running. 3.5 mA Only VBAT = 3.3V and VDDSEn is powered. 1.1 μA IDDSUSPEND – IDDSUSPEND – VDDSEn 3.3V Only VBAT = 3.3V and VDDSEn is powered with 3.3V. SEn 3.3V 3.4 μA IDDSUSPEND – IDDSUSPEND – VDDSEn 2.5V Only VBAT = 3.3V and VDDSEn is powered with 2.5V. SEn 2.5V 2.5 μA IDDSUSPEND – IDDSUSPEND – VDDSEn 1.8V Only VBAT = 3.3V and VDDSEn is powered with 1.8V. SEn 1.8V 1.8 μA IDDCORE IDD_PLL1 3 IDD_PLL2 3 IDD_PLL3 3 IDDOx Core Supply Current PLL1 Supply Current PLL2 Supply Current PLL3 Supply Current Output Buffer Supply Current LVCMOS, 8MHz, 2.5V VDDSEx 1,2 1 LVCMOS, 160MHz, 3.3V VDDSEx (SE1). LVCMOS, 160MHz, 2.5V VDDSEx 1,2 (SE1). LVCMOS, 160MHz, 1.8V VDDSEx IDDPD Power Down Current IDDSUSPEND – IDDSUSPEND – VBAT VDD33 1 1,2 (SE1). Single CMOS driver active. 2 SE1–3 current measured with 2 inches transmission line and 5pF load, DIFF clock current measured with 5 inches transmission line with 2pF loads. 3 IDDCORE = IDDA+ IDDD, no loads. ©2019 Integrated Device Technology, Inc. 18 October 4, 2019 5P35023 Datasheet Table 24. Input Parameters1,2 Symbol Parameter Conditions Minimum Typical Maximum Units VIH Input High Voltage – CLKIN Single-ended inputs. 2.4 3.465 V VIL Input Low Voltage – CLKIN Single-ended inputs. GND - 0.3 0.8 V Differential input. 325 3300 mV VSWING Input Amplitude – CLKIN dV/dt Input Slew Rate – CLKIN Differential input. 0.4 8 V/ns VCM Input Common Mode Voltage Differential input. 200 2500 mV Input Leakage Low Current for OE1 VIN = GND -150 5 μA Input Leakage Low Current for OE2/3 VIN = GND. 5 μA IIH Input Leakage High Current for OE1/2/3 VIN = 3.465V (industrial). 20 μA IIH Input Leakage High Current for OE1/2/3 VIN = 3.465V (automotive). 35 μA Input Duty Cycle Measurement from differential waveform. 55 % IIL dTIN 1 Guaranteed by design and characterization, not 100% tested in production. 2 Slew rate measured through ±75mV window centered around differential zero. 45 Table 25. Power Consumption of 32.768kHz Output Only Operation Supply voltage VDDSE = 1.8V–3.3V ±5%, TA = -40°C to +85°C. Symbol I_VBAT Parameter Conditions VBAT = 3.3V Power Input Current Minimum Typical Maximum Units 1.1 μA VDDSEx = 1.8V Current 0.5 inch, no load, one output. 0.4 μA VDDSEx = 1.8V Current 2.0 inch, no load, one output. 1.0 μA VDDSEx = 1.8V Current 5.0 inch, no load, one output. 2.3 μA VDDSEx = 2.5V Current 0.5 inch, no load, one output. 0.6 μA I_VDDSEx VDDSEx = 2.5V Current 2.0 inch, no load, one output. 1.5 μA VDDSEx = 2.5V Current 5.0 inch, no load, one output. 3.1 μA VDDSEx = 3.3V Current 0.5 inch, no load, one output. 0.8 μA VDDSEx = 3.3V Current 2.0 inch, no load, one output. 1.9 μA VDDSEx = 3.3V Current 5.0 inch, no load, one output. 4.2 μA ©2019 Integrated Device Technology, Inc. 19 October 4, 2019 5P35023 Datasheet Table 26. DC Electrical Characteristics – 3.3V LVCMOS VDDSE = 3.3V ±5%, TA = -40°C to +105°C, unless stated otherwise. Symbol Parameter Conditions VOH Output High Voltage IOH = -15mA. VOL Output Low Voltage IOL = 15mA. IOZDD Output Leakage Current Minimum Typical Maximum Units VDDSE V 0.4 (industrial) 0.5 (automotive) V 3 μA 2.4 Tri-state outputs, VDDSE = 3.465V. Tri-state outputs, VDDSE = 0V. -3 μA VIH Input High Voltage Single-ended inputs – OE, SDA, SCL. 2 VDDSE + 0.3 V VIL Input Low Voltage Single-ended inputs – OE, SDA, SCL. GND - 0.3 0.8 V VIH Input High Voltage Single-ended input – XIN/CLKIN 2.4 VDD33 V VIL Input Low Voltage Single-ended input – XIN/CLKIN GND - 0.3 0.8 V Maximum Units VDDSE V 0.4 (industrial) 0.45 (automotive) V 3 μA Table 27. DC Electrical Characteristics – 2.5V LVCMOS VDDSE = 2.5V ±5%, TA = -40°C to +105°C, unless stated otherwise. Symbol Parameter Conditions VOH Output High Voltage IOH = -12mA. VOL Output Low Voltage IOL = 12mA. IOZDD Output Leakage Current Minimum Typical 0.7 × VDDSE Tri-state outputs, VDDSE = 2.625V. Tri-state outputs, VDDSE = 0V. -3 μA VIH Input High Voltage Single-ended inputs – OE, SDA, SCL. 1.7 VDDSE + 0.3 V VIL Input Low Voltage Single-ended inputs – OE, SDA, SCL. GND - 0.3 0.2 × VDDSE V Table 28. DC Electrical Characteristics – 1.8V LVCMOS VDDSE = 1.8V ±5%, TA = -40°C to +105°C, unless stated otherwise. Symbol Parameter Conditions VOH Output High Voltage IOH = -8mA. VOL Output Low Voltage IOL = 8mA. IOZDD Output Leakage Current Minimum 0.7 × VDDSE Tri-state outputs, VDDSE = 1.89V. Tri-state outputs, VDDSE = 0V. Typical Maximum Units VDDSE V 0.25 × VDDSE V 3 μA -3 μA VIH Input High Voltage Single-ended inputs. 0.65 × VDDSE VDDSE + 0.3 V VIL Input Low Voltage Single-ended inputs. GND - 0.3 0.35 × VDDSE (industrial) 0.2 × VDDSE (automotive) V ©2019 Integrated Device Technology, Inc. 20 October 4, 2019 5P35023 Datasheet Table 29. Electrical Characteristics – DIF 0.7V LPHCSL Differential Outputs VDDDIFF = 3.3 V ±5% or 2.5V ±5%, TA = -40° to +105°C. Symbol Parameter Minimum Typical Maximum Units Notes 1 2.5 4 V/ns 1,2,3,8 20 % 1,2,3,8 at < = 200MHz dV/dt Slew Rate ΔdV/dt Slew Rate Mismatch VHIGH Voltage High 660 800 1150 mV 1,6,7,8 VLOW Voltage Low -150 0 150 mV 1,6 VMAX Maximum Voltage 1150 mV 1 VMIN Minimum Voltage -300 mV 1 VSWING Voltage Swing 300 mV 1,2 VCROSS Crossing Voltage Value 250 550 mV 1,4,6 ΔVCROSS Crossing Voltage Variation 140 mV 1,5 Jitter-Cy/Cy Jitter-STJ TDC Measured Frequency 360 Cycle to Cycle Jitter 10 ps 1,2 Short Term Period Jitter 70 ps 1,2 55 % 1,2 500 MHz 1,2 Duty Cycle 45 LPHCSL at Differential Output 1 Guaranteed by design and characterization, not 100% tested in production. 2 Measured from differential waveform. 3 Slew rate is measured through the VSWING voltage range centered around differential 0V. This results in a ±150mV window around differential 0V. 4 VCROSS is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling). 