0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
5X35023-002NXGI

5X35023-002NXGI

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

  • 描述:

    IC CLOCK GENERATOR 24QFN

  • 数据手册
  • 价格&库存
5X35023-002NXGI 数据手册
VersaClock® Programmable Clock Generator Description 5X35023 Datasheet Features Configurable OE pin function as OE, PD#, PPS or DFC control function Configurable PLL bandwidth; minimizes jitter peaking PPS: Proactive Power Saving features save power during the end device power down mode PPB: Performance-Power Balancing feature allows minimum power consumption base on required performance DFC: Dynamic Frequency Control feature allows up to 4 difference frequencies to switch dynamically Spread spectrum clock support to lower system EMI I2C interface Integrated crystal The 5X35023 is the latest VersaClock programmable clock generator with an integrated crystal, and is designed for low power, consumer, and high-performance PCI Express applications. The 5X35023 device is a 3 PLL architecture design, and each PLL is individually programmable allowing for up to 6 unique frequencies outputs. The device has built-in unique features such as Proactive Power Saving (PPS), Performance-Power Balancing (PPB), Overshoot Reduction Technology (ORT) and Extreme Low Power DCO. An internal OTP memory allows the user to store the configuration in the device, after power up, user can change the register setting through the I2C interface when I2C mode is selected. The device has programmable VCO and PLL source selection to allow power-performance optimization base on the application requirements. The device supports 3 single-ended outputs and two pairs of differential outputs that support LVCMOS, LVPECL, LVDS and LP-HCSL. Key Specifications PCIe clocks phase jitter: PCIe Gen3 Differential clocks < 3 ps rms jitter integer range 12kHz–20MHz Output Features Low Power 32.768kHz clock is supported with only less than 2 A current consumption for system RTC reference clock. 2 DIFF outputs with configurable LPHSCL, LVDS, LVPECL, LVCMOS output pairs. 1MHz–500MHz (160MHz with LVCMOS mode at DIFF_T) 3 LVCMOS outputs: 1MHz–160MHz Maximum 8 LVCMOS outputs as REF + 3 × SE + 2 × DIFF_T as LVCMOS Typical Applications PCIe Gen1/2/3 clock generator Consumer application crystal replacements SmartDevice, Handheld, Computing and Consumer applications Low Power 32.768kHz clock supported for all SE1–SE3 Block Diagram OSC REF VDDDIFF1 Programmable Load Capacitor DIFF1 DIFF1B PLL1 SEL_DFC/ SCL_DFC1 VDDDIFF2 DIFF2 SDA_DFC0 DIFF2B Mux & Divider PLL2 Calibration VDDA SE1 OE1 VDDSE2 SE2 PLL3 VDD33 VDDSE1 OE2 32.768K DCO VDDSE3 SE3 VBAT ©2018 Integrated Device Technology, Inc. OE3 1 May 2, 2018 5X35023 Datasheet Contents Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Output Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Detailed Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Power Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Output Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Output Source Selection Register Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Input Capacitance, LVCMOS Output Impedance, and Internal Pull-down. