VersaClock® Programmable Clock
Generator
Description
5X35023
Datasheet
Features
Configurable OE pin function as OE, PD#, PPS or DFC control
function
Configurable PLL bandwidth; minimizes jitter peaking
PPS: Proactive Power Saving features save power during the
end device power down mode
PPB: Performance-Power Balancing feature allows minimum
power consumption base on required performance
DFC: Dynamic Frequency Control feature allows up to 4
difference frequencies to switch dynamically
Spread spectrum clock support to lower system EMI
I2C interface
Integrated crystal
The 5X35023 is the latest VersaClock programmable clock
generator with an integrated crystal, and is designed for low
power, consumer, and high-performance PCI Express
applications.
The 5X35023 device is a 3 PLL architecture design, and each PLL
is individually programmable allowing for up to 6 unique
frequencies outputs. The device has built-in unique features such
as Proactive Power Saving (PPS), Performance-Power Balancing
(PPB), Overshoot Reduction Technology (ORT) and Extreme Low
Power DCO.
An internal OTP memory allows the user to store the configuration
in the device, after power up, user can change the register setting
through the I2C interface when I2C mode is selected. The device
has programmable VCO and PLL source selection to allow
power-performance optimization base on the application
requirements. The device supports 3 single-ended outputs and
two pairs of differential outputs that support LVCMOS, LVPECL,
LVDS and LP-HCSL.
Key Specifications
PCIe clocks phase jitter: PCIe Gen3
Differential clocks < 3 ps rms jitter integer range 12kHz20MHz
Output Features
Low Power 32.768kHz clock is supported with only less than 2 A
current consumption for system RTC reference clock.
2 DIFF outputs with configurable LPHSCL, LVDS, LVPECL,
LVCMOS output pairs. 1MHz500MHz (160MHz with LVCMOS
mode at DIFF_T)
3 LVCMOS outputs: 1MHz160MHz
Maximum 8 LVCMOS outputs as REF + 3 × SE + 2 × DIFF_T
as LVCMOS
Typical Applications
PCIe Gen1/2/3 clock generator
Consumer application crystal replacements
SmartDevice, Handheld, Computing and Consumer
applications
Low Power 32.768kHz clock supported for all SE1SE3
Block Diagram
OSC
REF
VDDDIFF1
Programmable
Load Capacitor
DIFF1
DIFF1B
PLL1
SEL_DFC/ SCL_DFC1
VDDDIFF2
DIFF2
SDA_DFC0
DIFF2B
Mux
&
Divider
PLL2
Calibration
VDDA
SE1
OE1
VDDSE2
SE2
PLL3
VDD33
VDDSE1
OE2
32.768K
DCO
VDDSE3
SE3
VBAT
©2018 Integrated Device Technology, Inc.
OE3
1
May 2, 2018
5X35023 Datasheet
Contents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Output Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Detailed Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Power Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Output Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Output Source Selection Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Input Capacitance, LVCMOS Output Impedance, and Internal Pull-down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical Characteristics VDDDIFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical Characteristics VDDSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Spread Spectrum Generation Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Glossary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Device Features and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
DFCDynamic Frequency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
DFC Function Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
PPSProactive Power Saving Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
PPS Function Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Timer Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
OE Pin Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
VBAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
ORTVCO Overshoot Reduction Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
PLL Features and Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Output Clock Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
I2C Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
General I2C Mode Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Marking Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
©2018 Integrated Device Technology, Inc.
2
May 2, 2018
5X35023 Datasheet
Pin Assignments
Figure 1. Pin Assignments for 4 x 4 mm 24-QFN Package – Top View
24
23
22
21
20
19
VDDA
1
18
DIFF1
SDA_DFC0
2
17
DIFF1B
SEL_DFC/SCL_DFC1
3
16
VDDDIFF1
5X35023
NC
4
15
OE1
NC
5
14
SE1
VBAT
6
13
VDDSE1
7
8
9
10
11
12
Pin Descriptions
Table 1. Pin Descriptions
Number
Name
Type
1
VDDA
Power
2
SDA_DFC0
I/O
3
SEL_DFC/
SCL_DFC1
Input
4
NC
No connect.
5
NC
No connect.
6
VBAT
Power
7
NC
8
REF
Output
3.3V reference clock output.
9
VDD33
Power
VDD 3.3V.
10
OE2
Input
Output enable control 2, multi-function pin. Refer to OE function table.
11
VDDSE2
Power
Output power supply. Connect to 1.8V to 3.3V. Sets output voltage levels for SE2.
12
SE2
Output
Output clock SE2.
13
VDDSE1
Power
Output power supply. Connect to 1.8V to 3.3V. Sets output voltage levels for SE1.
14
SE1
Output
Output clock SE1.
15
OE1
Input
OE1 function selected from OTP pre-program register bits. OE1 pull to 6.5V when burn
OTP registers. Refer to OE function table for details.
16
VDDDIFF1
Power
Output power supply. Connect to 2.5V to 3.3V. Sets output voltage levels for DIFF1.
17
DIFF1B
Output
Differential clock output 1_Complement, can be OTP pre-programmed to
LVCMOS/LP-HCSL/LVDS/LVPECL output type.
©2018 Integrated Device Technology, Inc.
Description
VDD 3.3V.
I2C DATA pin, the pin can be DFC0 function by pin3 SEL_DFC power on latch status.
I2C clock pin, SEL_DFC is a latch input pin during the power up; High on power on: I 2C
mode as SCLK function; Low on power on: pin3 SCL and pin2 SDA as DFC function
control pins.
Power supply pin for 32.768kHz DCO; usually connect to coin cell battery, 3.0V3.3V.
No connect.
3
May 2, 2018
5X35023 Datasheet
Table 1. Pin Descriptions (Cont.)
Number
Name
Type
Description
18
DIFF1
Output
Differential clock output 1_True, can be OTP pre-programmed to
LVCMOS/LP-HCSL/LVDS/LVPECL output type.
19
SE3
Output
Output clock SE3.
20
VDDSE3
Power
Output power supply. Connect to 1.8V to 3.3V. Sets output voltage levels for SE3.
21
OE3
Input
Output enable control 3, multi-function pin. Refer to OE function table.
22
VDDDIFF2
Power
Output power supply. Connect to 2.5V to 3.3V. Sets output voltage levels for DIFF2.
23
DIFF2B
Output
Differential clock output 2_Complement, can be OTP pre-programmed to
LVCMOS/LP-HCSL/LVDS/LVPECL output type.
24
DIFF2
Output
Differential clock output 2_True, can be OTP pre-programmed to
LVCMOS/LP-HCSL/LVDS/LVPECL output type.
EPAD
Power
Connect to ground pad.
Detailed Functional Block Diagram
VDDDIFF2
DIV1/REF
OSC
MUX
Integer PLL(1) with
Analog SS
< 3ps rms jitter
PCIE Gen 1,2,3,4
VBAT
Power Monitor
DIV1
DIV3
MUX
VDDDIFF1
DIV1/REF
DIV2
DIV3
MUX
DIV2
Fractional PLL(2)
3rd order DSM
PCIE Gen 1,2,3
MUX
DIV3
MUX
DIV4
VDDA
VSS
Calibration
Integer PLL (3)
Non-SS
C-C jitter < 350ps
DIV5
DIFF1
DIFF1B
OE3
DIV4/REF
32K
MUX
DIV4/REF
DIV5
32K
MUX
DIV4/REF
DIV5
32K
MUX
SE3
VDDSE3
VDD33
POR
DIFF2
DIFF2B
OE2
SE2
VDDSE2
OE1
SE1
VDDSE1
32.768K
DCO
REF
SCL_DFC1
I2C Engine
Overshoot Reduction
(ORT)
Dynamic Frequency Control Logic (DFC)
SDA_DFC0
OTP Memory (1 configuration)
©2018 Integrated Device Technology, Inc.
Proactive Power Saving Logic (PPS)
4
Timer
May 2, 2018
5X35023 Datasheet
Power Group
Table 2. Power Group
Power Supply
SE
DIFF
DIV
MUX
PLL
VDDDIFF1
DIFF1
DIV3/4
MUXPLL2
PLL2
VDDDIFF2
DIFF2
DIV1
MUXPLL1
VDDSE1
SE1 1
VDDSE2
SE2 1
VDDSE3
SE3 1
VDD33
VBAT
DIV5
2
3
REF
Crystal
DCO
REF
Xtal
DCO
VDDA
1
PLL3
2
DCO
DIV2
Xtal
PLL1
VDDSEx for non-32kHz outputs should be OFF when VDDA/VDD33 is turned OFF; VBAT mode only supports 32.768kHz outputs from SE13.
VBAT power ramp up should be same or earlier than other VDD power rails; suggest to connect with coin cell battery.
All VDD pins need to have power present even if outputs are not used.
Output Sources
Table 3. Output Sources
Outputs
Source
REF
SE1
SE2
SE3
Crystal REF
Crystal REF
Crystal REF
Crystal REF
Crystal REF
32.768kHz
32.768kHz
32.768kHz
32.768kHz
PLL1
PLL2
PLL2
PLL2
PLL3
PLL3
PLL3
DIFF1
DIFF2
PLL1
PLL1
PLL1
PLL2
PLL2
PLL2
PLL3
PLL3
Output Source Selection Register Settings
Table 4. SE1 Output Source Register Settings
SE1
B36
B36
B31
B29
From 32K
0
1
0
0
From PLL3 + Divider 5
1
0
0
0
From PLL2 + Divider 4
1
1
1
0
From REF + Divider 4
1
1
0
1
©2018 Integrated Device Technology, Inc.
5
May 2, 2018
5X35023 Datasheet
Table 5. SE2 Output Source Register Settings
SE2
B31
B31
B36
B31
B29
From 32K
0
0
0
0
0
From PLL3 + Divider 5
1
0
0
0
0
From PLL2 + Divider 4
1
1
1
1
0
From REF + Divider 4
1
1
1
0
1
Table 6. SE3 Output Source Register Settings
SE3
B33
B33
B7
B29
B36
B31
From 32K
0
0
0
0
0
0
From PLL1 + Divider 2
1
0
1
0
0
0
From PLL2 + Divider 4
1
1
0
0
1
1
From REF + Divider 4
1
1
0
1
1
0
Table 7. DIFF1 Output Source Register Settings
DIFF1
B34
B0
From PLL1 + Divider 1
0
0
From PLL2/3 + Divider 3
1
0
From REF + Divider 1
0
1
Table 8. DIFF2 Output Source Register Settings
DIFF2
B35
B0
From PLL1 + Divider 1
0
0
From PLL2/3 + Divider 3
1
0
From REF + Divider 1
0
1
©2018 Integrated Device Technology, Inc.