5 The total variation of all VCROSS measurements in any particular system. Note that this is a subset of VCROSS min/max (VCROSS absolute) allowed. The intent is to limit VCROSS induced modulation by setting ΔVCROSS to be smaller than VCROSS absolute. 6 Measured from single-ended waveform. 7 Measured with scope averaging off, using statistics function. Variation is the difference between minimum and maximum. 8 Scope average on. 9 Differential clock amplitude setting = 01. ©2019 Integrated Device Technology, Inc. 21 October 4, 2019 5P35023 Datasheet Table 30. Electrical Characteristics – LVDS VDDDIFF = 3.3 V ±5% or 2.5V ±5%, TA = -40° to +105°C. Symbol Parameter Minimum Typical Units VOT (+) Differential Output Voltage for the TRUE Binary State 247 454 mV VOT (-) Differential Output Voltage for the FALSE Binary State -454 -247 mV ΔVOT Change in VOT between Complimentary Output States 50 mV VOS Output Common Mode Voltage (Offset Voltage) at 3.3V ±5%, 2.5V ±5% 1.125 1.25 1.375 Output Common Mode Voltage (Offset Voltage) at 1.8 V ±5% 0.8 0.875 0.95 ΔVOS IOS IOSD Jitter-Cy/Cy Jitter-STJ Change in VOS between Complimentary Output States Notes V 50 mV Outputs Short Circuit Current, VOUT+ or VOUT- = 0V or VDDDIFF 9 24 mA Differential Outputs Short Circuit Current, VOUT+ = VOUT- 6 12 mA Cycle to Cycle Jitter 20 ps 1,2 Short Term Period Jitter 100 ps 1,2 55 % 1,2 500 MHz 1,2 Maximum Units Notes Duty Cycle TDC 45 Measured Frequency LVDS at Differential Output 1 Maximum Guaranteed by design and characterization, not 100% tested in production. 2 Measured from differential waveform. 3 Differential clock amplitude setting = 01. Table 31. Electrical Characteristics – LVPECL VDDDIFF = 3.3 V ±5% or 2.5V ±5%, TA = -40° to +105°C. Symbol Parameter Minimum VOH Output Voltage HIGH, terminated through 50Ω tied to VDDDIFF - 2V VDDDIFF - 1.19 VDDDIFF - 0.69 V VOL Output Voltage LOW, terminated through 50Ω tied to VDDDIFF - 2V VDDDIFF - 1.94 VDDDIFF - 1.4 V 1.1 2 V 2,3 VSWING Jitter-Cy/Cy Jitter-STJ TDC Output Differential Voltage Swing (see Figure 9) Cycle to Cycle Jitter 20 ps 1,2 Short Term Period Jitter 100 ps 1,2 55 % 1,2 500 MHz 1,2 Duty Cycle 45 Measured Frequency LVPECL at Differential Output 1 Guaranteed by design and characterization, not 100% tested in production. 2 Measured from differential waveform. 3 Differential Typical clock amplitude setting = 01. ©2019 Integrated Device Technology, Inc. 22 October 4, 2019 5P35023 Datasheet Figure 9. Output Differential Voltage Swing Differential Voltage VSWING 0V ©2019 Integrated Device Technology, Inc. Time 23 October 4, 2019 5P35023 Datasheet AC Electrical Characteristics VDDSE = 3.3V ±5% or 2.5V ±5% or 1.8V ±5%, TA = -40°C to +105°C (spread spectrum off), unless stated otherwise. Table 32. AC Electrical Characteristics Symbol fIN 1 fOUT Parameter Input Frequency Output Frequency Conditions Minimum Typical Maximum Units Input frequency limit (XIN). 8 40 MHz Input frequency limit (XIN) when enable DCO. 12 38 MHz Input frequency limit (differential CLKIN). 8 125 MHz Input frequency limit (LVCMOS to X1). 1 125 MHz Single-ended clock output limit (LVCMOS). 1 < 125 160 MHz Differential clock output limit (LPHCSL). 1 < 333 500 MHz Differential clock output limit (LVDS). 1 < 333 500 MHz Differential clock output limit (LVPECL). 1 500 MHz fVCO1 VCO Frequency Range of PLL1 VCO operating frequency range. 300 600 MHz fVCO2 VCO Frequency Range of PLL2 VCO operating frequency range. 400 1200 MHz fVCO3 VCO Frequency Range of PLL3 VCO operating frequency range. 300 800 MHz Input Duty Cycle Duty cycle. 45 55 % LVCMOS, Single-ended. 45 55 % Output Duty Cycle DIFF1 / DIFF2 configured as a pair of LVCMOS outputs, 180° out of phase (crossing point measurements). 40 60 % Output Duty Cycle – REF Reference clock output or SE1–3 fan out clock. 40 60 % Rise/Fall, SLEW[0] = 1 Single-ended LVCMOS output clock rise and fall time, 20% to 80% of VDDSE1.8V–3.3V. 1.0 Rise/Fall, SLEW[0] = 0 Single-ended LVCMOS output clock rise and fall time, 20% to 80% of VDDSE1.8V–3.3V. 1.1 Rise Time LVDS, 20% to 80%. 300 Fall Time LVDS, 80% to 20%. 300 Rise Time LVPECL, 20% to 80%. 300 Fall Time LVPECL, 80% to 20%. 300 t2 t3 t4 4 t5 5 ©2019 Integrated Device Technology, Inc. 24 ns ps October 4, 2019 5P35023 Datasheet Table 32. AC Electrical Characteristics (Cont.) Symbol Parameter Conditions Cycle-to-cycle jitter (peak-to-peak), multiple output frequencies switching, differential outputs (1.8V to 3.3V nominal output voltage). SE1 = 25MHz SE2 = 100MHz SE3 = 100MHz DIFF1/2 = 100MHz Minimum Typical Maximum Units 50 ps RMS phase jitter (12kHz to 20MHz integration range) differential output, VDDSE = 3.465V, 25MHz crystal. SE1 = 25MHz SE2 = 100MHz SE3 = 100MHz DIFF1/2 = 100MHz 1.1 (industrial) 1.5 (automotive) ps RMS phase jitter (12kHz to 20 MHz integration rage) REF output. 0.3 ps Output Skew Skew between the same frequencies, with outputs using the same driver format. 75 ps t8 2 Lock Time PLL lock time from power-up. t9 Lock Time 32.768kHz clock low power power-up time. t9 3 Lock Time PLL lock time from shutdown mode. t6 t7 Clock Jitter 20 ms 10 100 ms 0.1 2 ms 1 Practical lower frequency is determined by loop filter settings. 2 Includes loading the configuration bits from EPROM to PLL registers. It does not include EPROM programming/write time. 3 Actual PLL lock time depends on the loop configuration. 4 t4 Rise/Fall time measurements are based on 5pF load. 5 t5 Rise/Fall time measurements are based on 2pF load. ©2019 Integrated Device Technology, Inc. 25 October 4, 2019 5P35023 Datasheet PCI Express Jitter Specifications VDDDIFF = 3.3V ±5% or 2.5V ±5%, TA = -40°C to +105°C. Table 33. PCI Express Jitter Specifications Industry Specification Units Notes 30 86 ps 1,4 Phase Jitter RMS ƒ = 100MHz/125MHz, 25MHz crystal input. High band: 1.5MHz – Nyquist (clock frequency/2). 