0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
5V41234NLG8

5V41234NLG8

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    VFQFN-16

  • 描述:

    IC CLK GEN SPRED SPECTRM 16VFQFP

  • 数据手册
  • 价格&库存
5V41234NLG8 数据手册
DATASHEET 5V41234 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER Typical Applications Features One output synthesizer for PCIe Gen1/2/3 • 3 x 3 mm 16-QFN package; very small board footprint • Spread-spectrum capable; reduces EMI • Outputs can be terminated to LVDS; can drive a wider Description variety of devices The 5V41234 is a PCIe Gen2/3 compliant spread spectrum capable clock generator. The device has 1 differential HCSL output and can be used in communication or embedded systems to substantially reduce electro-magnetic interference (EMI). Spread spectrum can be enabled via a select pin. • Spread enable via pin selection; no software required to configure device • Industrial temperature range available; supports demanding embedded applications Key Specifications Output Features • Cycle-to-cycle jitter < 100 ps • PCIe Gen2 phase jitter < 3.0ps RMS • PCIe Gen3 phase jitter < 1.0ps RMS • 1 - 0.7V current mode differential HCSL output pairs Block Diagram VDD SS1 Control Logic CLK Phase Lock Loop X1 25 MHz crystal /clock X2 Clock Buffer/ Crystal Oscillator Crystal Tuning Capacitors GND IDT® 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER CLK 1 RR (IREF) 5V41234 MAY 5, 2017 5V41234 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER GND NC VDD Spread Spectrum Select Table NC NC Pin Assignment 13 1 CLK X1 CLK X2 GND NC 0 -0.5% down 1 No spread NC IREF SS1 GND Spread% VDDA 9 5 SS1 16-pin QFN Pin Descriptions Pin Number Pin Name Pin Type Pin Description 1 GND Power 2 X1 XI Crystal or clock input. Connect to 25MHz crystal or single-ended clock. 3 X2 XO Crystal connection. Connect to parallel mode crystal. Leave floating if X1 is driven by single-ended clock. 4 NC – 5 GND Power 6 SS1 Input 7 IREF Output 8 NC – 9 VDDA Power Connect to 3.3V and filter as analog supply. 10 GND Power Connect to ground. 11 CLK Output HCSL complementary output clock. 12 CLK Output HCSL true output clock. 13 NC – No connect. 14 NC – No connect. 15 VDD Power 16 NC – Connect to ground. No connect. Connect to ground. Spread Select 1. See table above. Internal pull-up resistor. 475 precision resistor must be attached to this pin, which is connected to internal current source. No connect. Connect to 3.3V for OSC and digital circuits. No connect. IDT® 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER 2 5V41234 MAY 5, 2017 5V41234 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER Applications Information Output Structures External Components A minimum number of external components are required for proper operation. IREF =2.3 mA 6*IREF Decoupling Capacitors Decoupling capacitors of 0.01F should be connected between VDD and the ground plane (pin 4) as close to the VDD pin as possible. Do not share ground vias between components. Route power from power source through the capacitor pad and then into IDT pin. Crystal A 25 MHz fundamental mode parallel resonant crystal with CL = 16pF should be used. This crystal must have less than 300 ppm of error across temperature in order for the 5V41234 to meet PCI Express specifications. R R 475  See Layout Guidelines Crystal Capacitors General PCB Layout Recommendations Crystal capacitors are connected from pins X1 to ground and X2 to ground to optimize the accuracy of the output frequency. For optimum device performance and lowest output phase noise, the following guidelines should be observed. 1. Each 0.01µF decoupling capacitor should be mounted on the component side of the board as close to the VDD pin as possible. CL= Crystal’s load capacitance in pF Crystal Capacitors (pF) = (CL- 8) * 2 2. No vias should be used between decoupling capacitor and VDD pin. For example, for a crystal with a 16 pF load cap, each external crystal cap would be 16pF. (16-8)*2=16. 