6
May 2, 2018
5X35023 Datasheet
Absolute Maximum Ratings
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the
device. Functional operation of the 5X35023 at absolute maximum ratings is not implied. Exposure to absolute maximum rating
conditions may affect device reliability.
Table 9. Absolute Maximum Ratings
Parameter
Rating
Supply Voltage, VDDA, V DD33, V DDSE,VDDDIFF
3.63V
Supply Voltage, VBAT
3.63V
Inputs
-0.5V to VDD33/VDDSEx
Outputs, VDDSEx (LVCMOS)
-0.5V to VDDSEx/VDDDIFF + 0.5V
Outputs, IO (SDA)
10mA
Storage Temperature, TSTG
-65°C to 150°C
ESD Human Body Model
2000V
Junction Temperature
125°C
Thermal Characteristics
Table 10. Thermal Characteristics
Symbol
Parameter
Value
Units
JA
Theta JA. Junction to air thermal impedance (0mps).
32.4
°C/W
JB
Theta JB. Junction to board thermal impedance (0mps).
2.8
°C/W
JC
Theta JC. Junction to case thermal impedance (0mps).
44.7
°C/W
Recommended Operating Conditions
Table 11. Recommended Operating Conditions
Symbol
VDDSEx 1
VDD33 2
V DDA
VBAT
3
TA
CLOAD_OUT
tPU
Parameter
Minimum
Typical
Maximum
Units
Power supply voltage for supporting 1.8V outputs.
1.71
1.8
1.89
V
Power supply voltage for supporting 2.5V outputs.
2.375
2.5
2.625
V
Power supply voltage for supporting 3.3V outputs.
3.135
3.3
3.465
V
Power supply voltage for core logic functions.
3.135
3.3
3.465
V
Analog power supply voltage. Use filtered analog power supply if available.
2.375
3.465
V
3.465
V
85
°C
Battery power supply voltage.
2.8
Operating temperature, ambient.
-40
Maximum load capacitance (3.3V LVCMOS only).
3
5
Power-up time for all VDDs to reach minimum specified voltage (power ramps
must be monotonic).
0.05
pF
3
ms
1
Power-up sequence conditions.
2
VDDSEx for non-32kHz outputs should be OFF when VDDA/VDD33 turned OFF; VBAT mode only supports 32.768kHz outputs from SE13.
3
VBAT power ramp up should be same or earlier than other VDD power rail.
©2018 Integrated Device Technology, Inc.
7
May 2, 2018
5X35023 Datasheet
Input Capacitance, LVCMOS Output Impedance, and Internal
Pull-down
Table 12. Input Capacitance, LVCMOS Output Impedance, and Internal Pull-down
Symbol
Parameter
Input Capacitance (OE, SDA, SCL, DFC1:0)
CIN
Pull-down Resistor
ROUT
REF
Minimum
Typical
Maximum
Units
3
7
pF
OE
150
LVCMOS Output Driver Impedance (VDDSE = 1.8V)
17
LVCMOS Output Driver Impedance (VDDSE = 2.5V)
17
LVCMOS Output Driver Impedance (VDDSE = 3.3V)
17
Programmable Input Capacitance
16
k
pF
Electrical Characteristics
Table 13. DC Electrical Characteristics
Symbol
Parameter
IDDCORE
IDD_PLL1
IDD_PLL2
1
1
IDD_PLL3 1
Core Supply Current
PLL1 Supply Current
PLL2 Supply Current
PLL3 Supply Current
©2018 Integrated Device Technology, Inc.
Conditions
Typical
Maximum
Units
VDD = VDDSE = VDD33 = 3.3V3.3V, crystal =
25MHz, PLL2/3 OFF, no output - PLLs disabled.
5
6
mA
VDD = VDDSE = VDD33 = 3.3V, crystal = 25MHz,
PLL2/3 OFF, no output - PLL1 = 600MHz.
13
14
mA
VDD = VDDSE = VDD33 = 2.5V, crystal = 25MHz,
PLL2/3 OFF, no output - PLL1 = 600MHz.
13
14
mA
VDD = VDDSE = VDD33 = 3.3V, crystal = 25MHz,
PLL1/3 OFF, no output - PLL2 = 1GHz.
11
12
mA
VDD = VDDSE = VDD33 = 2.5V, crystal = 25MHz,
PLL1/3 OFF, no output - PLL2 = 1GHz.
11
12
mA
VDD = VDDSE = VDD33 = 3.3V, crystal = 25MHz,
PLL1/2 OFF, no output - PLL3 = 480MHz.
4
5
mA
8
Minimum
May 2, 2018
5X35023 Datasheet
Table 13. DC Electrical Characteristics (Cont.)
Symbol
IDDOx
Parameter
Output Buffer Supply
Current
Conditions
Typical
Maximum
Units
LVPECL, 500MHz, 3.3V VDDDIFF (DIFF1,2).
39
45
mA
LVPECL, 156.25MHz, 2.5V VDDDIFF (DIFF1,2).
33
40
mA
LVDS, 500MHz, 3.3V VDDDIFF (DIFF1,2).
13
16
mA
LVDS, 250MHz, 2.5V VDDDIFF (DIFF1,2).
8
10
mA
LP-HCSL, 125MHz, 3.3V VDDDIFF, 2pF load
(DIFF1,2).
7
9
mA
LP-HCSL, 100MHz, 2.5V VDDDIFF, 2pF load
(DIFF1,2).
8
11
mA
LVCMOS, 8MHz, 3.3V, VDDSE 1,2 (SE1).
1
2
mA
(SE1).
1
2
mA
LVCMOS, 8MHz, 1.8V, VDDSE 1,2 (SE1).
LVCMOS, 8MHz, 2.5V, VDDSE
Minimum
1,2
1
2
mA
LVCMOS, 160MHz, 3.3V VDDSEx
1 (SE1).
9.5
13
mA
LVCMOS, 160MHz, 2.5V VDDSEx
1,2
(SE1).
5.0
9
mA
LVCMOS, 160MHz, 1.8V VDDSEx 1,2 (SE1).
6.0
8
mA
2
Power Down Current
LP-HCSL
I C functional during power-down, just 32kHz
running (if any). DIFF outputs in LP-HCSL mode
are high/low.
2.6
3.4
mA
Power Down Current
LVCMOS
I2C functional during power-down, just 32kHz
running (if any). DIFF outputs in LVCMOS mode
are high/low or low/low.
0.5
1
mA
IDDSUSPEND 4
Suspend Mode Current
32kHz × 1
I2C off in Suspend Mode. One 32kHz output
running.
1.4
2.1
A
IDDSUSPEND 4
Suspend Mode Current
32kHz × 2
I2C off in Suspend Mode. Two 32kHz outputs
running.
3.2
7.9
A
IDDSUSPEND 4
Suspend Mode Current
32kHz × 3
I2C off in Suspend Mode. Three 32kHz outputs
running.
3.7
8.6
A
IDDPD 3
IDDPD
3,5
1
All output currents measured with 0.5 inch transmission line and 0pF load.
2
Single CMOS driver active.
3
Power-down can be controlled by PD (OE1 input pin) and/or I2C bit.
4
Suspend Mode requires all VDD to GND except VDDSEn (as desired) and VDD18.
5
DIFF outputs in LVCMOS Mode can power-down to be high/low or low/low, depending on register 0x22[1:0].
©2018 Integrated Device Technology, Inc.
9
May 2, 2018
5X35023 Datasheet
Electrical Characteristics – VDDDIFF
Table 14. DC Electrical Characteristics for LVDS
(VDDDIFF = 3.3V ±5%, 2.5V 5%, TA = -40°C to +85°C)
Symbol
Parameter
Minimum
Typical
Maximum
Units
VOT (+)
Differential Output Voltage for the TRUE Binary State
247
454
mV
VOT (-)
Differential Output Voltage for the FALSE Binary State
-247
-454
mV
VOT
Change in VOT between Complementary Output States
50
mV
1.375
V
50
mV
VOS
Output Common Mode Voltage (Offset Voltage)
VOS
1.125
1.25
Change in VOS between Complimentary Output States
Notes
IOS
Outputs Short Circuit Current, VOUT+ or VOUT- = 0V or
VDDDIFF
9
24
mA
IOSD
Differential Outputs Short Circuit Current, V OUT+ = V OUT-
6
12
mA
JitterCy/Cy
Cycle to Cycle Jitter
20
ps
1,2
JitterSTJ
Jitter - ST
100
ps
1,2
Duty Cycle
Duty Cycle
55
%
1,2
Measured Frequency
LVDS at Differential Output
500
MHz
1,2
Maximum
Units
Notes
45
1
Guaranteed by design and characterization, not 100% tested in production.
2
Measured from differential waveform.
Table 15. DC Electrical Characteristics for LVPECL
(VDDDIFF = 3.3V ±5%, 2.5V 5%, TA = -40°C to +85°C)
Symbol
Parameter
Minimum
Typical
VOH
Output Voltage High, Terminated through 50
tied to VDDDIFF - 2 V
VDDDIFF - 1.19
VDDDIFF - 0.69
V
VOL
Output Voltage Low, Terminated through 50
tied to V DDDIFF - 2 V
VDDDIFF - 1.94
VDDDIFF - 1.4
V
VSWING
Peak-to-Peak Output Voltage Swing
0.55
0.993
V
JitterCy/Cy
Cycle to Cycle Jitter
20
ps
1,2
JitterSTJ
Jitter - ST
100
ps
1,2
Duty Cycle
Duty Cycle
55
%
1,2
Measured Frequency
LVPECL at Differential Output
500
MHz
1,2
45
1
Guaranteed by design and characterization, not 100% tested in production.
2
Measured from differential waveform.
©2018 Integrated Device Technology, Inc.