2.56 3.10 ps 2,4 Phase Jitter RMS ƒ = 100MHz/125MHz, 25MHz crystal input. Low band: 10kHz – 1.5MHz. 0.7 3.0 ps 2,4 Phase Jitter RMS ƒ = 100MHz/125MHz, 25MHz crystal input. Evaluation band: 0Hz – Nyquist (clock frequency/2). 0.8 1.0 ps 3,4 Symbol Parameter Conditions tJ (PCIe Gen1) Phase Jitter Peak-to-Peak ƒ = 100MHz/125MHz, 25MHz crystal input. Evaluation band: 0Hz – Nyquist (clock frequency/2). tREFCLK_HF_RMS (PCIe Gen2) tREFCLK_LF_RMS (PCIe Gen2) tREFCLK_RMS (PCIe Gen3) Minimum Typical Maximum Note: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. 1 Peak-to-peak 2 jitter after applying system transfer function for the common clock architecture. Maximum limit for PCI Express Gen1. RMS jitter after applying the two evaluation bands to the two transfer functions defined in the common clock architecture and reporting the worst case results for each evaluation band. Maximum limit for PCI Express Gen2 is 3.1ps RMS for tREFCLK_HF_RMS (high band) and 3.0ps RMS for tREFCLK_LF_RMS (low band). 3 RMS jitter after applying system transfer function for the common clock architecture. This specification is based on the PCI_Express_Base_r3.0 10 Nov. 2010 specification, and is subject to change pending the final release version of the specification. 4 This parameter is guaranteed by characterization. Not tested in production. Spread Spectrum Generation Specifications Table 34. Spread Spectrum Generation Specifications Symbol Parameter fOUT fMOD Output Frequency 1 Output frequency range. 2 Spread Value Amount of spread value (programmable) – down spread. Spread% Value Variation of spread range. 1 Input frequency dependent (see programming guide). 2 Design target. ©2019 Integrated Device Technology, Inc. Minimum Typical Maximum 1 Modulation Frequency Modulation frequency. fSPREAD %tolerance Conditions 26 350 Units MHz 30 to 63 kHz -0.5% to -2% %fOUT ±15 % October 4, 2019 5P35023 Datasheet I2C Bus Characteristics Table 35. I2C Bus DC Characteristics Symbol Parameter VIH Input High Level VIL Input Low Level VHYS Conditions Minimum Typical Maximum Units 0.7 × VDD33 V 0.3 × VDD33 Hysteresis of Inputs IIN Input Leakage Current VOL Output Low Voltage V 0.05 × VDD33 V IOL = 3mA. ±1 μA 0.4 V Table 36. I2C Bus AC Characteristics Symbol FSCLK Parameter Conditions Minimum Serial Clock Frequency (SCL) Typical Maximum Units 100 400 kHz Bus Free Time between STOP and START 1.3 μs tSU:START Setup Time, START 0.6 μs tHD:START Hold Time, START 0.6 μs tSU:DATA Setup Time, Data Input (SDA) 100 ns tHD:DATA Hold Time, Data Input (SDA) 1 0 μs tOVD Output Data Valid from Clock 0.9 μs CB Capacitive Load for Each Bus Line 400 pF tR Rise Time, Data and Clock (SDA, SCL) 20 + 0.1 × CB 300 ns tF Fall Time, Data and Clock (SDA, SCL) 20 + 0.1 × CB 300 ns tBUF tHIGH High Time, Clock (SCL) 0.6 μs tLOW Low Time, Clock (SCL) 1.3 μs Setup Time, STOP 0.6 μs tSU:STOP 1 A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the VIH(MIN) of the SCL signal) to bridge the undefined region of the falling edge of SCL. I2C Mode Operations The device acts as a slave device on the I2C bus using one of the four I2C addresses (0xD0, 0xD2, 0xD4, or 0xD6) to allow multiple devices to be used in the system. The interface accepts byte-oriented block write and block read operations. Two address bytes specify the register address of the byte position of the first register to write or read. Data bytes (registers) are accessed in sequential order from the lowest to the highest byte (most significant bit first). Read and write block transfers can be stopped after any complete byte transfer. During a write operation, data will not be moved into the registers until the STOP bit is received, at which point, all data received in the block write will be written simultaneously. For full electrical I2C compliance, it is recommended to use external pull-up resistors for SDATA and SCLK. The internal pull-down resistors have a size of 100kΩ typical. ©2019 Integrated Device Technology, Inc. 27 October 4, 2019 5P35023 Datasheet Figure 10. I2C Slave Read and Write Cycle Sequencing Current Read S Dev Addr + R A Data 0 A Data 1 A A Data n Abar P Sequential Read S Dev Addr + W A Reg start Addr A A Reg start Addr A Sr Dev Addr + R A Data 0 Data 1 A A Data 1 A A Data n Abar P Sequential Write S Dev Addr + W Data 0 A A Data n A P S = start Sr = repeated start A = acknowledge Abar = none acknowledge P = stop from master to slave from slave to master Byte 0: General Control Byte 00h Name Control Function Type 0 1 PWD Bit 7 OTP_Burned OTP memory programming indication R/W OTP memory non-programmed OTP memory programmed 0 Bit 6 I2C_addr[1] I2C address select bit 1 R/W Bit 5 I2C_addr[0] I2C address select bit 0 R/W Bit 4 PLL1_SSEN PLL1 Spread Spectrum enable R/W disable enable 0 Bit 3 DIV1_src_sel Divider 1 source clock select R/W PLL1 Xtal 0 Bit 2 PLL3_refin_sel PLL3 source selection R/W Xtal Seed (DIV2) 0 Bit 1 EN_CLKIN Enable CLKIN R/W disable enable 0 Bit 0 OTP_protect OTP memory protection R/W read/write write locked 0 0 00: D0 / 01: D2 10: D4 / 11: D6 0 Byte 1: Dash Code ID (optional) Byte 01h Name Control Function Type 0 1 PWD Bit 7 DashCode ID[7] Dash code ID R/W — — 0 Bit 6 DashCode ID[6] Dash code ID R/W — — 0 Bit 5 DashCode ID[5] Dash code ID R/W — — 0 Bit 4 DashCode ID[4] Dash code ID R/W — — 0 Bit 3 DashCode ID[3] Dash code ID R/W — — 0 Bit 2 DashCode ID[2] Dash code ID R/W — — 0 Bit 1 DashCode ID[1] Dash code ID R/W — — 0 Bit 0 DashCode ID[0] Dash code ID R/W — — 0 ©2019 Integrated Device Technology, Inc. 28 October 4, 2019 5P35023 Datasheet Byte 2: Crystal Cap Setting Byte 02h Name Control Function Type 0 1 PWD Bit 7 Xtal_Cap[7] Xtal cap load trimming bits R/W 0 Bit 6 Xtal_Cap[6] Xtal cap load trimming bits R/W 0 Bit 5 Xtal_Cap[5] Xtal cap load trimming bits R/W 0 x1 x2 x4 x8 total 15pf Bit 4 Xtal_Cap[4] Xtal cap