3. The PCB trace to VDD pin should be kept as short as possible, as should the PCB trace to the ground via. Distance of the ferrite bead and bulk decoupling from the device is less critical. Current Source (Iref) Reference Resistor - RR If board target trace impedance (Z) is 50, then RR = 475 (1%), providing IREF of 2.32mA. The output current (IOH) is equal to 6*IREF. 4. An optimum layout is one with all components on the same side of the board, minimizing vias through other signal layers (any ferrite beads and bulk decoupling capacitors can be mounted on the back). Other signal traces should be routed away from the 5V41234.This includes signal traces just underneath the device, or on layers adjacent to the ground plane layer used by the device. Output Termination The PCI-Express differential clock outputs of the 5V41234 are open source drivers and require an external series resistor and a resistor to ground. These resistor values and their allowable locations are shown in detail in the PCI-Express Layout Guidelines section. The 5V41234 can also be terminated to LVDS compatible voltage levels. See Layout Guidelines section. IDT® 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER 3 5V41234 MAY 5, 2017 5V41234 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER Layout Guidelines for PCI Express PCIe Reference Clock Common Recommendations for Differential Routing Dimension or Value L1 length, route as non-coupled 50ohm trace 0.5 max L2 length, route as non-coupled 50ohm trace 0.2 max L3 length, route as non-coupled 50ohm trace 0.2 max Rs 33 Rt 49.9 Unit inch inch inch ohm ohm Figure 1 1 1 1 1 Down Device Differential Routing L4 length, route as coupled microstrip 100ohm differential trace L4 length, route as coupled stripline 100ohm differential trace 2 min to 16 max 1.8 min to 14.4 max inch inch 1 1 Differential Routing to PCI Express Connector L4 length, route as coupled microstrip 100ohm differential trace L4 length, route as coupled stripline 100ohm differential trace 0.25 to 14 max 0.225 min to 12.6 max inch inch 2 2 Figure 1: Down Device Routing L2 L1 Rs L4 L4' L2' L1' Rs Rt HCSL Output Buffer Rt L3' PCI Express Down Device REF_CLK Input L3 Figure 2: PCI Express Connector Routing L2 L1 Rs L4 L4' L2' L1' Rs Rt HCSL Output Buffer Rt L3' IDT® 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER 4 PCI Express Add-in Board REF_CLK Input L3 5V41234 MAY 5, 2017 5V41234 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER Layout Guidelines for LVDS and Other Applications Alternative Termination for LVDS and other Common Differential Signals (figure 3) Vdiff Vp-p Vcm R1 R2 R3 R4 Note 0.45v 0.22v 1.08 33 150 100 100 0.58 0.28 0.6 33 78.7 137 100 0.80 0.40 0.6 33 78.7 none 100 ICS874003i-02 input compatible 0.60 0.3 1.2 33 174 140 100 Standard LVDS R1a = R1b = R1 R2a = R2b = R2 Figure 3 L2 L1 R3 R1a L4 R4 L4' L2' L1' R1b R2a HCSL Output Buffer R2b L3' Down Device REF_CLK Input L3 Cable Connected AC Coupled Application (figure 4) Component Value Note R5a, R5b 8.2K 5% R6a, R6b 1K 5% Cc 0.1 µF Vcm 0.350 volts Figure 4 3.3 Volts R5a R5b R6a R6b Cc L4 L4' Cc IDT® 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER 5 PCIe Device REF_CLK Input 5V41234 MAY 5, 2017 5V41234 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER Typical PCI-Express (HCSL) Waveform 700 mV 0 tOR 500 ps 500 ps 0.525 V 0.175 V tOF 0.525 V 0.175 V Typical LVDS Waveform 1325 mV 1000 mV tOR 500 ps 1250 mV 1150 mV 500 ps tOF 1250 mV 1150 mV IDT® 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER 6 5V41234 MAY 5, 2017 5V41234 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER Absolute Maximum Ratings Stresses above the ratings listed below can cause permanent damage to the 5V41234. These ratings are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range. Item Rating Supply Voltage, VDD, VDDA 5.5V All Inputs and Outputs -0.5V to VDD+0.5V Ambient Operating Temperature (commercial) 0 to +70C Ambient Operating Temperature (industrial) -40 to +85C Storage Temperature -65 to +150C Junction Temperature 125C Soldering Temperature 260C ESD Protection (Input) 2000V min. (HBM) DC Electrical Characteristics Unless stated otherwise, VDD = 3.3V ±5%, Ambient Temperature -40 to +85C Parameter Symbol Supply Voltage Input High Voltage1 Input Low Voltage 1 Conditions Min. Typ. Max. Units V 3.135 3.465 VIH 2.2 VDD +0.3 V VIL VSS-0.3 0.8 V Input Leakage Current IIL 0 < Vin < VDD 5 A Operating Supply Current IDD 2pF load 70 mA Input Capacitance CIN Input pin capacitance 7 pF Output pin capacitance 6 pF 5 nH 2 Output Capacitance COUT Pin Inductance LPIN Output Resistance Rout CLK outputs Pull-up Resistor RPUP SS1 -5 3.0 k 100 k 1. Single edge is monotonic when transitioning through region. 