10
May 2, 2018
5X35023 Datasheet
Table 16. Electrical Characteristics–DIF 0.7V LP-HCSL Differential Outputs
(VDDDIFF = 3.3V ±5%, 2.5V 5%, TA = -40°C to +85°C)
Symbol
dV/dt
dV/dt
Parameter
Slew Rate
Minimum
Typical
Maximum
Units
Notes
1
2.5
4
V/ns
1,2,3,8, at > =
100MHz
20
%
1,6,7,8
Slew Rate Mismatch
VHIGH
Voltage High
660
780
1150
mV
1,6
VLOW
Voltage Low
-150
0
150
mV
1
VMAX
Maximum Voltage
1150
mV
1
VMIN
Minimum Voltage
-300
mV
1,2,6
VSWING
Voltage Swing
300
mV
1,4,6
VCROSS
Crossing Voltage Value
250
550
mV
1,5
140
mV
1,2
VCROSS
400
Crossing Voltage Variation
JitterCy/Cy
Cycle to Cycle Jitter
20
ps
1,2
JitterSTJ
Jitter - ST
100
ps
1,2
Duty Cycle
Duty Cycle
55
%
1,2
Measured Frequency
LVHCSL at Differential Output
500
MHz
1,2,3,8, at > =
100MHz
1
45
Guaranteed by design and characterization, not 100% tested in production.
2
Measured from differential waveform.
3
Slew rate is measured through the VSWING voltage range centered around differential 0V. This results in a ±150mV window around differential 0V.
4
VCROSS is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock
rising and Clock# falling).
5
The total variation of all VCROSS measurements in any particular system. Note that this is a subset of VCROSS min/max (VCROSS absolute) allowed.
The intent is to limit VCROSS induced modulation by setting VCROSS to be smaller than VCROSS absolute.
6
Measured from single-ended waveform.
7
Measured with scope averaging off, using statistics function. Variation is difference between minimum and maximum.
8
Scope average ON.
©2018 Integrated Device Technology, Inc.
11
May 2, 2018
5X35023 Datasheet
Table 17. PCI Express Jitter Specifications
(VDDDIFF = 3.3V +5% or 2.5V +5%, TA = -40°C to +85°C)
Symbol
PCIe Industry
Specification
Units
Notes
37
86
ps
1,4
= 100MHz/125MHz, 25MHz
crystal input.
High band: 1.5MHz Nyquist
(clock frequency/2).
2.07
3.10
ps
2,4
Phase Jitter
RMS
= 100MHz/125MHz, 25MHz
crystal input.
Low band: 10kHz 1.5MHz.
1.15
3.0
ps
2,4
Phase Jitter
RMS
= 100MHz/125MHz, 25MHz
crystal input.
Evaluation band: 0Hz Nyquist
(clock frequency/2).
0.55
1.0
ps
3,4
Parameter
Conditions
Minimum
tJ (PCIe Gen1)
Phase Jitter
Peak-to-Peak
= 100MHz/125MHz, 25MHz
crystal input.
Evaluation band: 0Hz Nyquist
(clock frequency/2).
tREFCLK_HF_RMS
(PCIe Gen2)
Phase Jitter
RMS
tREFCLK_LF_RMS
(PCIe Gen2)
tREFCLK_RMS
(PCIe Gen3)
Typical
Maximum
Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in
a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached
under these conditions.
1
Peak-to-peak jitter after applying system transfer function for the common clock architecture; maximum limit for PCI Express Gen 1.
2
RMS jitter after applying the two evaluation bands to the two transfer functions defined in the common clock architecture and reporting the worst
case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1ps RMS for t REFCLK_HF_RMS (high band) and 3.0ps RMS
for tREFCLK_LF_RMS (low band).
3
4
RMS jitter after applying system transfer function for the common clock architecture. This specification is based on thePCI_Express_Base_r3.0 10
Nov, 2010 specification, and is subject to change pending the final release version of the specification.
This parameter is guaranteed by characterization, not tested in production.
Electrical Characteristics – VDDSE
Table 18. DC Electrical Characteristics for 3.3V LVCMOS
(VDDSE = 3.3V ±5%, TA = -40°C to +85°C)
Symbol
Parameter
Conditions
Minimum
Maximum
Units
VDDSE
V
0.4
V
3
A
VOH
Output High Voltage
IOH = -15mA.
VOL
Output Low Voltage
IOL = 15mA.
Output Leakage Current
Tri-state outputs, V DDSE = 3.465V.
VIH
Input High Voltage
Single-ended inputs OE, SDA, SCL.
2
VDDSE + 0.3
V
VIL
Input Low Voltage
Single-ended inputs OE, SDA, SCL.
GND - 0.3
0.8
V
IOZDD
©2018 Integrated Device Technology, Inc.
2.4
Typical
12
May 2, 2018
5X35023 Datasheet
Table 19. DC Electrical Characteristics for 2.5V LVCMOS
(VDDSE = 2.5V ±5%, TA = -40°C to +85°C)
Symbol
Parameter
Conditions
Minimum
Typical
Units
VDDSE
V
0.4
V
3
A
VOH
Output High Voltage
IOH = -12mA.
VOL
Output Low Voltage
IOL = 12mA.
Output Leakage Current
Tri-state outputs, V DDSE = 2.625V.
VIH
Input High Voltage
Single-ended inputs OE, SDA, SCL.
1.7
VDDSE + 0.3
V
VIL
Input Low Voltage
Single-ended inputs OE, SDA, SCL.
GND - 0.3
0.8
V
Maximum
Units
VDDSE
V
0.25 x VDDSE
V
3
A
IOZDD
0.7 x VDDSE
Maximum
Table 20. DC Electrical Characteristics for 1.8V LVCMOS
(VDDSE = 1.8V ±5%, TA = -40°C to +85°C)
Symbol
Parameter
Conditions
Minimum
Typical
VOH
Output High Voltage
IOH = -8mA.
VOL
Output Low Voltage
IOL = 8mA.
Output Leakage Current
Tri-state outputs, V DDSE = 1.89V.
VIH
Input High Voltage
Single-ended inputs OE, SDA, SCL.
0.65 x V DDSE
VDDSE + 0.3
V
VIL
Input Low Voltage
Single-ended inputs OE, SDA, SCL.
GND - 0.3
0.35 x VDDSE
V
IOZDD
0.7 x VDDSE
Table 21. Power Consumption of 32.768kHz Output Only Operation
(VDDSE = 3.3V +5%, 2.5V +5%, or 1.8V ±5%. TA = -40°C to +85°C)
Symbol
I_VBAT
Parameter
Conditions
VBAT = 3.3V Power Input Current
Minimum
Typical
Maximum
Units
1.2
A
I_VDDSEx
VDDSEx = 1.8V Current
0.5 inch, no load, one output.
0.4
A
I_VDDSEx
VDDSEx = 1.8V Current
2.0 inch, no load, one output.
1.0
A
I_VDDSEx
VDDSEx = 1.8V Current
5.0 inch, no load, one output.
2.3
A
I_VDDSEx
VDDSEx = 2.5V Current
0.5 inch, no load, one output.
0.6
A
I_VDDSEx
VDDSEx = 2.5V Current
2.0 inch, no load, one output.
1.5
A
I_VDDSEx
VDDSEx = 2.5V Current
5.0 inch, no load, one output.
3.1
A
I_VDDSEx
VDDSEx = 3.3V Current
0.5 inch, no load, one output.
0.8
A
I_VDDSEx
VDDSEx = 3.3V Current
2.0 inch, no load, one output.
1.9
A
I_VDDSEx
VDDSEx = 3.3V Current
5.0 inch, no load, one output.
4.2
A
©2018 Integrated Device Technology, Inc.
13
May 2, 2018
5X35023 Datasheet
AC Electrical Characteristics
Table 22. AC Timing Electrical Characteristics for LVDS
(VDDSE = 3.3V +5%, 2.5V +5%, or 1.8V ±5%, TA = -40°C to +85°C; spread spectrum = OFF)
Symbol
fOUT
Parameter
Output Frequency
Conditions
Minimum
Typical
Maximum
Units
Single-ended clock output limit (LVCMOS).
1
< 125
160
Differential clock output limit (LP-HCSL).
1
< 333
500
Differential clock output limit (LVDS).
1
< 333
500
Differential clock output limit (LVPECL).
1
500
MHz
MHz
fVCO1
VCO Frequency Range of PLL1
VCO operating frequency range.
300
600
MHz
fVCO2
VCO Frequency Range of PLL2
VCO operating frequency range.
600
1000
MHz
fVCO3
VCO Frequency Range of PLL3
VCO operating frequency range.
300
800
MHz
t2
Input Duty Cycle
Duty cycle.
45
55
%
t3
Output Duty Cycle
LVCMOS and differential clock < 333MHz,
crossing point measurements.
45
55
%
t3
Output Duty Cycle
LVCMOS and differential clock > 333MHz,
crossing point measurements.
40
60
%
t3
Output Duty Cycle_REF
Reference clock output or SE13 fan out clock.
40
60
%
Rise/Fall, SLEW[0] = 1
Single-ended LVCMOS output clock rise and fall
time, 20% to 80% of VDDSE 1.8V3.3V.
1.0
Rise/Fall, SLEW[0] = 0
Single-ended LVCMOS output clock rise and fall
time, 20% to 80% of V DDSE 1.8V3.3V.
1.1
Rise Times
LVDS, 20% to 80%.
300
Fall Times
LVDS, 80% to 20%.
300
Rise Times
LVPECL, 20% to 80%.
400
Fall Times
LVPECL, 80% to 20%.
400
Cycle-to-cycle jitter (peak-to-peak), multiple
output frequencies switching, differential outputs
(1.8V to 3.3V nominal output voltage).
SE1 = 25MHz.
SE2 = 100MHz.
SE3 = 125MHz.
DIFF1/2 = 100MHz.
36
ps
RMS phase jitter (12kHz to 20MHz integration
range) differential output,
VDDSE = 3.465V, 25MHz crystal.
SE1 = 25MHz.
SE2 = 100MHz.
SE3 = 125MHz.
DIFF1/2 = 100MHz.
1.57
ps
Skew between the same frequencies with outputs
using the same driver format.
152
ps
t4
t5
t6
t7
Clock Jitter
Output Skew
©2018 Integrated Device Technology, Inc.
14
ns
ps
May 2, 2018
5X35023 Datasheet
Table 22. AC Timing Electrical Characteristics for LVDS (Cont.)
(VDDSE = 3.3V +5%, 2.5V +5%, or 1.8V ±5%, TA = -40°C to +85°C; spread spectrum = OFF)
Symbol
Parameter
Conditions
Minimum
Typical
Maximum
Units
20
ms
t8 2
Lock Time
PLL lock time from power-up.
t9
Lock Time
32.768kHz clock, low power, power-up time.
10
100
ms
t9 3
Lock Time
PLL lock time from shutdown mode.
0.1
2
ms
1
Practical lower frequency is determined by loop filter settings.
2
Includes loading the configuration bits from EPROM to PLL registers. It does not include EPROM programming/write time.