load trimming bits R/W 1 Bit 3 Xtal_Cap[3] Xtal cap load trimming bits R/W Bit 2 Xtal_Cap[2] Xtal cap load trimming bits R/W 0 Bit 1 Xtal_Cap[1] Xtal cap load trimming bits R/W 0 Bit 0 Xtal_Cap[0] Xtal cap load trimming bits R/W 1 0 Byte 3: PLL3 M Divider Byte 03h Name Control Function Type 0 1 PWD Bit 7 PLL3_MDIV1 PLL3 source clock divider R/W disable M DIV1 bypadd divider (/1) 0 Bit 6 PLL3_MDIV2 PLL3 source clock divider R/W disable M DIV2 bypadd divider (/2) 0 Bit 5 PLL3 M_DIV[5] PLL3 reference integer divider R/W 3–64 default 25 0 Bit 4 PLL3 M_DIV[4] PLL3 reference integer divider R/W — — 1 Bit 3 PLL3 M_DIV[3] PLL3 reference integer divider R/W — — 1 Bit 2 PLL3 M_DIV[2] PLL3 reference integer divider R/W — — 0 Bit 1 PLL3 M_DIV[1] PLL3 reference integer divider R/W — — 0 Bit 0 PLL3 M_DIV[0] PLL3 reference integer divider R/W — — 1 Byte 4: PLL3 N Divider Byte 04h Name Control Function Type Bit 7 PLL3 N_DIV[7] PLL3 VCO feedback integer divider bit7 R/W 1 Bit 6 PLL3 N_DIV[6] PLL3 VCO feedback integer divider bit6 R/W 1 Bit 5 PLL3 N_DIV[5] PLL3 VCO feedback integer divider bit5 R/W 1 Bit 4 PLL3 N_DIV[4] PLL3 VCO feedback integer divider bit4 R/W Bit 3 PLL3 N_DIV[3] PLL3 VCO feedback integer divider bit3 R/W Bit 2 PLL3 N_DIV[2] PLL3 VCO feedback integer divider bit2 R/W 0 Bit 1 PLL3 N_DIV[1] PLL3 VCO feedback integer divider bit1 R/W 0 Bit 0 PLL3 N_DIV[0] PLL3 VCO feedback integer divider bit0 R/W 0 ©2019 Integrated Device Technology, Inc. 29 0 1 PWD 12–2048, default VCO setting is 480MHz 0 0 October 4, 2019 5P35023 Datasheet Byte 5: PLL3 Loop Filter Setting and N Divider 10:8 Byte 05h Name Control Function Type 0 1 PWD Bit 7 PLL3_R100K PLL3 Loop filter resister 100kohm R/W bypass plus 100kohm 0 Bit 6 PLL3_R50K PLL3 Loop filter resister 50kohm R/W bypass plus 50kohm 0 Bit 5 PLL3_R25K PLL3 Loop filter resister 25kohm R/W bypass plus 25kohm 0 Bit 4 PLL3_R12.5K PLL3 Loop filter resister 12.5kohm R/W bypass plus 12.5kohm 1 Bit 3 PLL3_R6K PLL3 Loop filter resister 6kohm R/W bypass only 6kohm applied 0 Bit 2 PLL3 N_DIV[10] PLL3 VCO feedback integer divider bit10 R/W Bit 1 PLL3 N_DIV[9] PLL3 VCO feedback integer divider bit9 R/W Bit 0 PLL3 N_DIV[8] PLL3 VCO feedback integer divider bit8 R/W 0 12–2048, default VCO setting is 480MHz 0 1 Byte 6: PLL3 Charge Pump Control Byte 06h Name Control Function Type 0 1 PWD Bit 7 OUTDIV 3 Source Output divider 3 source clock selection R/W PLL2 PLL3 0 Bit 6 PLL3_CP_8X PLL3 charge pump control R/W — x8 1 Bit 5 PLL3_CP_4X PLL3 charge pump control R/W — x4 1 Bit 4 PLL3_CP_2X PLL3 charge pump control R/W — x2 0 Bit 3 PLL3_CP_1X PLL3 charge pump control R/W — x1 1 Bit 2 PLL3_CP_/24 PLL3 charge pump control R/W — /24 1 Bit 1 PLL3_CP_/3 PLL3 charge pump control R/W — /3 0 Bit 0 PLL3_SIREF PLL3 SiRef current selection R/W 10μA 20μA 0 Formula: (iRef (10μA) × (1 + SIREF) × (1 × 1X + 2 × 2X + 4 × 4X + 8 × 8X + 16 × 16X))/((24 × /24) + (3 × /3)) Byte 7: PLL1 Control and OUTDIV5 Divider Byte 07h Name Control Function Type 0 1 PWD Bit 7 PLL1_MDIV_Doubler PLL1 reference clock doubler R/W disable enable 0 Bit 6 PLL1_SIREF PLL1 SiRef current selection R/W 10.8μA 21.6μA 0 Bit 5 PLL1_EN_CH2 PLL1 output Channel 2 control R/W disable enable 1 Bit 4 PLL1_EN_3rdpole PLL1 3rd Pole control R/W disable enable 0 Bit 3 OUTDIV5[3] Output divider5 control bit 3 R/W — — 0 Bit 2 OUTDIV5[2] Output divider5 control bit 2 R/W — — 0 Bit 1 OUTDIV5[1] Output divider5 control bit 1 R/W — — 1 Bit 0 OUTDIV5[0] Output divider5 control bit 0 R/W — — 1 ©2019 Integrated Device Technology, Inc. 30 October 4, 2019 5P35023 Datasheet Byte 8: PLL1 M Divider Byte 08h Name Control Function Type 0 1 PWD Bit 7 PLL1_MDIV1 PLL3 VCO reference clock divider 1 R/W disable M DIV1 bypass divider (/1) 0 Bit 6 PLL1_MDIV2 PLL3 VCO reference clock divider 2 R/W disable M DIV2 bypass divider (/2) 0 Bit 5 PLL1 M_DIV[5] PLL1 reference clock divider control bit 5 R/W 0 Bit 4 PLL1 M_DIV[4] PLL1 reference clock divider control bit 4 R/W 1 Bit 3 PLL1 M_DIV[3] PLL1 reference clock divider control bit 3 R/W Bit 2 PLL1 M_DIV[2] PLL1 reference clock divider control bit 2 R/W Bit 1 PLL1 M_DIV[1] PLL1 reference clock divider control bit 1 R/W 0 Bit 0 PLL1 M_DIV[0] PLL1 reference clock divider control bit 0 R/W 1 1 3–64, default is 25 0 Byte 9: PLL1 VCO N Divider Byte 09h Name Control Function Type 0 1 PWD Bit 7 PLL1 N_DIV[7] PLL1 VCO feedback divider control bit 7 R/W 0 Bit 6 PLL1 N_DIV[6] PLL1 VCO feedback divider control bit 6 R/W 1 Bit 5 PLL1 N_DIV[5] PLL1 VCO feedback divider control bit 5 R/W 0 Bit 4 PLL1 N_DIV[4] PLL1 VCO feedback divider control bit 4 R/W Bit 3 PLL1 N_DIV[3] PLL1 VCO feedback divider control bit 3 R/W Bit 2 PLL1 N_DIV[2] PLL1 VCO feedback divider control bit 2 R/W 0 Bit 1 PLL1 N_DIV[1] PLL1 VCO feedback divider control bit 1 R/W 0 Bit 0 PLL1 N_DIV[0] PLL1 VCO feedback divider control bit 0 R/W 0 1 12–2048, default is 600 1 Byte 10: PLL Loop Filter and N Divider Byte 0Ah Name Control Function Type 0 1 PWD Bit 7 PLL1_R100K PLL1 Loop filter resister 100kohm R/W bypass plus 100kohm 1 Bit 6 PLL1_R50K PLL1 Loop filter resister 50kohm R/W bypass plus 50kohm 0 Bit 5 PLL1_R25K PLL1 Loop filter resister 25kohm R/W bypass plus 25kohm 1 Bit 4 PLL1_R12.5K PLL1 Loop filter resister 12.5kohm R/W bypass plus 12.5kohm 1 Bit 3 PLL1_R1.0K PLL1 Loop filter resister 1kohm R/W bypass only 1.0kohm applied 0 Bit 2 PLL1 N_DIV[10] PLL1 VCO feedback integer divider bit10 R/W Bit 1 PLL1 N_DIV[9] PLL1 VCO feedback integer divider bit9 R/W Bit 0 PLL1 N_DIV[8] PLL1 VCO feedback integer divider bit8 R/W ©2019 Integrated Device Technology, Inc. 31 0 12–2048, default is 600 1 0 October 4, 2019 5P35023 Datasheet Byte 11: PLL1 Charge Pump Byte 0Bh Name Control Function Type 0 1 PWD Bit 7 PLL1_CP_32X PLL1 charge pump control R/W — x32 0 Bit 6 PLL1_CP_16X PLL1 