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical Characteristics – VDDDIFF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Characteristics – VDDSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Spread Spectrum Generation Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Glossary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Device Features and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 DFC–Dynamic Frequency Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 DFC Function Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PPS–Proactive Power Saving Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PPS Function Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Timer Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 OE Pin Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Spread Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 VBAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ORT–VCO Overshoot Reduction Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 PLL Features and Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Output Clock Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 I2C Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 General I2C Mode Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Marking Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ©2018 Integrated Device Technology, Inc. 2 May 2, 2018 5X35023 Datasheet Pin Assignments Figure 1. Pin Assignments for 4 x 4 mm 24-QFN Package – Top View 24 23 22 21 20 19 VDDA 1 18 DIFF1 SDA_DFC0 2 17 DIFF1B SEL_DFC/SCL_DFC1 3 16 VDDDIFF1 5X35023 NC 4 15 OE1 NC 5 14 SE1 VBAT 6 13 VDDSE1 7 8 9 10 11 12 Pin Descriptions Table 1. Pin Descriptions Number Name Type 1 VDDA Power 2 SDA_DFC0 I/O 3 SEL_DFC/ SCL_DFC1 Input 4 NC — No connect. 5 NC — No connect. 6 VBAT Power 7 NC — 8 REF Output 3.3V reference clock output. 9 VDD33 Power VDD 3.3V. 10 OE2 Input Output enable control 2, multi-function pin. Refer to OE function table. 11 VDDSE2 Power Output power supply. Connect to 1.8V to 3.3V. Sets output voltage levels for SE2. 12 SE2 Output Output clock SE2. 13 VDDSE1 Power Output power supply. Connect to 1.8V to 3.3V. Sets output voltage levels for SE1. 14 SE1 Output Output clock SE1. 15 OE1 Input OE1 function selected from OTP pre-program register bits. OE1 pull to 6.5V when burn OTP registers. Refer to OE function table for details. 16 VDDDIFF1 Power Output power supply. Connect to 2.5V to 3.3V. Sets output voltage levels for DIFF1. 17 DIFF1B Output Differential clock output 1_Complement, can be OTP pre-programmed to LVCMOS/LP-HCSL/LVDS/LVPECL output type. ©2018 Integrated Device Technology, Inc. Description VDD 3.3V. I2C DATA pin, the pin can be DFC0 function by pin3 SEL_DFC power on latch status. I2C clock pin, SEL_DFC is a latch input pin during the power up; High on power on: I 2C mode as SCLK function; Low on power on: pin3 SCL and pin2 SDA as DFC function control pins. Power supply pin for 32.768kHz DCO; usually connect to coin cell battery, 3.0V–3.3V. No connect. 3 May 2, 2018 5X35023 Datasheet Table 1. Pin Descriptions (Cont.) Number Name Type Description 18 DIFF1 Output Differential clock output 1_True, can be OTP pre-programmed to LVCMOS/LP-HCSL/LVDS/LVPECL output type. 19 SE3 Output Output clock SE3. 