3
Actual PLL lock time depends on the loop configuration.
Spread Spectrum Generation Specifications
Table 23. Spread Spectrum Generation Specification
Symbol
Parameter
Description
Minimum
f OUT
Output Frequency
Output frequency range.
fMOD
Mod Frequency
Modulation frequency.
Spread Value
Amount of spread value (programmable)
down spread.
Spread% Value
Variation of spread range.
fSPREAD
%tolerance
Typical
Maximum
Units
330
MHz
1
30 to 63
kHz
-0.5% to -5%
% fOUT
15
%
Glossary of Features
Table 24. Glossary of Features
Term
Function Description
Apply to
DFC
Dynamic Frequency Control; from selected PLL to support four VCO frequencies; means two different output
frequencies by assigned H/W pin state changes.
PLL2
ORT
Overshoot Reduction; when the DFC dynamic frequency change is functional, the VCO changes frequencies
smoothly to target frequency without overshoot or undershoot.
PLL2
OE
Output Enable function; each output can be controlled by assigned OE pin and the dedicated OE pin can be
OTP programmable as Global Power Down function (PD#) or Output enable (OE) or proactive power saving
function (PPS) or RESET pin function.
OE13
SS
Spread spectrum clock.
Slew Rate
PPS
PLL1/PLL2
LVCMOS outputs with slew rate control slow and fast.
Proactive Power Saving; utilize OE pin as monitor pin for end device X2 clock status. See PPS Function
description for details.
©2018 Integrated Device Technology, Inc.
15
LVCMOS
SE13
May 2, 2018
5X35023 Datasheet
Device Features and Functions
DFC–Dynamic Frequency Control
OTP program (only) setup 4 different feedback fractional divider (4 VCO frequencies) that apply to PLL2.
ORT (overshoot reduction) function will be applied automatically during the VCO frequency change.
Smooth frequency incremental or decremental from current VCO to targeted VCO base on DFC hardware pins selection.
Figure 2. DFC Block Diagram
M divider
PLL2
OUT DIV
Selector
00
N divider
01
N divider
10
N divider
11
N divider
DFC1:0
OTP/I2C
Table 25. DFC Function Priority
DFC_EN bit (W32[4])
OE1_fun_sel
OE3_fun_sel
SCL_DFC1
DFC[1:0]
Notes
1
11 (DFC)
0010 (DFC)
x
[0,OE1]
One pin DFC OE1
1
11 (DFC)
11 (DFC)
x
[OE3,OE1]
Two pin DFC
OE3,OE1
1
0010
11
x
Not permitted
Not supported
1
0010
0010
0
[SCL_DFC1,
SDA_DFC0]
I2C pin as DFC
control pins mode
1
0010
0010
1
W30[1:0]
I2C control DFC
mode
1
11 (DFC)
0010 (DFC)
x
[0,OE1]
One pin DFC - OE1
©2018 Integrated Device Technology, Inc.
16
May 2, 2018
5X35023 Datasheet
DFC Function Programming
1. Register B63b3:2 selects DFC00DFC11 configuration.
2. Byte1619 are the registers for PLL2 VCO setting. Based on B63b3:2 configuration selection, the data write to B1619 will be stored
in the selected configuration OTP memory.
3. Refer to DFC Function Priority table; select proper control pin(s) to activate DFC function.
4. Note the DFC function can also be controlled by I2C access.
PPS–Proactive Power Saving Function
PPS Proactive Power Saving is an IDT patented unique design for the clock generator that proactively detects end device power down
state and then switches output clocks between the normal operation clock frequency, and the low power mode 32kHz clock that only
consumes < 2 A current. The system could save power when the device goes into power down or sleep mode. The PPS function diagram
is shown below.
Figure 3. PPS Function Block Diagram
I2C
&
Logic
Xtal
Oscillator
PPS
Control
Logic
Power
Down
Control
Low
Power
DCO
Xout
OE
SE
Xin
Xtal
Oscillator
Logic
MHz/kHz
Switching
PLL
Figure 4. PPS Assertion/Deassertion Timing Chart
3rd cycle
2nd cycle
1st cycle
PPS assertion
MHz clock
32K clocks
PPS setting (1-2-4-8)
2nd cycle
1st cycle
PPS deassertion
32K clocks
©2018 Integrated Device Technology, Inc.
MHz clock
17
May 2, 2018
5X35023 Datasheet
PPS Function Programming
1. Refer to OE_pin_fucntion_table to have the proper PPS function selected for OE pin(s). Note that the register default is set to Output
enable (OE) function for OE pins.
2. Have proper setup to Byte 30 and 32 for OE1OE3 function selection; for PPS function, select 10 to control register bits.
Timer Function Description
1. The timer function can be used together with the DFC -Dynamic Frequency Control function or with another PLL frequency
programming.
2. The timer provides 4 different delay times by two bits selection: 0.5 seconds, 1 seconds, 2 seconds, 4 seconds.
3. The timeout flag will be set when timer times out and the flag can be cleared by writing 0 to timer enable bit.
4. When timer times out, RESET pin can generate a 250ms pulse signal if RESET control bit is enabled.
5. When timer times out, DFC stage will switch back to DFC00 setting if DFC function is enabled and DFC function will be disabled after
RESET.
Figure 5. Timer Functions
Select delay time 0.5 - 4.0 seconds and enable timer
Program New VCO frequency or enable DFC
System functional check
Disable Timer
Timer continue if system is not able to stop timer
Timeout Flag set and generate RESET pulse
OE Pin Function
OE pins in the 5X35023 have multiple functions. The OE pins can be configured as output enable control (OE) or chip power-down
control (PD#) or proactive power saving function (PPS). Furthermore, the OE pins can be configured as single or two pin dynamic
frequency control (DFC), or the RESET out function that is associated with the Timer function.
Table 26. OE Pin Functions
Pin
Function
OE1
OE2
OE3
SE Output Enable/Disable
SE1 (default)
SE2 (default)
SE3 (default)
DIFF Output Enable/Disable
DIFF1/DIFF2
Global Power Down (PD#)
PD#
Proactive Power Saving Input
SE1_PPS
SE2_PPS
SE3_PPS
DOC Control (Only PLL2)
DFC0
DFC1
RESET OUT
RESET OUT
©2018 Integrated Device Technology, Inc.
18
May 2, 2018
5X35023 Datasheet
Table 27. OE Pin Function Summary
OE Pin
Description
OE1: SE1
OE1 only control SE1 enable/disable; other outputs are not affected by this pin status.
OE2: SE2
OE2 only control SE2 enable/disable; other outputs are not affected by this pin status.
OE2: SE3
OE3 only control SE3 enable/disable; other outputs are not affected by this pin status.
OE2: DIFF1/DIFF2
OE1: PD#
OE2 control differential outputs 1 and 2 only; other SE outputs are not affected by this pin status.
OE1 control chip global power down (PD#) except 32.768kHz on OE1 (when 32K is enabled). When the PD# pin
is active low, the chip goes to lowest power down mode and all outputs are disabled except 32kHz output and
only keep 32K/Xtal calibration.
OE1: SE1_PPS
Configure OE1 as SE1_PPS (Proactive Power Saving) function pin.
OE2: SE2_PPS
Configure OE2 as SE2_PPS (Proactive Power Saving) function pin.
OE3: SE3_PPS
Configure OE3 as SE3_PPS (Proactive Power Saving) function pin.
OE1: DFC0
Configure OE1 as DFC0 control pin 0.
OE3/DFC1
Configure OE3 as DFC1 control pin 1.
Table 28. PD# Priority
PD#
I2C_OE_EN_bit
SE1/2/3, DIFF1/DIFF2
Output
Notes
0
x
x
stop
32kHz free run
1
0
x
stop
1
1
0
stop
1
1
1
running
©2018 Integrated Device Technology, Inc.
19
May 2, 2018
5X35023 Datasheet
Spread Spectrum
The 5X35023 supports spread spectrum clocks from PLL1 and PLL2; the PLL1 built-in with analog spread spectrum and PLL2 has digital
spread spectrum.
Figure 6. Digital Spread Spectrum
N
Fvco
2 * Fout
period
step
Fpfd
2 * Fss
N * SSamount
period
Down spread or Spread off
N = Fvco/Fpfd
Center Spread
N = Nssoff + N × SSamount/2
N: include integer and fraction
Fvco: VCOs frequency
Fpfd: PLLs pfd frequency
Fss: spread modulation rate
SSamount: spread percentage
The black line is for the down spread; N will decrease to make the center frequency is lower than spread off.
The blue line is for the center spread; there is an offset put on divider ratio to make the center frequency keep same as spread off.
©2018 Integrated Device Technology, Inc.
20
May 2, 2018
5X35023 Datasheet
VBAT
The 5X35023 V BAT supports a low-power operation 32.768kHz RTC clock with only coin cell battery supply. The coin cell battery power
capacitance is usually 170mAhr or higher, with less than 2 A low-power DCO operation mode will support application up to few years
clock source for date/time keeping circuit (RTC).
When there is main power existing in VDD33 and VDDA, the 5X35023 will switch DCO power source to main power to save battery power.
VBAT should be powered earlier or at same time with other VDD power up. Connecting with a coin cell battery is suggested.
Figure 7. VBAT Switching Threshold
VBAT
VDD33
Switch to VBAT
(VDD33 falling down to 2.3V)
Switch to VDD33
(VDD33 raise up to 2.5V )
VDD33
VBAT
DCO Power Source
> 2.5V
VDD33
< 2.3V
V BAT
ORT–VCO Overshoot Reduction Technology
The 5X35023 supports the VCO overshoot reduction technology (ORT) to prevent an output clock frequency spike when the device is
changing frequency on the fly or doing DFC (Dynamic Frequency Control) function. The VCO frequency changes are under control
instead of free-run to targeted frequency.
PLL Features and Descriptions
Table 29. Output 1 Divider
Output Divider bits
Output Divider bits
00
01
10
11
00
1
2
4
8
01
4
8
16
32
10
5
10
20
40
11
6
12
24
48
Table 30. Output 2, 4, and 5 Divider
Output Divider bits
Output Divider bits
00
01
10
11
00
1
2
4
5
01
3
6
12
15
10
5
10
20
25
11
10
20
40
50
©2018 Integrated Device Technology, Inc.