charge pump control R/W — x16 0 Bit 5 PLL1_CP_8X PLL1 charge pump control R/W — x8 0 Bit 4 PLL1_CP_4X PLL1 charge pump control R/W — x4 0 Bit 3 PLL1_CP_2X PLL1 charge pump control R/W — x2 0 Bit 2 PLL1_CP_1X PLL1 charge pump control R/W — x1 1 Bit 1 PLL1_CP_/24 PLL1 charge pump control R/W — /24 1 Bit 0 PLL1_CP_/3 PLL1 charge pump control R/W — /3 0 Byte 12: PLL1 Spread Spectrum Control Byte 0Ch Name Control Function Type 0 1 PWD Bit 7 PLL1_SS_REFDIV23 PLL1 Spread Spectrum control - Ref divider 23 R/W — — 0 Bit 6 PLL1_SS_REFDIV[6] PLL1 Spread Spectrum control - Ref divider 6 R/W — — 0 Bit 5 PLL1_SS_REFDIV[5] PLL1 Spread Spectrum control - Ref divider 5 R/W — — 0 Bit 4 PLL1_SS_REFDIV[4] PLL1 Spread Spectrum control - Ref divider 4 R/W — — 0 Bit 3 PLL1_SS_REFDIV[3] PLL1 Spread Spectrum control - Ref divider 3 R/W — — 0 Bit 2 PLL1_SS_REFDIV[2] PLL1 Spread Spectrum control - Ref divider 2 R/W — — 0 Bit 1 PLL1_SS_REFDIV[1] PLL1 Spread Spectrum control - Ref divider 1 R/W — — 0 Bit 0 PLL1_SS_REFDIV[0] PLL1 Spread Spectrum control - Ref divider 0 R/W — — 0 Byte 13: PLL1 Spread Spectrum Control Byte 0Dh Name Control Function Type 0 1 PWD Bit 7 PLL1_SS_FBDIV[7] PLL1 Spread Spectrum - feedback divider 7 R/W — — 0 Bit 6 PLL1_SS_FBDIV[6] PLL1 Spread Spectrum - feedback divider 6 R/W — — 0 Bit 5 PLL1_SS_FBDIV[5] PLL1 Spread Spectrum - feedback divider 5 R/W — — 0 Bit 4 PLL1_SS_FBDIV[4] PLL1 Spread Spectrum - feedback divider 4 R/W — — 0 Bit 3 PLL1_SS_FBDIV[3] PLL1 Spread Spectrum - feedback divider 3 R/W — — 0 Bit 2 PLL1_SS_FBDIV[2] PLL1 Spread Spectrum - feedback divider 2 R/W — — 0 Bit 1 PLL1_SS_FBDIV[1] PLL1 Spread Spectrum - feedback divider 1 R/W — — 0 Bit 0 PLL1_SS_FBDIV[0] PLL1 Spread Spectrum - feedback divider 0 R/W — — 0 ©2019 Integrated Device Technology, Inc. 32 October 4, 2019 5P35023 Datasheet Byte 14: PLL1 Spread Spectrum Control Byte 0Eh Name Control Function Type 0 1 PWD Bit 7 PLL1_SS_FBDIV[15] PLL1 Spread Spectrum - feedback divider 15 R/W — — 0 Bit 6 PLL1_SS_FBDIV[14] PLL1 Spread Spectrum - feedback divider 14 R/W — — 0 Bit 5 PLL1_SS_FBDIV[13] PLL1 Spread Spectrum - feedback divider 13 R/W — — 0 Bit 4 PLL1_SS_FBDIV[12] PLL1 Spread Spectrum - feedback divider 12 R/W — — 0 Bit 3 PLL1_SS_FBDIV[11] PLL1 Spread Spectrum - feedback divider 11 R/W — — 0 Bit 2 PLL1_SS_FBDIV[10] PLL1 Spread Spectrum - feedback divider 10 R/W — — 0 Bit 1 PLL1_SS_FBDIV[09] PLL1 Spread Spectrum - feedback divider 9 R/W — — 0 Bit 0 PLL1_SS_FBDIV[08] PLL1 Spread Spectrum - feedback divider 8 R/W — — 0 Byte 15: Output Divider1 Control Byte 0Fh Name Control Function Type 0 1 PWD Bit 7 OUTDIV1[3] Output divider1 control bit 3 R/W — — 0 Bit 6 OUTDIV1[2] Output divider1 control bit 2 R/W — — 0 Bit 5 OUTDIV1[1] Output divider1 control bit 1 R/W — — 1 Bit 4 OUTDIV1[0] Output divider1 control bit 0 R/W — — 1 Bit 3 OUTDIV2[3] Output divider2 control bit 3 R/W — — 0 Bit 2 OUTDIV2[2] Output divider2 control bit 2 R/W — — 0 Bit 1 OUTDIV2[1] Output divider2 control bit 1 R/W — — 1 Bit 0 OUTDIV2[0] Output divider2 control bit 0 R/W — — 1 0 1 Byte 16: PLL2 Integer Feedback Divide Byte 10h Name Control Function Type PWD Bit 7 Reserved 0 Bit 6 Reserved 0 Bit 5 Reserved 0 Bit 4 Reserved 0 Bit 3 Reserved 0 Bit 2 PLL2_FB_INT[10] PLL2 feedback integer divider 10 R/W — — 0 Bit 1 PLL2_FB_INT[9] PLL2 feedback integer divider 9 R/W — — 0 Bit 0 PLL2_FB_INT[8] PLL2 feedback integer divider 8 R/W — — 0 ©2019 Integrated Device Technology, Inc. 33 October 4, 2019 5P35023 Datasheet Byte 17: PLL2 Integer Feedback Divider Byte 11h Name Control Function Type 0 1 PWD Bit 7 PLL2_FB_INT_DIV[7] PLL2 feedback integer divider 7 R/W — — 0 Bit 6 PLL2_FB_INT_DIV[6] PLL2 feedback integer divider 6 R/W — — 0 Bit 5 PLL2_FB_INT_DIV[5] PLL2 feedback integer divider 5 R/W — — 1 Bit 4 PLL2_FB_INT_DIV[4] PLL2 feedback integer divider 4 R/W — — 0 Bit 3 PLL2_FB_INT_DIV[3] PLL2 feedback integer divider 3 R/W — — 1 Bit 2 PLL2_FB_INT_DIV[2] PLL2 feedback integer divider 2 R/W — — 0 Bit 1 PLL2_FB_INT_DIV[1] PLL2 feedback integer divider 1 R/W — — 0 Bit 0 PLL2_FB_INT_DIV[0] PLL2 feedback integer divider 0 R/W — — 0 Byte 18: PLL2 Fractional Feedback Divider Byte 12h Name Control Function Type 0 1 PWD Bit 7 PLL2_FB_FRC_DIV[7] PLL2 feedback fractional divider 7 R/W — — 0 Bit 6 PLL2_FB_FRC_DIV[6] PLL2 feedback fractional divider 6 R/W — — 0 Bit 5 PLL2_FB_FRC_DIV[5] PLL2 feedback fractional divider 5 R/W — — 0 Bit 4 PLL2_FB_FRC_DIV[4] PLL2 feedback fractional divider 4 R/W — — 0 Bit 3 PLL2_FB_FRC_DIV[3] PLL2 feedback fractional divider 3 R/W — — 0 Bit 2 PLL2_FB_FRC_DIV[2] PLL2 feedback fractional divider 2 R/W — — 0 Bit 1 PLL2_FB_FRC_DIV[1] PLL2 feedback fractional divider 1 R/W — — 0 Bit 0 PLL2_FB_FRC_DIV[0] PLL2 feedback fractional divider 0 R/W — — 0 Byte 19: PLL2 Fractional Feedback Divider Byte 13h Name Control Function Type 0 1 PWD Bit 7 PLL2_FB_FRC_DIV[15] PLL2 feedback fractional divider 15 R/W — — 0 Bit 6 PLL2_FB_FRC_DIV[14] PLL2 feedback fractional divider 14 R/W — — 0 Bit 5 PLL2_FB_FRC_DIV[13] PLL2 feedback fractional divider 13 R/W — — 0 Bit 4 PLL2_FB_FRC_DIV[12] PLL2 feedback fractional divider 12 R/W — — 0 Bit 3 PLL2_FB_FRC_DIV[11] PLL2 feedback fractional divider 11 R/W — — 0 Bit 2 PLL2_FB_FRC_DIV[10] PLL2 feedback fractional divider 10 R/W — — 0 Bit 1 PLL2_FB_FRC_DIV[9] PLL2 feedback fractional divider 9 R/W — — 0 Bit 0 PLL2_FB_FRC_DIV[8] PLL2 feedback fractional divider 8 R/W — — 0 ©2019 Integrated Device Technology, Inc. 34 October 4, 2019 5P35023 Datasheet Byte 20: PLL2 Spread Spectrum Control Byte 14h Name Control Function Type 0 1 PWD Bit 7 PLL2_STEP[7] PLL2 spread step size control bit 7 R/W — — 0 Bit 6 PLL2_STEP[6] PLL2 spread step size control bit 6 R/W — — 0 Bit 5 PLL2_STEP[5] PLL2 spread step size control bit 5 R/W — — 0 Bit 4 PLL2_STEP[4] PLL2 spread step size