20 VDDSE3 Power Output power supply. Connect to 1.8V to 3.3V. Sets output voltage levels for SE3. 21 OE3 Input Output enable control 3, multi-function pin. Refer to OE function table. 22 VDDDIFF2 Power Output power supply. Connect to 2.5V to 3.3V. Sets output voltage levels for DIFF2. 23 DIFF2B Output Differential clock output 2_Complement, can be OTP pre-programmed to LVCMOS/LP-HCSL/LVDS/LVPECL output type. 24 DIFF2 Output Differential clock output 2_True, can be OTP pre-programmed to LVCMOS/LP-HCSL/LVDS/LVPECL output type. EPAD Power Connect to ground pad. Detailed Functional Block Diagram VDDDIFF2 DIV1/REF OSC MUX Integer PLL(1) with Analog SS < 3ps rms jitter PCIE Gen 1,2,3,4 VBAT Power Monitor DIV1 DIV3 MUX VDDDIFF1 DIV1/REF DIV2 DIV3 MUX DIV2 Fractional PLL(2) 3rd order DSM PCIE Gen 1,2,3 MUX DIV3 MUX DIV4 VDDA VSS Calibration Integer PLL (3) Non-SS C-C jitter < 350ps DIV5 DIFF1 DIFF1B OE3 DIV4/REF 32K MUX DIV4/REF DIV5 32K MUX DIV4/REF DIV5 32K MUX SE3 VDDSE3 VDD33 POR DIFF2 DIFF2B OE2 SE2 VDDSE2 OE1 SE1 VDDSE1 32.768K DCO REF SCL_DFC1 I2C Engine Overshoot Reduction (ORT) Dynamic Frequency Control Logic (DFC) SDA_DFC0 OTP Memory (1 configuration) ©2018 Integrated Device Technology, Inc. Proactive Power Saving Logic (PPS) 4 Timer May 2, 2018 5X35023 Datasheet Power Group Table 2. Power Group Power Supply SE DIFF DIV MUX PLL VDDDIFF1 DIFF1 DIV3/4 MUXPLL2 PLL2 VDDDIFF2 DIFF2 DIV1 MUXPLL1 VDDSE1 SE1 1 VDDSE2 SE2 1 VDDSE3 SE3 1 VDD33 VBAT DIV5 2 3 REF Crystal DCO REF Xtal DCO VDDA 1 PLL3 2 DCO DIV2 Xtal PLL1 VDDSEx for non-32kHz outputs should be OFF when VDDA/VDD33 is turned OFF; VBAT mode only supports 32.768kHz outputs from SE1–3. VBAT power ramp up should be same or earlier than other VDD power rails; suggest to connect with coin cell battery. All VDD pins need to have power present even if outputs are not used. Output Sources Table 3. Output Sources Outputs Source REF SE1 SE2 SE3 Crystal REF Crystal REF Crystal REF Crystal REF Crystal REF 32.768kHz 32.768kHz 32.768kHz 32.768kHz PLL1 PLL2 PLL2 PLL2 PLL3 PLL3 PLL3 DIFF1 DIFF2 PLL1 PLL1 PLL1 PLL2 PLL2 PLL2 PLL3 PLL3 Output Source Selection Register Settings Table 4. SE1 Output Source Register Settings SE1 B36 B36 B31 B29 From 32K 0 1 0 0 From PLL3 + Divider 5 1 0 0 0 From PLL2 + Divider 4 1 1 1 0 From REF + Divider 4 1 1 0 1 ©2018 Integrated Device Technology, Inc. 5 May 2, 2018 5X35023 Datasheet Table 5. SE2 Output Source Register Settings SE2 B31 B31 B36 B31 B29 From 32K 0 0 0 0 0 From PLL3 + Divider 5 1 0 0 0 0 From PLL2 + Divider 4 1 1 1 1 0 From REF + Divider 4 1 1 1 0 1 Table 6. SE3 Output Source Register Settings SE3 B33 B33 B7 B29 B36 B31 From 32K 0 0 0 0 0 0 From PLL1 + Divider 2 1 0 1 0 0 0 From PLL2 + Divider 4 1 1 0 0 1 1 From REF + Divider 4 1 1 0 1 1 0 Table 7. DIFF1 Output Source Register Settings DIFF1 B34 B0 From PLL1 + Divider 1 0 0 From PLL2/3 + Divider 3 1 0 From REF + Divider 1 0 1 Table 8. DIFF2 Output Source Register Settings DIFF2 B35 B0 From PLL1 + Divider 1 0 0 From PLL2/3 + Divider 3 1 0 From REF + Divider 1 0 1 ©2018 Integrated Device Technology, Inc. 6 May 2, 2018 5X35023 Datasheet Absolute Maximum Ratings The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 5X35023 