21
May 2, 2018
5X35023 Datasheet
Table 31. Output 3 Divider
Output Divider bits
Output Divider bits
00
01
10
11
00
1
2
4
8
01
3
6
12
24
10
5
10
20
40
11
10
20
40
80
Output Clock Test Conditions
Figure 8. LVCMOS Output Test Conditions
33 ohm
2 inches
2pF
LVCMOS
Figure 9. LP-HCSL Output Test Conditions
33 ohm
33 ohm
5 inches
2pF
LPHCSL
©2018 Integrated Device Technology, Inc.
22
2pF
May 2, 2018
5X35023 Datasheet
I2C Bus Characteristics
Table 32. I2C Bus DC Characteristics
Symbol
Parameter
VIH
Input High Level
VIL
Input c Level
VHYS
Conditions
Minimum
Typical
Maximum
0.7 x VDD33
V
0.3 x VDD33
Hysteresis of Inputs
0.05 x VDD33
IIN
Input Leakage Current
VOL
Output Low Voltage
Units
V
V
±1
A
0.4
V
Typical
Maximum
Units
100
400
kHz
IOL = 3mA
Table 33. I2C Bus AC Characteristics
Symbol
FSCLK
tBUF
Parameter
Conditions
Minimum
Serial Clock Frequency (SCL)
Bus Free Time between STOP and START
1.3
s
tSU:START
Setup Time, START
0.6
s
tHD:START
Hold Time, START
0.6
s
tSU:DATA
Setup Time, Data Input (SDA)
100
ns
tHD:DATA
Hold Time, Data Input (SDA) 1
0
s
tOVD
Output Data Valid from Clock
0.9
s
CB
Capacitive Load for Each Bus Line
400
pF
tR
Rise Time, Data and Clock (SDA, SCL)
20 + 0.1 x CB
300
ns
tF
Fall Time, Data and Clock (SDA, SCL)
20 + 0.1 x CB
300
ns
tHIGH
High Time, Clock (SCL)
0.6
s
tLOW
High Time, Clock (SCL)
1.3
s
Setup Time, STOP
0.6
s
tSU:STOP
©2018 Integrated Device Technology, Inc.
23
May 2, 2018
5X35023 Datasheet
General I2C Mode Operations
The device acts as a slave device on the I 2C bus using one of the four I 2C addresses (0xD0, 0xD2, 0xD4, or 0xD6) to allow multiple
devices to be used in the system. The interface accepts byte-oriented block write and block read operations. Two address bytes specify
the register address of the byte position of the first register to write or read. Data bytes (registers) are accessed in sequential order from
the lowest to the highest byte (most significant bit first). Read and write block transfers can be stopped after any complete byte transfer.
During a write operation, data will not be moved into the registers until the STOP bit is received, at which point, all data received in the
block write will be written simultaneously.
For full electrical I2C compliance, it is recommended to use external pull-up resistors for SDATA and SCLK. The internal pull-down
resistors have a size of 100k typical.
Figure 10. I2C Slave Read and Write Cycle Sequencing
Current Read
S
Dev Addr + R
A
Data 0
A
Data 1
A
A
Data n
Abar
P
Sequential Read
S
Dev Addr + W
A
Reg start Addr
A
A
Reg start Addr
A
Sr
Dev Addr + R
A
Data 0
Data 1
A
A
Data 1
A
A
Data n
Abar
P
Sequential Write
S
Dev Addr + W
from master to slave
from slave to master
Data 0
A
A
Data n
A
P
S = start
Sr = repeated start
A = acknowledge
Abar = none acknowledge
P = stop
©2018 Integrated Device Technology, Inc.
24
May 2, 2018
5X35023 Datasheet
Byte 0: General Control
Byte 00h
Name
Control Function
Type
0
1
PWD
Bit 7
OTP_Burned
OTP memory programming
indication
R/W
OTP memory
non-programmed
OTP memory
programmed
0
Bit 6
I2C_addr[1]
I2C address select bit 1
R/W
Bit 5
I2C_addr[0]
I2C address select bit 0
R/W
Bit 4
PLL1_SSEN
PLL1 Spread Spectrum enable
R/W
disable
enable
0
Bit 3
DIV1_src_sel
Divider 1 source clock select
R/W
PLL1
Xtal
0
Bit 2
PLL3_refin_sel
PLL3 source selection
R/W
Xtal
Seed (DIV2)
0
Bit 1
EN_CLKIN
Enable CLKIN
R/W
disable
enable
0
Bit 0
OTP_protect
OTP memory protection
R/W
read/write
write locked
0
00: D0
10: D4
0
/ 01: D2
/ 11: D6
0
Byte 1: Dash Code ID (optional)
Byte 01h
Name
Control Function
Type
0
1
PWD
Bit 7
DashCode ID[7]
Dash code ID
R/W
0
Bit 6
DashCode ID[6]
Dash code ID
R/W
0
Bit 5
DashCode ID[5]
Dash code ID
R/W
0
Bit 4
DashCode ID[4]
Dash code ID
R/W
0
Bit 3
DashCode ID[3]
Dash code ID
R/W
0
Bit 2
DashCode ID[2]
Dash code ID
R/W
0
Bit 1
DashCode ID[1]
Dash code ID
R/W
0
Bit 0
DashCode ID[0]
Dash code ID
R/W
0
0
1
PWD
Byte 2: Crystal Cap Setting
Byte 02h
Name
Control Function
Type
Bit 7
Xtal_Cap[7]
Xtal cap load trimming bits
R/W
0
Bit 6
Xtal_Cap[6]
Xtal cap load trimming bits
R/W
0
Bit 5
Xtal_Cap[5]
Xtal cap load trimming bits
R/W
0
x1 x2
x4 x8
total 15pf
Bit 4
Xtal_Cap[4]
Xtal cap load trimming bits
R/W
Bit 3
Xtal_Cap[3]
Xtal cap load trimming bits
R/W
Bit 2
Xtal_Cap[2]
Xtal cap load trimming bits
R/W
0
Bit 1
Xtal_Cap[1]
Xtal cap load trimming bits
R/W
0
Bit 0
Xtal_Cap[0]
Xtal cap load trimming bits
R/W
1
©2018 Integrated Device Technology, Inc.
25
1
0
May 2, 2018
5X35023 Datasheet
Byte 3: PLL3 M Divider
Byte 03h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL3_MDIV1
PLL3 source clock divider
R/W
disable M DIV1
bypadd divider (/1)
0
Bit 6
PLL3_MDIV2
PLL3 source clock divider
R/W
disable M DIV2
bypadd divider (/2)
0
Bit 5
PLL3 M_DIV[5]
PLL3 reference integer divider
R/W
364
default 25
0
Bit 4
PLL3 M_DIV[4]
PLL3 reference integer divider
R/W
1
Bit 3
PLL3 M_DIV[3]
PLL3 reference integer divider
R/W
1
Bit 2
PLL3 M_DIV[2]
PLL3 reference integer divider
R/W
0
Bit 1
PLL3 M_DIV[1]
PLL3 reference integer divider
R/W
0
Bit 0
PLL3 M_DIV[0]
PLL3 reference integer divider
R/W
1
Byte 4: PLL3 N Divider
Byte 04h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL3 N_DIV[7]
PLL3 VCO feedback integer divider bit7
R/W
1
Bit 6
PLL3 N_DIV[6]
PLL3 VCO feedback integer divider bit6
R/W
1
Bit 5
PLL3 N_DIV[5]
PLL3 VCO feedback integer divider bit5
R/W
1
Bit 4
PLL3 N_DIV[4]
PLL3 VCO feedback integer divider bit4
R/W
Bit 3
PLL3 N_DIV[3]
PLL3 VCO feedback integer divider bit3
R/W
Bit 2
PLL3 N_DIV[2]
PLL3 VCO feedback integer divider bit2
R/W
0
Bit 1
PLL3 N_DIV[1]
PLL3 VCO feedback integer divider bit1
R/W
0
Bit 0
PLL3 N_DIV[0]
PLL3 VCO feedback integer divider bit0
R/W
0
0
12~2048, default VCO setting is
480MHz
0
Byte 5: PLL3 Loop Filter Setting and N Divider 10:8
Byte 05h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL3_R100K
PLL3 Loop filter resister 100kOhm
R/W
bypass
plus 100kOhm
0
Bit 6
PLL3_R50K
PLL3 Loop filter resister 50kOhm
R/W
bypass
plus 50kOhm
0
Bit 5
PLL3_R25K
PLL3 Loop filter resister 25kOhm
R/W
bypass
plus 25kOhm
0
Bit 4
PLL3_R12.5K
PLL3 Loop filter resister 12.5kOhm
R/W
bypass
plus 12.5kOhm
1
Bit 3
PLL3_R6K
PLL3 Loop filter resister 6kOhm
R/W
bypass
only 6Kohm
applied
0
Bit 2
PLL3 N_DIV[10]
PLL3 VCO feedback integer divider bit10
R/W
Bit 1
PLL3 N_DIV[9]
PLL3 VCO feedback integer divider bit9
R/W
Bit 0
PLL3 N_DIV[8]
PLL3 VCO feedback integer divider bit8
R/W
©2018 Integrated Device Technology, Inc.
26
0
122048, default VCO setting is
480MHz
0
1
May 2, 2018
5X35023 Datasheet
Byte 6: PLL3 Charge Pump Control
Byte 06h
Name
Control Function
Type
0
1
PWD
Bit 7
OUTDIV 3 Source
Output divider 3 source clock selection
R/W
PLL2
PLL3
0
Bit 6
PLL3_CP_8X
PLL3 charge pump control
R/W
x8
1
Bit 5
PLL3_CP_4X
PLL3 charge pump control
R/W
x4
1
Bit 4
PLL3_CP_2X
PLL3 charge pump control
R/W
x2
0
Bit 3
PLL3_CP_1X
PLL3 charge pump control
R/W
x1
1
Bit 2
PLL3_CP_/24
PLL3 charge pump control
R/W
/24
1
Bit 1
PLL3_CP_/3
PLL3 charge pump control
R/W
/3
0
Bit 0
PLL3_SIREF
PLL3 SiRef current selection
R/W
10 A
20 A
0
Formula: (iRef (10 A) × (1 + SIREF) × (1 × 1X + 2 × 2X + 4 × 4X + 8 × 8X + 16 × 16X))/((24 × /24) + (3 × /3))
Byte 7: PLL1 Control and OUTDIV5 Divider
Byte 07h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1_MDIV_Doubler
PLL1 reference clock doubler
R/W
disable
enable
0
Bit 6
PLL1_SIREF
PLL1 SiRef current selection
R/W
10.8 A
21.6 A
0
Bit 5
PLL1_EN_CH2
PLL1 output Channel 2 control
R/W
disable
enable
1
Bit 4
PLL1_EN_3rdpole
PLL1 3rd Pole control
R/W
disable
enable
0
Bit 3
OUTDIV5[3]
Output divider5 control bit 3
R/W
0
Bit 2
OUTDIV5[2]
Output divider5 control bit 2
R/W
0
Bit 1
OUTDIV5[1]
Output divider5 control bit 1
R/W
1
Bit 0
OUTDIV5[0]
Output divider5 control bit 0
R/W
1
Byte 8: PLL1 M Divider
Byte 08h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1_MDIV1
PLL3 VCO reference clock divider 1
R/W
disable M DIV1
bypass divider (/1)
0
Bit 6
PLL1_MDIV2
PLL3 VCO reference clock divider 2
R/W
disable M DIV2
bypass divider (/2)
0
Bit 5
PLL1 M_DIV[5]
PLL1 reference clock divider control bit 5
R/W
0
Bit 4
PLL1 M_DIV[4]
PLL1 reference clock divider control bit 4
R/W
1
Bit 3
PLL1 M_DIV[3]
PLL1 reference clock divider control bit 3
R/W
Bit 2
PLL1 M_DIV[2]
PLL1 reference clock divider control bit 2
R/W
Bit 1
PLL1 M_DIV[1]
PLL1 reference clock divider control bit 1
R/W
0
Bit 0
PLL1 M_DIV[0]
PLL1 reference clock divider control bit 0
R/W
1
©2018 Integrated Device Technology, Inc.