control bit 4 R/W — — 0 Bit 3 PLL2_STEP[3] PLL2 spread step size control bit 3 R/W — — 0 Bit 2 PLL2_STEP[2] PLL2 spread step size control bit 2 R/W — — 0 Bit 1 PLL2_STEP[1] PLL2 spread step size control bit 1 R/W — — 0 Bit 0 PLL2_STEP[0] PLL2 spread step size control bit 0 R/W — — 0 Byte 21: PLL2 Spread Spectrum Control Byte 15h Name Control Function Type 0 1 PWD Bit 7 PLL2_STEP[15] PLL2 spread step size control bit 15 R/W — — 0 Bit 6 PLL2_STEP[14] PLL2 spread step size control bit 14 R/W — — 0 Bit 5 PLL2_STEP[13] PLL2 spread step size control bit 13 R/W — — 0 Bit 4 PLL2_STEP[12] PLL2 spread step size control bit 12 R/W — — 0 Bit 3 PLL2_STEP[11] PLL2 spread step size control bit 11 R/W — — 0 Bit 2 PLL2_STEP[10] PLL2 spread step size control bit 10 R/W — — 0 Bit 1 PLL2_STEP[9] PLL2 spread step size control bit 9 R/W — — 0 Bit 0 PLL2_STEP[8] PLL2 spread step size control bit 8 R/W — — 0 Byte 22: PLL2 Spread Spectrum Control Byte 16h Name Control Function Type 0 1 PWD Bit 7 PLL2_STEP_DELTA[7] PLL2 spread step size control delta bit 7 R/W — — 0 Bit 6 PLL2_STEP_DELTA[6] PLL2 spread step size control delta bit 6 R/W — — 0 Bit 5 PLL2_STEP_DELTA[5] PLL2 spread step size control delta bit 5 R/W — — 0 Bit 4 PLL2_STEP_DELTA[4] PLL2 spread step size control delta bit 4 R/W — — 0 Bit 3 PLL2_STEP_DELTA[3] PLL2 spread step size control delta bit 3 R/W — — 0 Bit 2 PLL2_STEP_DELTA[2] PLL2 spread step size control delta bit 2 R/W — — 0 Bit 1 PLL2_STEP_DELTA[1] PLL2 spread step size control delta bit 1 R/W — — 0 Bit 0 PLL2_STEP_DELTA[0] PLL2 spared step size control delta bit 0 R/W — — 0 ©2019 Integrated Device Technology, Inc. 35 October 4, 2019 5P35023 Datasheet Byte 23: PLL2 Period Control Byte 17h Name Control Function Type 0 1 PWD Bit 7 PLL2_PERIOD[7] PLL2 period control bit 7 R/W — — 0 Bit 6 PLL2_PERIOD[6] PLL2 period control bit 6 R/W — — 0 Bit 5 PLL2_PERIOD[5] PLL2 period control bit 5 R/W — — 0 Bit 4 PLL2_PERIOD[4] PLL2 period control bit 4 R/W — — 0 Bit 3 PLL2_PERIOD[3] PLL2 period control bit 3 R/W — — 0 Bit 2 PLL2_PERIOD[2] PLL2 period control bit 2 R/W — — 0 Bit 1 PLL2_PERIOD[1] PLL2 period control bit 1 R/W — — 0 Bit 0 PLL2_PERIOD[0] PLL2 period control bit 0 R/W — — 0 Byte 24: PLL2 Control Register Byte 18h Name Control Function Type 0 1 PWD Bit 7 PLL2_PERIOD[9] PLL2 period control bit 9 R/W — — 0 Bit 6 PLL2_PERIOD[8] PLL2 period control bit 8 R/W — — 0 Bit 5 PLL2_SSEN PLL2 spread spectrum enable R/W disable enable 0 Bit 4 PLL2_R100K PLL2 Loop filter resister 100kohm — bypass plus 100kohm 0 Bit 3 PLL2_R50K PLL2 Loop filter resister 50kohm — bypass plus 50kohm 0 Bit 2 PLL2_R25K PLL2 Loop filter resister 25kohm — bypass plus 25kohm 0 Bit 1 PLL2_R12.5K PLL2 Loop filter resister 12.5kohm — bypass plus 12.5kohm 0 Bit 0 PLL2_R6K PLL2 Loop filter resister 6kohm — bypass only 6kohm applied 0 Byte 25: PLL2 Charge Pump Control Byte 19h Name Control Function Type 0 1 PWD Bit 7 PLL2_CP_16X PLL2 charge pump control R/W — x16 0 Bit 6 PLL2_CP_8X PLL2 charge pump control R/W — x8 0 Bit 5 PLL2_CP_4X PLL2 charge pump control R/W — x4 1 Bit 4 PLL2_CP_2X PLL2 charge pump control R/W — x2 0 Bit 3 PLL2_CP_1X PLL2 charge pump control R/W — x1 0 Bit 2 PLL2_CP_/24 PLL2 charge pump control R/W — /24 1 Bit 1 PLL2_CP_/3 PLL2 charge pump control R/W — /3 0 Bit 0 PLL2_SIREF PLL2 SiRef current selection R/W 10μA 20μA 0 ©2019 Integrated Device Technology, Inc. 36 October 4, 2019 5P35023 Datasheet Byte 26: PLL2 M Divider Setting Byte 1Ah Name Control Function Type 0 1 PWD Bit 7 PLL2_MDIV_Doubler PLL2 reference divider - doubler R/W disable enable 0 Bit 6 PLL2_MDIV1 PLL2 reference divider 1 R/W disable M DIV1 bypadd divider (/1) 1 Bit 5 PLL2_MDIV2 PLL2 reference divider 2 R/W disable M DIV2 bypadd divider (/2) 0 Bit 4 PLL2_MDIV[4] PLL2 reference divider control bit 4 R/W 0 Bit 3 PLL2_MDIV[3] PLL2 reference divider control bit 3 R/W 0 Bit 2 PLL2_MDIV[2] PLL2 reference divider control bit 2 R/W Bit 1 PLL2_MDIV[1] PLL2 reference divider control bit 1 R/W 0 Bit 0 PLL2_MDIV[0] PLL2 reference divider control bit 0 R/W 0 3–64, default is 25 0 Byte 27: Output Divider 4 Byte 1Bh Name Control Function Type 0 1 PWD Bit 7 OUTDIV3[3] Out divider 3 control bit 3 R/W — — 0 Bit 6 OUTDIV3[2] Out divider 3 control bit 2 R/W — — 0 Bit 5 OUTDIV3[1] Out divider 3 control bit 1 R/W — — 1 Bit 4 OUTDIV3[0] Out divider 3 control bit 0 R/W — — 1 Bit 3 OUTDIV4[3] Out divider 4 control bit 3 R/W — — 0 Bit 2 OUTDIV4[2] Out divider 4 control bit 2 R/W — — 0 Bit 1 OUTDIV4[1] Out divider 4 control bit 1 R/W — — 1 Bit 0 OUTDIV4[0] Out divider 4 control bit 0 R/W — — 1 Byte 28: PLL Operation Control Register Byte 1Ch Name Control Function Type 0 1 PWD Bit 7 PLL2_HRS_EN PLL2 spread high resolution selection enable R/W normal enable (shift 4 bits) 0 Bit 6 PLL2_refin_sel PLL2 reference clock source select R/W Xtal DIV2 0 Bit 5 PLL3_PDB PLL3 Power Down R/W Power Down running 1 Bit 4 PLL3_LCKBYPSSB PLL3 lock bypass R/W bypass lock lock 1 Bit 3 PLL2_PDB PLL2 Power Down R/W Power Down running 1 Bit 2 PLL2_LCKBYPSSB PLL2 lock bypass R/W bypass lock lock 1 Bit 1 PLL1_PDB PLL1 Power Down R/W Power Down running 1 Bit 0 PLL1_LCKBYPSSB PLL1 lock bypass R/W bypass lock lock 1 ©2019 Integrated Device Technology, Inc. 37 October 4, 2019 5P35023 Datasheet Byte 29: Output Control Byte 1Dh Name Control Function Bit 7 DIFF1_SEL Bit 6 Type 0 1 PWD Differential clock 1 output OE2 control not controlled controlled 0 DIFF2_SEL Differential clock 2 output OE2 control not controlled controlled 0 Bit 5 DIFF1_EN Differential clock 1 output enable R/W disable enable 1 Bit 4 DIFF2_EN Differential clock 2 output enable R/W disable enable 1 Bit 3 OUTDIV4_Source Output divider 4 source clock selection R/W PLL2 Xtal 0 Bit 2 SE1_SLEW SE 1 slew rate control R/W normal strong 0 Bit 1 VDD1_SEL[1] VDD1 level