2. Inputs with pull-ups/-downs are not included. IDT® 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER 7 5V41234 MAY 5, 2017 5V41234 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER AC Electrical Characteristics - CLK/CLK Unless stated otherwise, VDD=3.3V ±5%, Ambient Temperature -40 to +85C Parameter Symbol Conditions Min. Typ. Input Frequency Max. 25 Output Frequency Units MHz 100 MHz Output High Voltage1,2 VOH 660 700 850 mV Voltage1,2 VOL -150 0 27 mV 250 350 550 mV 40 140 mV 25 100 ps Output Low Crossing Point Voltage1,2 Absolute Crossing Point Voltage1,2,4 Variation over all edges Jitter, Cycle-to-Cycle1,3 Rise Fall Time1,2 Time1,2 Rise/Fall Time tOR From 0.175V to 0.525V 175 332 700 ps tOF From 0.525V to 0.175V 175 344 700 ps 75 125 ps 45 51 55 % 3.0 ms Variation1,2 Duty Cycle1,3 Stabilization Time tSTABLE From power-up VDD = 3.3V 1.2 Spread Change Time tSPREAD Settling period after spread change 3.0 1 Test ms setup is RS=33 ohms RP=50 ohms with 2pF, RR = 475 (1%). 2 Measurement taken from a single-ended waveform. 3 Measurement taken from a differential waveform. 4 Measured at the crossing point where instantaneous voltages of both CLK and CLK are equal. Electrical Characteristics - Differential Phase Jitter TA = Commercial and Industrial, Supply Voltage VDD = 3.3 V +/-5% PARAMETER Symbol Conditions PCIe Gen 1 tjphaseG1 PCIe Gen 2 tjphaseG2Lo 10kHz < f < 1.5MHz Jitter, Phase PCIe Gen 2 tjphaseG2High 1.5MHz < f < Nyquist (50MHz) PCIe Gen 3 tjphaseG3 Typ 28 SPEC Max 86 1.1 3 1.8 3.1 0.48 1 Min Units ps (p-p) ps (RMS) ps (RMS) ps (RMS) Notes 1,2,3 1,2,3 1,2,3 1,2,3 1 Guaranteed by design and characterization, not 100% tested in production. See http://www.pcisig.com for complete specs 2 3 Applies to 100MHz, spread off and 0.5% down spread only. Thermal Characteristics Parameter Thermal Resistance Junction to Ambient Thermal Resistance Junction to Case IDT® 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER Symbol Conditions Min. Typ. Max. Units JA Still air 69.4 C/W JA 1 m/s air flow 60.7 C/W JA 2.5 m/s air flow 54.4 C/W 9.7 C/W JC 8 5V41234 MAY 5, 2017 5V41234 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER Marking Diagrams XXX YWW$ 234G XXX YWW$ 234GI Notes: 1. Line 1: “XXX” is the lot traceability (last numeric character of the assembly lot number). 2. Line 2: “YYW” – date code; “$” – assembly location. 3. Line 3: truncated IDT part number. 4. “G” designates RoHS compliant package. 5. “I” within the part number indicates industrial temperature range. IDT® 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER 9 5V41234 MAY 5, 2017 5V41234 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER 10 Package Outline and Package Dimensions (3 x 3 mm 16-QFN) IDT® 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER 5V41234 MAY 5, 2017 5V41234 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER 11 Package Outline and Package Dimensions (3 x 3 mm 16-QFN), cont. IDT® 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER 5V41234 MAY 5, 2017 5V41234 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER Ordering Information Part / Order Number Marking 5V41234NLG See Page 9 Shipping Packaging Package Temperature Tubes 3 x 3 mm 16-QFN 0 to +70C 5V41234NLG8 Tape and Reel 3 x 3 mm 16-QFN 0 to +70C 5V41234NLGI Tubes 3 x 3 mm 16-QFN -40 to +85C 5V41234NLGI8 Tape and Reel 3 x 3 mm 16-QFN -40 to +85C “G” after the two-letter package code are the Pb-Free configuration and are RoHS compliant. While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments. Revision History Rev. Date Originator Description of Change A 09/26/11 RDW Initial release. B 11/22/11 RDW 1. Changed title to “1 Output PCIe GEN1/2/3 Synthesizer” 2. Updated Differential Phase Jitter table. B 03/20/14 S. Lou Corrected typo in shipping packaging section of Ordering Information table - changed “Trays” to “Tubes”. C 05/05/17 C.P. 1. Updated package drawing to the latest NLG16 version. 2. Updated legal disclaimer. IDT® 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER 12 5V41234 MAY 5, 2017 5V41234 1 OUTPUT PCIE GEN1/2/3 SYNTHESIZER Innovate with IDT and accelerate your future networks. Contact: www.IDT.com For Sales For Tech Support 800-345-7015 408-284-8200 Fax: 408-284-2775 www.idt.com/go/sales www.idt.com/go/support Corporate Headquarters Integrated Device Technology, Inc. www.idt.com DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT’s sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc.. All rights reserved. IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved.
5V41234NLG8 价格&库存

很抱歉,暂时无法提供与“5V41234NLG8”相匹配的价格&库存,您可以联系我们找货

免费人工找货