27
364, default is 25
1
0
May 2, 2018
5X35023 Datasheet
Byte 9: PLL1 VCO N Divider
Byte 09h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1 N_DIV[7]
PLL1 VCO feedback divider control bit 7
R/W
0
Bit 6
PLL1 N_DIV[6]
PLL1 VCO feedback divider control bit 6
R/W
1
Bit 5
PLL1 N_DIV[5]
PLL1 VCO feedback divider control bit 5
R/W
0
Bit 4
PLL1 N_DIV[4]
PLL1 VCO feedback divider control bit 4
R/W
Bit 3
PLL1 N_DIV[3]
PLL1 VCO feedback divider control bit 3
R/W
Bit 2
PLL1 N_DIV[2]
PLL1 VCO feedback divider control bit 2
R/W
0
Bit 1
PLL1 N_DIV[1]
PLL1 VCO feedback divider control bit 1
R/W
0
Bit 0
PLL1 N_DIV[0]
PLL1 VCO feedback divider control bit 0
R/W
0
1
122048, default is 600
1
Byte 10: PLL Loop Filter and N Divider
Byte 0Ah
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1_R100K
PLL1 Loop filter resister 100kOhm
R/W
bypass
plus 100kOhm
1
Bit 6
PLL1_R50K
PLL1 Loop filter resister 50kOhm
R/W
bypass
plus 50kOhm
0
Bit 5
PLL1_R25K
PLL1 Loop filter resister 25kOhm
R/W
bypass
plus 25kOhm
1
Bit 4
PLL1_R12.5K
PLL1 Loop filter resister 12.5kOhm
R/W
bypass
plus 12.5kOhm
1
Bit 3
PLL1_R1.0K
PLL1 Loop filter resister 1kOhm
R/W
bypass
only 1.0kOhm applied
0
Bit 2
PLL1 N_DIV[10]
PLL1 VCO feedback integer divider bit10
R/W
Bit 1
PLL1 N_DIV[9]
PLL1 VCO feedback integer divider bit9
R/W
Bit 0
PLL1 N_DIV[8]
PLL1 VCO feedback integer divider bit8
R/W
0
122048, default is 600
1
0
Byte 11: PLL1 Charge Pump
Byte 0Bh
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1_CP_32X
PLL1 charge pump control
R/W
x32
0
Bit 6
PLL1_CP_16X
PLL1 charge pump control
R/W
x16
0
Bit 5
PLL1_CP_8X
PLL1 charge pump control
R/W
x8
0
Bit 4
PLL1_CP_4X
PLL1 charge pump control
R/W
x4
0
Bit 3
PLL1_CP_2X
PLL1 charge pump control
R/W
x2
0
Bit 2
PLL1_CP_1X
PLL1 charge pump control
R/W
x1
1
Bit 1
PLL1_CP_/24
PLL1 charge pump control
R/W
/24
1
Bit 0
PLL1_CP_/3
PLL1 charge pump control
R/W
/3
0
©2018 Integrated Device Technology, Inc.
28
May 2, 2018
5X35023 Datasheet
Byte 12: PLL1 Spread Spectrum Control
Byte 0Ch
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1_SS_REFDIV23
PLL1 Spread Spectrum control - Ref divider 23
R/W
0
Bit 6
PLL1_SS_REFDIV[6]
PLL1 Spread Spectrum control - Ref divider 6
R/W
0
Bit 5
PLL1_SS_REFDIV[5]
PLL1 Spread Spectrum control - Ref divider 5
R/W
0
Bit 4
PLL1_SS_REFDIV[4]
PLL1 Spread Spectrum control - Ref divider 4
R/W
0
Bit 3
PLL1_SS_REFDIV[3]
PLL1 Spread Spectrum control - Ref divider 3
R/W
0
Bit 2
PLL1_SS_REFDIV[2]
PLL1 Spread Spectrum control - Ref divider 2
R/W
0
Bit 1
PLL1_SS_REFDIV[1]
PLL1 Spread Spectrum control - Ref divider 1
R/W
0
Bit 0
PLL1_SS_REFDIV[0]
PLL1 Spread Spectrum control - Ref divider 0
R/W
0
Byte 13: PLL1 Spread Spectrum Control
Byte 0Dh
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1_SS_FBDIV[7]
PLL1 Spread Spectrum - feedback divider 7
R/W
0
Bit 6
PLL1_SS_FBDIV[6]
PLL1 Spread Spectrum - feedback divider 6
R/W
0
Bit 5
PLL1_SS_FBDIV[5]
PLL1 Spread Spectrum - feedback divider 5
R/W
0
Bit 4
PLL1_SS_FBDIV[4]
PLL1 Spread Spectrum - feedback divider 4
R/W
0
Bit 3
PLL1_SS_FBDIV[3]
PLL1 Spread Spectrum - feedback divider 3
R/W
0
Bit 2
PLL1_SS_FBDIV[2]
PLL1 Spread Spectrum - feedback divider 2
R/W
0
Bit 1
PLL1_SS_FBDIV[1]
PLL1 Spread Spectrum - feedback divider 1
R/W
0
Bit 0
PLL1_SS_FBDIV[0]
PLL1 Spread Spectrum - feedback divider 0
R/W
0
Byte 14: PLL1 Spread Spectrum Control
Byte 0Eh
Name
Control Function
Type
0
1
PWD
Bit 7
PLL1_SS_FBDIV[15]
PLL1 Spread Spectrum - feedback divider 15
R/W
0
Bit 6
PLL1_SS_FBDIV[14]
PLL1 Spread Spectrum - feedback divider 14
R/W
0
Bit 5
PLL1_SS_FBDIV[13]
PLL1 Spread Spectrum - feedback divider 13
R/W
0
Bit 4
PLL1_SS_FBDIV[12]
PLL1 Spread Spectrum - feedback divider 12
R/W
0
Bit 3
PLL1_SS_FBDIV[11]
PLL1 Spread Spectrum - feedback divider 11
R/W
0
Bit 2
PLL1_SS_FBDIV[10]
PLL1 Spread Spectrum - feedback divider 10
R/W
0
Bit 1
PLL1_SS_FBDIV[09]
PLL1 Spread Spectrum - feedback divider 9
R/W
0
Bit 0
PLL1_SS_FBDIV[08]
PLL1 Spread Spectrum - feedback divider 8
R/W
0
©2018 Integrated Device Technology, Inc.
29
May 2, 2018
5X35023 Datasheet
Byte 15: Output Divider1 Control
Byte 0Fh
Name
Control Function
Type
0
1
PWD
Bit 7
OUTDIV1[3]
Output divider1 control bit 3
R/W
0
Bit 6
OUTDIV1[2]
Output divider1 control bit 2
R/W
0
Bit 5
OUTDIV1[1]
Output divider1 control bit 1
R/W
1
Bit 4
OUTDIV1[0]
Output divider1 control bit 0
R/W
1
Bit 3
OUTDIV2[3]
Output divider2 control bit 3
R/W
0
Bit 2
OUTDIV2[2]
Output divider2 control bit 2
R/W
0
Bit 1
OUTDIV2[1]
Output divider2 control bit 1
R/W
1
Bit 0
OUTDIV2[0]
Output divider2 control bit 0
R/W
1
0
1
Byte 16: PLL2 Integer Feedback Divide
Byte 10h
Name
Control Function
Type
PWD
Bit 7
Reserved
0
Bit 6
Reserved
0
Bit 5
Reserved
0
Bit 4
Reserved
0
Bit 3
Reserved
0
Bit 2
PLL2_FB_INT[10]
PLL2 feedback integer divider 10
R/W
0
Bit 1
PLL2_FB_INT[9]
PLL2 feedback integer divider 9
R/W
0
Bit 0
PLL2_FB_INT[8]
PLL2 feedback integer divider 8
R/W
0
Byte 17: PLL2 Integer Feedback Divider
Byte 11h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_FB_INT_DIV[7]
PLL2 feedback integer divider 7
R/W
0
Bit 6
PLL2_FB_INT_DIV[6]
PLL2 feedback integer divider 6
R/W
0
Bit 5
PLL2_FB_INT_DIV[5]
PLL2 feedback integer divider 5
R/W
1
Bit 4
PLL2_FB_INT_DIV[4]
PLL2 feedback integer divider 4
R/W
0
Bit 3
PLL2_FB_INT_DIV[3]
PLL2 feedback integer divider 3
R/W
1
Bit 2
PLL2_FB_INT_DIV[2]
PLL2 feedback integer divider 2
R/W
0
Bit 1
PLL2_FB_INT_DIV[1]
PLL2 feedback integer divider 1
R/W
0
Bit 0
PLL2_FB_INT_DIV[0]
PLL2 feedback integer divider 0
R/W
0
©2018 Integrated Device Technology, Inc.