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 9. Absolute Maximum Ratings Parameter Rating Supply Voltage, VDDA, V DD33, V DDSE,VDDDIFF 3.63V Supply Voltage, VBAT 3.63V Inputs -0.5V to VDD33/VDDSEx Outputs, VDDSEx (LVCMOS) -0.5V to VDDSEx/VDDDIFF + 0.5V Outputs, IO (SDA) 10mA Storage Temperature, TSTG -65°C to 150°C ESD Human Body Model 2000V Junction Temperature 125°C Thermal Characteristics Table 10. Thermal Characteristics Symbol Parameter Value Units JA Theta JA. Junction to air thermal impedance (0mps). 32.4 °C/W JB Theta JB. Junction to board thermal impedance (0mps). 2.8 °C/W JC Theta JC. Junction to case thermal impedance (0mps). 44.7 °C/W Recommended Operating Conditions Table 11. Recommended Operating Conditions Symbol VDDSEx 1 VDD33 2 V DDA VBAT 3 TA CLOAD_OUT tPU Parameter Minimum Typical Maximum Units Power supply voltage for supporting 1.8V outputs. 1.71 1.8 1.89 V Power supply voltage for supporting 2.5V outputs. 2.375 2.5 2.625 V Power supply voltage for supporting 3.3V outputs. 3.135 3.3 3.465 V Power supply voltage for core logic functions. 3.135 3.3 3.465 V Analog power supply voltage. Use filtered analog power supply if available. 2.375 3.465 V 3.465 V 85 °C Battery power supply voltage. 2.8 Operating temperature, ambient. -40 Maximum load capacitance (3.3V LVCMOS only). 3 5 Power-up time for all VDDs to reach minimum specified voltage (power ramps must be monotonic). 0.05 pF 3 ms 1 Power-up sequence conditions. 2 VDDSEx for non-32kHz outputs should be OFF when VDDA/VDD33 turned OFF; VBAT mode only supports 32.768kHz outputs from SE1–3. 3 VBAT power ramp up should be same or earlier than other VDD power rail. ©2018 Integrated Device Technology, Inc. 7 May 2, 2018 5X35023 Datasheet Input Capacitance, LVCMOS Output Impedance, and Internal Pull-down Table 12. Input Capacitance, LVCMOS Output Impedance, and Internal Pull-down Symbol Parameter Input Capacitance (OE, SDA, SCL, DFC1:0) CIN Pull-down Resistor ROUT REF Minimum Typical Maximum Units 3 7 pF OE 150 LVCMOS Output Driver Impedance (VDDSE = 1.8V) 17 LVCMOS Output Driver Impedance (VDDSE = 2.5V) 17 LVCMOS Output Driver Impedance (VDDSE = 3.3V) 17 Programmable Input Capacitance 16 k pF Electrical Characteristics Table 13. DC Electrical Characteristics Symbol Parameter IDDCORE IDD_PLL1 IDD_PLL2 1 1 IDD_PLL3 1 Core Supply Current PLL1 Supply Current PLL2 Supply Current PLL3 Supply Current ©2018 Integrated Device Technology, Inc. Conditions Typical Maximum Units VDD = VDDSE = VDD33 = 3.3V3.3V, crystal = 25MHz, PLL2/3 OFF, no output - PLLs disabled. 5 6 mA VDD = VDDSE = VDD33 = 3.3V, crystal = 25MHz, PLL2/3 OFF, no output - PLL1 = 600MHz. 13 14 mA VDD = VDDSE = VDD33 = 2.5V, crystal = 25MHz, PLL2/3 OFF, no output - PLL1 = 600MHz. 13 14 mA VDD = VDDSE = VDD33 = 3.3V, crystal = 25MHz, PLL1/3 OFF, no output - PLL2 = 1GHz. 11 12 mA VDD = VDDSE = VDD33 = 2.5V, crystal = 25MHz, PLL1/3 OFF, no output - PLL2 = 1GHz. 11 12 mA VDD = VDDSE = VDD33 = 3.3V, crystal = 25MHz, PLL1/2 OFF, no output - PLL3 = 480MHz. 4 5 mA 8 Minimum May 2, 2018 5X35023 Datasheet Table 13. DC Electrical Characteristics (Cont.) Symbol IDDOx Parameter Output Buffer Supply Current Conditions Typical Maximum Units LVPECL, 500MHz, 3.3V VDDDIFF (DIFF1,2). 