control bit 1 R/W Bit 0 VDD1_SEL[0] VDD1 level control bit 0 R/W 00/01: 3.3V 10: 2.5V 11: 1.8 0 0 Byte 30: OE and DFC Control Byte 1Eh Name Control Function Type 0 1 PWD Bit 7 SE1_EN SE1 output enable control R/W disable enable 1 Bit 6 OE1_fun_sel[1] OE1 pin function selection bit 1 R/W OE1_fun_sel[0] OE1 pin function selection bit 0 R/W 10: SE1_PPS 00: SE1 OE 0 Bit 5 11:DFC0 01: PD# 0 Bit 4 SE3_EN SE3 output enable control R/W disable enable 1 Bit 3 OE3_fun_sel[1] OE3 pin function selection bit 1 R/W Bit 2 OE3_fun_sel[0] OE3 pin function selection bit 0 R/W Bit 1 DFC_SW_Sel[1] DFC frequency select bit 1 R/W Bit 0 DFC_SW_Sel[0] DFC frequency select bit 0 R/W Type 11:DFC1 10: SE3_PPS 01: xx 00: SE3 OE 00: N0 01: N1 10:N2 11:N3 0 0 0 0 Byte 31: Control Register Byte 1Fh Name Control Function 0 1 PWD Bit 7 SE2_Freerun_32K SE2 32K free run freerun 32K B31 bit6 control source 1 Bit 6 SE2_CLKSEL1 SE2 source clock selection DIV5 DIV4 0 Bit 5 VDD2_SEL[1] VDD2 level control bit 1 R/W Bit 4 VDD2_SEL[0] VDD2 level control bit 0 R/W Bit 3 SE2_SLEW SE2 slew rate control R/W Bit 2 PLL2_3rd_EN_CFG PLL2 3rd order control Bit 1 PLL2_EN_CH2 PLL2 channel 2 enable control Bit 0 PLL2_EN_3rdpole PLL2 3rd Pole control ©2019 Integrated Device Technology, Inc. 38 00/01: 3.3V 10: 2.5V 11: 1.8V 0 0 normal strong 0 1st order 3rd order 1 R/W disable enable 0 R/W disable enable 1 October 4, 2019 5P35023 Datasheet Byte 32: Control Register Byte 20h Name Control Function Type 0 1 PWD Bit 7 SE2_EN SE2 output enable control R/W disable enable 1 Bit 6 OE2_fun_sel[1] OE2 pin function selection bit 1 R/W Bit 5 OE2_fun_sel[0] OE2 pin function selection bit 0 R/W Bit 4 DFC_EN DFC function control R/W disable enable 0 Bit 3 WD_EN Watchdog timer control R/W disable enable 0 Bit 2 Timer_sel Watchdog timer select bit 1 R/W Bit 1 Timer_sel Watchdog timer select bit 0 R/W Bit 0 Alarm_Flag Alarm Status (Read Only) R 11:RESET 10: SE2_PPS 01: DIFF1/2 OE 00: SE2 OE 0 0 00: 250ms 01: 500ms 10: 2s 11: 4s No alarm 0 0 Alarmed 0 Byte 33: SE3 and DIFF1 Control Register Byte 21h Name Control Function Bit 7 SE3_Freerun_32K Bit 6 Type 0 1 PWD SE3 32K free run freerun 32K DIC2 or DIV4 selected by B33 bit6 1 SE3_CLKSEL1 SE3 source clock selection DIV2 DIV4 0 Bit 5 VDD3_SEL[1] VDD3 level control bit 1 R/W Bit 4 VDD3_SEL[0] VDD3 level control bit 0 R/W Bit 3 SE3_SLEW SE3 slew rate control R/W normal strong 0 Bit 2 DIFF_PDBHiZEN Differential output high-Z at power down R/W TBD output tri-state, bias off 0 Bit 1 DIFF1_CMOS2_FLIP Differential 1/2 LVCMOS output control R/W DIFF1_B inverted DIFF1_B non-inverted 0 Bit 0 DIFF2_CMOS2_FLIP Differential 1/2 LVCMOS output control R/W DIFF2_B inverted DIFF2_B non-inverted 0 11: 1.8V 10: 2.5V 0x: 3.3V 0 0 Byte 34: DIFF1 Control Register Byte 22h Name Control Function Type 0 1 PWD Bit 7 DIFF1_CLK_SEL Differential clock 1 source selection R/W DIV1 DIV3 1 Bit 6 DIFF1_io_pwr_sel Differential clock 1 output power R/W 2.5V 3.3V 1 Bit 5 DIFF1_OUTPUT_TYPE[1] Differential clock 1 type select bit 1 R/W 1 Bit 4 DIFF1_OUTPUT_TYPE[0] Differential clock 1 type select bit 0 R/W 00: LVMOS 01: LVDS 10: LVPECL 11: LPHCSL Bit 3 DIFF1_AMP[1] Differential clock 1 amplitude control bit 1 R/W 0 Bit 2 DIFF1_AMP[0] Differential clock 1 amplitude control bit 0 R/W LPHCSL: 00 = 740mV, 01 = 800mV, 10 = 855mV, 11 = 910mV LVPECL: 00 = 710mV, 01 = 810mV, 10 = 875mV, 11 = 920mV LVDS: 00 = 311mV, 01 = 344mV, 10 = 376mV, 11 = 408mV ©2019 Integrated Device Technology, Inc. 39 1 1 October 4, 2019 5P35023 Datasheet Byte 22h Name Control Function Type 0 1 PWD Bit 1 DIFF1_CMOS_SLEW Differential clock 1 LVCMOS slew rate control R/W normal strong 0 Bit 0 D1FF1_CMOS2_EN Differential clock 1 LVCMOS output_B control R/W disable enable 0 Byte 35: DIFF2 Control Register Byte 23h Name Control Function Type 0 1 PWD Bit 7 DIFF2_CLK_SEL Differential clock 2 source selection R/W DIV1 DIV3 0 Bit 6 DIFF2_IO_PWR_SEL Differential clock 2 output power R/W 2.5V 3.3V 1 Bit 5 DIFF2_OUTPUT_TYPE[1] Differential clock 2 type select bit 1 R/W 1 Bit 4 DIFF2_OUTPUT_TYPE[0] Differential clock 2 type select bit 0 R/W 00: LVMOS 01: LVDS 10: LVPECL 11: LPHCSL Bit 3 DIFF2_AMP[1] Differential clock 2 amplitude control bit 1 R/W Bit 2 DIFF2_AMP[0] Differential clock 2 amplitude control bit 0 R/W Bit 1 DIFF2_CMOS_SLEW Differential clock 2 LVCMOS slew rate control R/W normal strong 0 Bit 0 DIFF2_CMOS2_EN Differential clock 2 LVCMOS output_B control R/W disable enable 0 LPHCSL: 00 = 740mV, 01 = 800mV, 10 = 855mV, 11 = 910mV LVPECL: 00 = 710mV, 01 = 810mV, 10 = 875mV, 11 = 920mV LVDS: 00 = 311mV, 01 = 344mV, 10 = 376mV, 11 = 408mV 1 0 1 Byte 36: SE1 and DIV4 control Byte 24h Name Control Function Type 0 1 PWD Bit 7 I2C_PDB chip power down control bit R/W power down normal 1 Bit 6 Ref_free_run Reference clock output (SE2/SE3) R/W stop free run 0 Bit 5 free_run_output_config SE clocks free run control R/W SE2 free run SE2/3 free run 0 Bit 4 SE1_Freerun_32K SE1 clock output default R/W 32k free run B36bit3 control 0 Bit 3 SE1_CLKSEL1 SEL1 output select R/W DIV5 DIV4 1 Bit 2 REF_EN REF output enable R/W disable enable 1 Bit 1 DIV4_CH3_EN DIV4 channel 3 output control R/W disable enable 0 Bit 0 DIV4_CH2_EN DIV4 channel 2 output control R/W disable enable 0 ©2019 Integrated Device Technology, Inc. 40 October 4, 2019 5P35023 Datasheet Glossary of Features Table 37. Glossary of Features Term Function Description Apply to DFC Dynamic Frequency Control; from selected PLL to support four VCO frequencies; means two different output frequencies by assigned H/W pin state changes (H-L or L-H) needs to have frequency change Glitch-Free function in order to not crash application system. PLL2 ORT Overshoot Reduction; when the DFC dynamic frequency change is functional, the VCO changes frequencies smoothly to target