30
May 2, 2018
5X35023 Datasheet
Byte 18: PLL2 Fractional Feedback Divider
Byte 12h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_FB_FRC_DIV[7]
PLL2 feedback fractional divider 7
R/W
0
Bit 6
PLL2_FB_FRC_DIV[6]
PLL2 feedback fractional divider 6
R/W
0
Bit 5
PLL2_FB_FRC_DIV[5]
PLL2 feedback fractional divider 5
R/W
0
Bit 4
PLL2_FB_FRC_DIV[4]
PLL2 feedback fractional divider 4
R/W
0
Bit 3
PLL2_FB_FRC_DIV[3]
PLL2 feedback fractional divider 3
R/W
0
Bit 2
PLL2_FB_FRC_DIV[2]
PLL2 feedback fractional divider 2
R/W
0
Bit 1
PLL2_FB_FRC_DIV[1]
PLL2 feedback fractional divider 1
R/W
0
Bit 0
PLL2_FB_FRC_DIV[0]
PLL2 feedback fractional divider 0
R/W
0
Byte 19: PLL2 Fractional Feedback Divider
Byte 13h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_FB_FRC_DIV[15]
PLL2 feedback fractional divider 15
R/W
0
Bit 6
PLL2_FB_FRC_DIV[14]
PLL2 feedback fractional divider 14
R/W
0
Bit 5
PLL2_FB_FRC_DIV[13]
PLL2 feedback fractional divider 13
R/W
0
Bit 4
PLL2_FB_FRC_DIV[12]
PLL2 feedback fractional divider 12
R/W
0
Bit 3
PLL2_FB_FRC_DIV[11]
PLL2 feedback fractional divider 11
R/W
0
Bit 2
PLL2_FB_FRC_DIV[10]
PLL2 feedback fractional divider 10
R/W
0
Bit 1
PLL2_FB_FRC_DIV[9]
PLL2 feedback fractional divider 9
R/W
0
Bit 0
PLL2_FB_FRC_DIV[8]
PLL2 feedback fractional divider 8
R/W
0
Byte 20: PLL2 Spread Spectrum Control
Byte 14h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_STEP[7]
PLL2 spread step size control bit 7
R/W
0
Bit 6
PLL2_STEP[6]
PLL2 spread step size control bit 6
R/W
0
Bit 5
PLL2_STEP[5]
PLL2 spread step size control bit 5
R/W
0
Bit 4
PLL2_STEP[4]
PLL2 spread step size control bit 4
R/W
0
Bit 3
PLL2_STEP[3]
PLL2 spread step size control bit 3
R/W
0
Bit 2
PLL2_STEP[2]
PLL2 spread step size control bit 2
R/W
0
Bit 1
PLL2_STEP[1]
PLL2 spread step size control bit 1
R/W
0
Bit 0
PLL2_STEP[0]
PLL2 spread step size control bit 0
R/W
0
©2018 Integrated Device Technology, Inc.
31
May 2, 2018
5X35023 Datasheet
Byte 21: PLL2 Spread Spectrum Control
Byte 15h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_STEP[15]
PLL2 spread step size control bit 15
R/W
0
Bit 6
PLL2_STEP[14]
PLL2 spread step size control bit 14
R/W
0
Bit 5
PLL2_STEP[13]
PLL2 spread step size control bit 13
R/W
0
Bit 4
PLL2_STEP[12]
PLL2 spread step size control bit 12
R/W
0
Bit 3
PLL2_STEP[11]
PLL2 spread step size control bit 11
R/W
0
Bit 2
PLL2_STEP[10]
PLL2 spread step size control bit 10
R/W
0
Bit 1
PLL2_STEP[9]
PLL2 spread step size control bit 9
R/W
0
Bit 0
PLL2_STEP[8]
PLL2 spread step size control bit 8
R/W
0
Byte 22: PLL2 Spread Spectrum Control
Byte 16h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_STEP_DELTA[7]
PLL2 spread step size control delta bit 7
R/W
0
Bit 6
PLL2_STEP_DELTA[6]
PLL2 spread step size control delta bit 6
R/W
0
Bit 5
PLL2_STEP_DELTA[5]
PLL2 spread step size control delta bit 5
R/W
0
Bit 4
PLL2_STEP_DELTA[4]
PLL2 spread step size control delta bit 4
R/W
0
Bit 3
PLL2_STEP_DELTA[3]
PLL2 spread step size control delta bit 3
R/W
0
Bit 2
PLL2_STEP_DELTA[2]
PLL2 spread step size control delta bit 2
R/W
0
Bit 1
PLL2_STEP_DELTA[1]
PLL2 spread step size control delta bit 1
R/W
0
Bit 0
PLL2_STEP_DELTA[0]
PLL2 spared step size control delta bit 0
R/W
0
Byte 23: PLL2 Period Control
Byte 17h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_PERIOD[7]
PLL2 period control bit 7
R/W
0
Bit 6
PLL2_PERIOD[6]
PLL2 period control bit 6
R/W
0
Bit 5
PLL2_PERIOD[5]
PLL2 period control bit 5
R/W
0
Bit 4
PLL2_PERIOD[4]
PLL2 period control bit 4
R/W
0
Bit 3
PLL2_PERIOD[3]
PLL2 period control bit 3
R/W
0
Bit 2
PLL2_PERIOD[2]
PLL2 period control bit 2
R/W
0
Bit 1
PLL2_PERIOD[1]
PLL2 period control bit 1
R/W
0
Bit 0
PLL2_PERIOD[0]
PLL2 period control bit 0
R/W
0
©2018 Integrated Device Technology, Inc.
32
May 2, 2018
5X35023 Datasheet
Byte 24: PLL2 Control Register
Byte 18h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_PERIOD[9]
PLL2 period control bit 9
R/W
0
Bit 6
PLL2_PERIOD[8]
PLL2 period control bit 8
R/W
0
Bit 5
PLL2_SSEN
PLL2 spread spectrum enable
R/W
disable
enable
0
Bit 4
PLL2_R100K
PLL2 Loop filter resister 100kOhm
bypass
plus 100kOhm
0
Bit 3
PLL2_R50K
PLL2 Loop filter resister 50kOhm
bypass
plus 50kOhm
0
Bit 2
PLL2_R25K
PLL2 Loop filter resister 25kOhm
bypass
plus 25kOhm
0
Bit 1
PLL2_R12.5K
PLL2 Loop filter resister 12.5kOhm
bypass
plus 12.5kOhm
0
Bit 0
PLL2_R6K
PLL2 Loop filter resister 6kOhm
bypass
only 6k ohm applied
0
Byte 25: PLL2 Charge Pump Control
Byte 19h
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_CP_16X
PLL2 charge pump control
R/W
x16
0
Bit 6
PLL2_CP_8X
PLL2 charge pump control
R/W
x8
0
Bit 5
PLL2_CP_4X
PLL2 charge pump control
R/W
x4
1
Bit 4
PLL2_CP_2X
PLL2 charge pump control
R/W
x2
0
Bit 3
PLL2_CP_1X
PLL2 charge pump control
R/W
x1
0
Bit 2
PLL2_CP_/24
PLL2 charge pump control
R/W
/24
1
Bit 1
PLL2_CP_/3
PLL2 charge pump control
R/W
/3
0
Bit 0
PLL2_SIREF
PLL2 SiRef current selection
R/W
10 A
20 A
0
Byte 26: PLL2 M Divider Setting
Byte 1Ah
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_MDIV_Doubler
PLL2 reference divider - doubler
R/W
disable
enable
0
Bit 6
PLL2_MDIV1
PLL2 reference divider 1
R/W
disable M DIV1
bypadd divider (/1)
1
Bit 5
PLL2_MDIV2
PLL2 reference divider 2
R/W
disable M DIV2
bypadd divider (/2)
0
Bit 4
PLL2_MDIV[4]
PLL2 reference divider control bit 4
R/W
0
Bit 3
PLL2_MDIV[3]
PLL2 reference divider control bit 3
R/W
0
Bit 2
PLL2_MDIV[2]
PLL2 reference divider control bit 2
R/W
Bit 1
PLL2_MDIV[1]
PLL2 reference divider control bit 1
R/W
0
Bit 0
PLL2_MDIV[0]
PLL2 reference divider control bit 0
R/W
0
©2018 Integrated Device Technology, Inc.
33
364, default is 25
0
May 2, 2018
5X35023 Datasheet
Byte 27: Output Divider 4
Byte 1Bh
Name
Control Function
Type
0
1
PWD
Bit 7
OUTDIV3[3]
Out divider 4 control bit 7
R/W
0
Bit 6
OUTDIV3[2]
Out divider 4 control bit 6
R/W
0
Bit 5
OUTDIV3[1]
Out divider 4 control bit 5
R/W
1
Bit 4
OUTDIV3[0]
Out divider 4 control bit 4
R/W
1
Bit 3
OUTDIV4[3]
Out divider 4 control bit 3
R/W
0
Bit 2
OUTDIV4[2]
Out divider 4 control bit 2
R/W
0
Bit 1
OUTDIV4[1]
Out divider 4 control bit 1
R/W
1
Bit 0
OUTDIV4[0]
Out divider 4 control bit 0
R/W
1
Byte 28: PLL Operation Control Register
Byte 1Ch
Name
Control Function
Type
0
1
PWD
Bit 7
PLL2_HRS_EN
PLL2 spread high resolution selection enable
R/W
normal
enable (shift 4 bits)
0
Bit 6
PLL2_refin_sel
PLL2 reference clock source select
R/W
Xtal
DIV2
0
Bit 5
PLL3_PDB
PLL3 Power Down
R/W
Power Down
running
1
Bit 4
PLL3_LCKBYPSSB
PLL3 lock bypass
R/W
bypass lock
lock
1
Bit 3
PLL2_PDB
PLL2 Power Down
R/W
Power Down
running
1
Bit 2
PLL2_LCKBYPSSB
PLL2 lock bypass
R/W
bypass lock
lock
1
Bit 1
PLL1_PDB
PLL1 Power Down
R/W
Power Down
running
1
Bit 0
PLL1_LCKBYPSSB
PLL1 lock bypass
R/W
bypass lock
lock
1
0
1
PWD
Byte 29: Output Control
Byte 1Dh
Name
Control Function
Bit 7
DIFF1_SEL
Differential clock 1 output OE2 control
not controlled
controlled
0
Bit 6
DIFF2_SEL
Differential clock 2 output OE2 control
not controlled
controlled
0
Bit 5
DIFF1_EN
Differential clock 1 output enable
R/W
disable
enable
1
Bit 4
DIFF2_EN
Differential clock 2 output enable
R/W
disable
enable
1
Bit 3
OUTDIV4_Source
Output divider 4 source clock selection
R/W
PLL2
Xtal
0
Bit 2
SE1_SLEW
SE 1 slew rate control
R/W
normal
strong
0
Bit 1
VDD1_SEL[1]
VDD1 level control bit 1
R/W
Bit 0
VDD1_SEL[0]
VDD1 level control bit 0
R/W
©2018 Integrated Device Technology, Inc.