39 45 mA LVPECL, 156.25MHz, 2.5V VDDDIFF (DIFF1,2). 33 40 mA LVDS, 500MHz, 3.3V VDDDIFF (DIFF1,2). 13 16 mA LVDS, 250MHz, 2.5V VDDDIFF (DIFF1,2). 8 10 mA LP-HCSL, 125MHz, 3.3V VDDDIFF, 2pF load (DIFF1,2). 7 9 mA LP-HCSL, 100MHz, 2.5V VDDDIFF, 2pF load (DIFF1,2). 8 11 mA LVCMOS, 8MHz, 3.3V, VDDSE 1,2 (SE1). 1 2 mA (SE1). 1 2 mA LVCMOS, 8MHz, 1.8V, VDDSE 1,2 (SE1). LVCMOS, 8MHz, 2.5V, VDDSE Minimum 1,2 1 2 mA LVCMOS, 160MHz, 3.3V VDDSEx 1 (SE1). 9.5 13 mA LVCMOS, 160MHz, 2.5V VDDSEx 1,2 (SE1). 5.0 9 mA LVCMOS, 160MHz, 1.8V VDDSEx 1,2 (SE1). 6.0 8 mA 2 Power Down Current– LP-HCSL I C functional during power-down, just 32kHz running (if any). DIFF outputs in LP-HCSL mode are high/low. 2.6 3.4 mA Power Down Current– LVCMOS I2C functional during power-down, just 32kHz running (if any). DIFF outputs in LVCMOS mode are high/low or low/low. 0.5 1 mA IDDSUSPEND 4 Suspend Mode Current– 32kHz × 1 I2C off in Suspend Mode. One 32kHz output running. 1.4 2.1 A IDDSUSPEND 4 Suspend Mode Current– 32kHz × 2 I2C off in Suspend Mode. Two 32kHz outputs running. 3.2 7.9 A IDDSUSPEND 4 Suspend Mode Current– 32kHz × 3 I2C off in Suspend Mode. Three 32kHz outputs running. 3.7 8.6 A IDDPD 3 IDDPD 3,5 1 All output currents measured with 0.5 inch transmission line and 0pF load. 2 Single CMOS driver active. 3 Power-down can be controlled by PD (OE1 input pin) and/or I2C bit. 4 Suspend Mode requires all VDD to GND except VDDSEn (as desired) and VDD18. 5 DIFF outputs in LVCMOS Mode can power-down to be high/low or low/low, depending on register 0x22[1:0]. ©2018 Integrated Device Technology, Inc. 9 May 2, 2018 5X35023 Datasheet Electrical Characteristics – VDDDIFF Table 14. DC Electrical Characteristics for LVDS (VDDDIFF = 3.3V ±5%, 2.5V 5%, TA = -40°C to +85°C) Symbol Parameter Minimum Typical Maximum Units VOT (+) Differential Output Voltage for the TRUE Binary State 247 454 mV VOT (-) Differential Output Voltage for the FALSE Binary State -247 -454 mV VOT Change in VOT between Complementary Output States 50 mV 1.375 V 50 mV VOS Output Common Mode Voltage (Offset Voltage) VOS 1.125 1.25 Change in VOS between Complimentary Output States Notes IOS Outputs Short Circuit Current, VOUT+ or VOUT- = 0V or VDDDIFF 9 24 mA IOSD Differential Outputs Short Circuit Current, V OUT+ = V OUT- 6 12 mA JitterCy/Cy Cycle to Cycle Jitter 20 ps 1,2 JitterSTJ Jitter - ST 100 ps 1,2 Duty Cycle Duty Cycle 55 % 1,2 Measured Frequency LVDS at Differential Output 500 MHz 1,2 Maximum Units Notes 45 1 Guaranteed by design and characterization, not 100% tested in production. 2 Measured from differential waveform. Table 15. DC Electrical Characteristics for LVPECL (VDDDIFF = 3.3V ±5%, 2.5V 5%, TA = -40°C to +85°C) Symbol Parameter Minimum Typical VOH Output Voltage High, Terminated through 50 tied to VDDDIFF - 2 V VDDDIFF - 1.19 VDDDIFF - 0.69 V VOL Output Voltage Low, Terminated through 50 tied to V DDDIFF - 2 V VDDDIFF - 1.94 VDDDIFF - 1.4 V VSWING Peak-to-Peak Output Voltage Swing 0.55 0.993 V JitterCy/Cy Cycle to Cycle Jitter 20 ps 1,2 JitterSTJ Jitter - ST 100 ps 1,2 Duty Cycle Duty Cycle 55 % 1,2 Measured Frequency LVPECL at Differential Output 500 MHz 1,2 45 1 Guaranteed by design and characterization, not 100% tested in production. 