frequency without overshoot or undershoot. PLL2 OE Output enable function; each output can be controlled by assigned OE pin and the dedicated OE pin can be OTP programmable as global Power Down function (PD#) or Output Enable (OE) or Proactive Power Saving function (PPS) or RESET pin function. OE1–3 SS Spread spectrum clock. Slew Rate PPS PLL1/PLL2 LVCMOS outputs with slew rate control – slow and fast. Proactive Power Saving; utilize OE pin as monitor pin for end device X2 clock status. See PPS – Proactive Power Saving Function description for details. LVCMOS SE1–3 Package Outline Drawings The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available. www.idt.com/document/psc/24-vfqfpn-package-outline-drawing-40-x-40-x-09-mm-body-05-mm-pitch-epad-26-x-26-mm-nlg24s3-wettable www.idt.com/document/psc/24-vfqfpn-package-outline-drawing-40-x-40-x-090-mm-body050mm-pitchepad-260-x-260-mm-nlg24p3 Marking Diagrams (industrial) ▪ Line 1 and 2 is the truncated part number. 35023 -000 YWW**$ 35023 -ddd YWW**$ • “-000” denotes the blank part. • “-ddd” denotes the dash code. ▪ “YWW” is the last digit of the year and work week that the part was assembled. ▪ “**” denotes lot sequence number. ▪ “$” denotes mark code. 5023B -000 YWW**$ 5023B -ddd YWW**$ ©2019 Integrated Device Technology, Inc. 41 October 4, 2019 5P35023 Datasheet Marking Diagrams (automotive) ▪ Line 1 and 2 is the truncated part number. 50232 -000 YWW**$ • “-000” denotes the blank part. • “-ddd” denotes the dash code. 50232 -ddd YWW**$ ▪ “YWW” is the last digit of the year and work week that the part was assembled. ▪ “**” denotes lot sequence number. ▪ “$” denotes mark code. Ordering Information Orderable Part Number Package Carrier Type Temperature 5P35023-000NLGI 4 × 4 mm, 0.5mm pitch 24-VFQFPN Trays -40 to +85°C, Industrial 5P35023-000NLGI8 4 × 4 mm, 0.5mm pitch 24-VFQFPN Tape and Reel -40 to +85°C, Industrial 5P35023-dddNLGI 4 × 4 mm, 0.5mm pitch 24-VFQFPN Trays -40 to +85°C, Industrial 5P35023-dddNLGI8 4 × 4 mm, 0.5mm pitch 24-VFQFPN Tape and Reel -40 to +85°C, Industrial 5P35023B-000NLGI 4 × 4 mm, 0.5mm pitch 24-VFQFPN Trays -40 to +85°C, Industrial 5P35023B-000NLGI8 4 × 4 mm, 0.5mm pitch 24-VFQFPN Tape and Reel -40 to +85°C, Industrial 5P35023B-dddNLGI 4 × 4 mm, 0.5mm pitch 24-VFQFPN Trays -40 to +85°C, Industrial 5P35023B-dddNLGI8 4 × 4 mm, 0.5mm pitch 24-VFQFPN Tape and Reel -40 to +85°C, Industrial 5P35023-000NLG2 4 × 4 mm, 0.5mm pitch 24-VFQFPN, Wettable Flank Trays -40 to +105°C, Automotive Grade 2 5P35023-000NLG28 4 × 4 mm, 0.5mm pitch 24-VFQFPN, Wettable Flank Tape and Reel -40 to +105°C, Automotive Grade 2 5P35023-dddNLG2 4 × 4 mm, 0.5mm pitch 24-VFQFPN, Wettable Flank Trays -40 to +105°C, Automotive Grade 2 5P35023-dddNLG28 4 × 4 mm, 0.5mm pitch 24-VFQFPN, Wettable Flank Tape and Reel -40 to +105°C, Automotive Grade 2 ©2019 Integrated Device Technology, Inc. 42 October 4, 2019 5P35023 Datasheet Revision History Revision Date Description of Change October 4, 2019 Removed comment “VBAT power ramp-up should be same or earlier time than other VDD power rail.” from Power Group table, Recommended Operating Conditions and VBAT description section. September 27, 2019 ▪ Added revision “B” orderable part numbers (non-automotive) and marking diagrams. August 19, 2019 ▪ Updated Figure 4 PPS Assertion/Deassertion Timing Chart. ▪ Updated LVCMOS 3.3V VOL maximum and 2.5V VIL maximum. ▪ Updated LVDS VOS specifications. May 15, 2019 ▪ Added information for automotive parts. ▪ Corrected error in thermal impedance values. ▪ Corrected error in LVCMOS test load. November 30, 2017 Updated I2C section. January 25, 2017 ▪ Updates/corrected typos in Byte 27. ▪ Updated package outline drawings. May 26, 2016 Initial release. Corporate Headquarters Sales Tech Support 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales www.IDT.com/go/support DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT’s sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc. All rights reserved. ©2019 Integrated Device Technology, Inc. 43 October 4, 2019 24-VFQFPN, Package Outline Drawing 4.0 x 4.0 x 0.9 mm Body, 0.5 mm Pitch, Epad 2.6 x 2.6 mm NLG24S3 Wettable Flank, PSC-4192-07, Rev 03, Page 1 © Integrated Device Technology, Inc. 24-VFQFPN, Package Outline Drawing 4.0 x 4.0 x 0.9 mm Body, 0.5 mm Pitch, Epad 2.6 x 2.6 mm NLG24S3 Wettable Flank, PSC-4192-07, Rev 03, Page 2 Package Revision History © Integrated Device Technology, Inc. Description Date Created Rev No. May 20, 2019 Rev 03 Change Rounded corner of Epad to straight line Nov 5, 2018 Rev 02 Change EPC Code 24-VFQFPN, Package Outline Drawing 4.0 x 4.0 x 0.90 mm Body,0.50mm Pitch,Epad 2.60 x 2.60 mm NLG24P3, PSC-4192-03, Rev 02, Page 1 © Integrated Device Technology, Inc. 24-VFQFPN, Package Outline Drawing 4.0 x 4.0 x 0.90 mm Body,0.50mm Pitch,Epad 2.60 x 2.60 mm NLG24P3, PSC-4192-03, Rev 02, Page 2 Package Revision History © Integrated Device Technology, Inc. Description Date Created Rev No. June 15, 2016 Rev 01 Oct 3, 2018 Rev 02 New Format, Recalculate Land Pattern Change QFN to VFQFPN Correct Title Block
5P35023B-139NLGI
IDT 5P35023是一款VersaClock®可编程时钟发生器,专为低功耗、消费类和高性能PCI Express应用设计。

该设备采用三PLL架构设计,每个PLL均可独立编程,支持多达六个独特的频率输出。

5P35023具备多种内置特性,如主动节电(PPS)、性能-功率平衡(PPB)、过冲降低技术(ORT)和超低功耗DCO。

内部OTP存储器允许用户存储配置,上电后可通过I2C接口更改设备寄存器设置。


物料型号:5P35023 器件简介:VersaClock®可编程时钟发生器,适用于PCIe Gen1-3时钟生成器、消费类应用晶体替代、智能设备、手持设备、计算和消费类应用以及汽车应用(信息娱乐、仪表盘、摄像头/视觉、计算、网络)。

引脚分配:共24个引脚,包括电源引脚、时钟输入输出引脚、配置引脚等。

参数特性:PCIe时钟相位抖动、差分时钟<1.5ps rms抖动、可配置的OE引脚功能、可配置的PLL带宽、PPS、PPB、DFC特性、独立扩展频谱时钟等。

功能详解:包括动态频率控制(DFC)、主动节电(PPS)、PLL特性和描述、电气特性、AC电气特性、PCIe抖动规格、扩展频谱生成规格、I2C总线特性等。

应用信息:适用于PCIe时钟生成器、消费类应用晶体替代、智能设备、计算和消费类应用、汽车应用等。

封装信息:提供工业级(-40°C至+85°C)和汽车级(-40°C至+105°C)温度范围的产品。
5P35023B-139NLGI 价格&库存

很抱歉,暂时无法提供与“5P35023B-139NLGI”相匹配的价格&库存,您可以联系我们找货

免费人工找货