34
Type
00/01: 3.3V 10: 2.5V 11: 1.8
0
0
May 2, 2018
5X35023 Datasheet
Byte 30: OE and DFC Control
Byte 1Eh
Name
Control Function
Type
0
1
PWD
Bit 7
SE1_EN
SE1 output enable control
R/W
disable
enable
1
Bit 6
OE1_fun_sel[1]
OE1 pin function selection bit 1
R/W
OE1_fun_sel[0]
OE1 pin function selection bit 0
R/W
10: SE1_PPS
00: SE1 OE
0
Bit 5
11:DFC0
01: PD#
0
Bit 4
SE3_EN
SE3 output enable
R/W
disable
enable
1
Bit 3
OE3_fun_sel[1]
OE3 pin function selection bit 1
R/W
Bit 2
OE3_fun_sel[0]
OE3 pin function selection bit 0
R/W
Bit 1
DFC_SW_Sel[1]
DFC frequency select bit 1
R/W
Bit 0
DFC_SW_Sel[0]
DFC frequency select bit 0
R/W
Type
11: DFC1 10: SE3_PPS
01:xx
00:SE3_OE
00: N0 01: N1 10:N2 11:N3
0
0
0
0
Byte 31: Control Register
Byte 1Fh
Name
Control Function
Bit 7
SE2_CLKSEL1
SE2 source clock selection
Bit 6
VDD2_SEL[1]
VDD2 level control bit 1
R/W
Bit 5
VDD2_SEL[0]
VDD2 level control bit 0
R/W
Bit 4
SE2_SLEW
SE 2 slew rate control
R/W
Bit 3
PLL2_3rd_EN_CFG
PLL2 3rd order control
Bit 2
PLL2_EN_CH2
PLL2 channel 2 enable control
Bit 1
PLL2_EN_3rdpole
PLL2 3rd Pole control
Bit 0
SE2_CLKSEL1
SE2 source clock selection
0
1
PWD
DIV5
DIV4
0
00/01: 3.3V 10: 2.5V 11: 1.8
0
0
normal
strong
0
1st order
3rd order
1
R/W
disable
enable
0
R/W
disable
enable
1
DIV5
DIV4
0
Byte 32: Control Register
Byte 20h
Name
Control Function
Type
0
1
PWD
Bit 7
SE2_EN
SE2 output enable
R/W
disable
enable
1
Bit 6
OE2_fun_sel[1]
OE2 pin function selection bit 1
R/W
Bit 5
OE2_fun_sel[0]
OE2 pin function selection bit 0
R/W
Bit 4
DFC_EN
DFC function control
R/W
disable
enable
0
Bit 3
WD_EN
WatchDog timer control
R/W
disable
enable
0
Bit 2
Timer_sel
Watchdog timer select bit 1
R/W
Bit 1
Timer_sel
Watchdog timer select bit 0
R/W
Bit 0
Alarm_Flag
Alarm Status (Read Only)
R
©2018 Integrated Device Technology, Inc.
35
11: RESET 10: SE2_PPS
01: DIFF1/2 OE 00: SE2 OE
00: 250ms 01: 500ms
10: 2s 11: 4s
No alarm
Alarmed
0
0
0
0
0
May 2, 2018
5X35023 Datasheet
Byte 33: SE3 and DIFF1 Control Register
Byte 21h
Name
Control Function
Type
0
1
PWD
Bit 7
SE3_Freerun_32K
SE3 32K free run
R/W
freerun 32K
DIV2 or DIV4
selected by
B33bit6
1
Bit 6
SE3_CLKSEL1
SE3 source clock selection
R/W
DIV2
DIV4
0
Bit 5
VDD3_SEL[1]
VDD3 level control bit 1
R/W
Bit 4
VDD3_SEL[0]
VDD3 level control bit 0
R/W
Bit 3
SE3_SLEW
SE 3 slew rate control
R/W
normal
strong
0
Bit 2
DIFF_PDBHiZEN
Differential output high-Z at power down
R/W
TBD
output tri-state,
bias off
0
Bit 1
DIFF1_CMOS2_FLIP
Differential 1/2 LVCMOS output control
R/W
DIFF1_B inverted
DIFF1_B
non-inverted
0
Bit 0
DIFF2_CMOS2_FLIP
Differential 1/2 LVCMOS output control
R/W
DIFF2_B inverted
DIFF2_B
non-inverted
0
0
11: 1.8V 10: 2.5V
0x: 3.3V
0
Byte 34: DIFF1 Control Register
Byte 22h
Name
Control Function
Type
0
1
PWD
Bit 7
DIFF1_CLK_SEL
Differential clock 1 source selection
R/W
DIV1
DIV3
1
Bit 6
DIFF1_io_pwr_sel
Differential clock 1 output power
R/W
2.5V
3.3V
1
Bit 5
DIFF1_OUTPUT_TYPE[1]
Differential clock 1 type select bit 1
R/W
1
Bit 4
DIFF1_OUTPUT_TYPE[0]
Differential clock 1 type select bit 0
R/W
00: LVMOS 01: LVDS
10: LVPECL 11: LP-HCSL
Bit 3
DIFF1_AMP[1]
Differential clock 1 amplitude control
bit 1
R/W
Bit 2
DIFF1_AMP[0]
Differential clock 1 amplitude control
bit 0
R/W
Bit 1
DIFF1_CMOS_SLEW
Differential clock 1 LVCMOS slew rate
control
R/W
normal
strong
0
Bit 0
D1FF1_CMOS2_EN
Differential clock 1 LVCMOS output_B
control
R/W
disable
enable
0
©2018 Integrated Device Technology, Inc.
36
1
LP-HCSL: 00 = 740mV, 01 = 800mV,
10 = 855mV,11 = 910mV
LPECL:00 = 710mV, 01 = 810mV, 10 =
875mV, 11 = 920mV
LVDS:00 = 311mV,01 = 344mV, 10 =
376mV, 11 = 408mV
0
1
May 2, 2018
5X35023 Datasheet
Byte 35: DIFF2 Control Register
Byte 23h
Name
Control Function
Type
0
1
PWD
Bit 7
DIFF2_CLK_SEL
Differential clock 2 source selection
R/W
DIV1
DIV3
0
Bit 6
DIFF2_IO_PWR_SEL
Differential clock 2 output power
R/W
2.5V
3.3V
1
Bit 5
DIFF2_OUTPUT_TYPE[1]
Differential clock 2 type select bit 1
R/W
1
Bit 4
DIFF2_OUTPUT_TYPE[0]
Differential clock 2 type select bit 0
R/W
00: LVMOS 01: LVDS
10: LVPECL 11: LP-HCSL
Bit 3
DIFF2_AMP[1]
Differential clock 2 amplitude control
bit 1
R/W
Bit 2
DIFF2_AMP[0]
Differential clock 2 amplitude control
bit 0
R/W
Bit 1
DIFF2_CMOS_SLEW
Differential clock 2 LVCMOS slew
rate control
R/W
normal
strong
0
Bit 0
DIFF2_CMOS2_EN
Differential clock 2 LVCMOS
output_B control
R/W
disable
enable
0
1
LP-HCSL: 00 = 740mV, 01 = 800mV,
10 = 855mV,11 = 910mV
LPECL:00 = 710mV, 01 = 810mV, 10 =
875mV, 11 = 920mV
LVDS:00 = 311mV,01 = 344mV, 10 =
376mV, 11 = 408mV
0
1
Byte 36: SE1 and DIV4 control
Byte 24h
Name
Control Function
Type
0
1
PWD
Bit 7
I2C_PDB
chip power down control bit
R/W
power down
normal
1
Bit 6
Ref_free_run
Reference clock output (SE2/SE3)
R/W
stop
freerun
0
Bit 5
free_run_output_config
SE clocks free run control
R/W
SE2 free run
SE2/3 free run
0
Bit 4
SE1_Freerun_32K
SE1 clock output default
R/W
32K freerun
B36bit3 control
0
Bit 3
SE1_CLKSEL1
SEL1 output select
R/W
DIV5
DIV4
1
Bit 2
REF_EN
REF output enable
R/W
disable
enable
1
Bit 1
DIV4_CH3_EN
DIV4 channel 3 output control
R/W
disable
enable
0
Bit 0
DIV4_CH2_EN
DIV4 channel 3 output control
R/W
disable
enable
0
©2018 Integrated Device Technology, Inc.
37
May 2, 2018
5X35023 Datasheet
Package Outline Drawings
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information
is the most current data available.
www.idt.com/document/psc/nxg24-package-outline-40-x-40-mm-body-epad-270x-270mm-05-mm-pitch-qfn
Marking Diagrams
1. Lines 1 and 2: truncated part number
2. “YWW” is the last digit of the year and week that the part was assembled.
5X3502
3000I
YWW**$
5X3502
3dddI
YWW**$
3. “**” is the lot sequence number.
4. “$” is the assembler mark code.
Ordering Information
Orderable Part Number
Package
Carrier Type
Temperature
5X35023-dddNXGI
4 x 4 mm, 0.5mm pitch 24-QFN
Tray
-40° to +85°C
5X35023-dddNXGI8
4 x 4 mm, 0.5mm pitch 24-QFN
Reel
-40° to +85°C
5X35023-000NXGI
4 x 4 mm, 0.5mm pitch 24-QFN
Tray
-40° to +85°C
5X35023-000NXGI8
4 x 4 mm, 0.5mm pitch 24-QFN
Reel
-40° to +85°C
1
“ddd” denotes factory programmed configurations based on required settings. Contact factory for programming configurations.
2
“000” denotes unprogrammed part for customization.
Revision History
Revision Date
May 2, 2018
Description of Change
Initial release.
Corporate Headquarters
Sales
Tech Support
6024 Silver Creek Valley Road
San Jose, CA 95138 USA
www.IDT.com
1-800-345-7015 or 408-284-8200
Fax: 408-284-2775
www.IDT.com/go/sales
www.IDT.com/go/support
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products and/or specifications described herein at any time,
without notice, at IDT’s sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same
way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability
of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not
convey any license under intellectual property rights of IDT or any third parties.
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property
of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc. All rights reserved.
©2018 Integrated Device Technology, Inc.
38
May 2, 2018