2 Measured from differential waveform. ©2018 Integrated Device Technology, Inc. 10 May 2, 2018 5X35023 Datasheet Table 16. Electrical Characteristics–DIF 0.7V LP-HCSL Differential Outputs (VDDDIFF = 3.3V ±5%, 2.5V 5%, TA = -40°C to +85°C) Symbol dV/dt dV/dt Parameter Slew Rate Minimum Typical Maximum Units Notes 1 2.5 4 V/ns 1,2,3,8, at > = 100MHz 20 % 1,6,7,8 Slew Rate Mismatch VHIGH Voltage High 660 780 1150 mV 1,6 VLOW Voltage Low -150 0 150 mV 1 VMAX Maximum Voltage 1150 mV 1 VMIN Minimum Voltage -300 mV 1,2,6 VSWING Voltage Swing 300 mV 1,4,6 VCROSS Crossing Voltage Value 250 550 mV 1,5 140 mV 1,2 VCROSS 400 Crossing Voltage Variation JitterCy/Cy Cycle to Cycle Jitter 20 ps 1,2 JitterSTJ Jitter - ST 100 ps 1,2 Duty Cycle Duty Cycle 55 % 1,2 Measured Frequency LVHCSL at Differential Output 500 MHz 1,2,3,8, at > = 100MHz 1 45 Guaranteed by design and characterization, not 100% tested in production. 2 Measured from differential waveform. 3 Slew rate is measured through the VSWING voltage range centered around differential 0V. This results in a ±150mV window around differential 0V. 4 VCROSS is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling). 5 The total variation of all VCROSS measurements in any particular system. Note that this is a subset of VCROSS min/max (VCROSS absolute) allowed. The intent is to limit VCROSS induced modulation by setting VCROSS to be smaller than VCROSS absolute. 6 Measured from single-ended waveform. 7 Measured with scope averaging off, using statistics function. Variation is difference between minimum and maximum. 8 Scope average ON. ©2018 Integrated Device Technology, Inc. 11 May 2, 2018 5X35023 Datasheet Table 17. PCI Express Jitter Specifications (VDDDIFF = 3.3V +5% or 2.5V +5%, TA = -40°C to +85°C) Symbol PCIe Industry Specification Units Notes 37 86 ps 1,4 ƒ = 100MHz/125MHz, 25MHz crystal input. High band: 1.5MHz – Nyquist (clock frequency/2). 2.07 3.10 ps 2,4 Phase Jitter RMS ƒ = 100MHz/125MHz, 25MHz crystal input. Low band: 10kHz – 1.5MHz. 1.15 3.0 ps 2,4 Phase Jitter RMS ƒ = 100MHz/125MHz, 25MHz crystal input. Evaluation band: 0Hz – Nyquist (clock frequency/2). 0.55 1.0 ps 3,4 Parameter Conditions Minimum tJ (PCIe Gen1) Phase Jitter Peak-to-Peak ƒ = 100MHz/125MHz, 25MHz crystal input. Evaluation band: 0Hz – Nyquist (clock frequency/2). tREFCLK_HF_RMS (PCIe Gen2) Phase Jitter RMS tREFCLK_LF_RMS (PCIe Gen2) tREFCLK_RMS (PCIe Gen3) Typical Maximum Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. 1 Peak-to-peak jitter after applying system transfer function for the common clock architecture; maximum limit for PCI Express Gen 1. 2 RMS jitter after applying the two evaluation bands to the two transfer functions defined in the common clock architecture and reporting the worst case results for each evaluation band. Maximum limit for PCI Express Generation 2 is 3.1ps RMS for t REFCLK_HF_RMS (high band) and 3.0ps RMS for tREFCLK_LF_RMS (low band). 3 4 RMS jitter after applying system transfer function for the common clock architecture. This specification is based on thePCI_Express_Base_r3.0 10 Nov, 2010 specification, and is subject to change pending the final release version of the specification. This parameter is guaranteed by characterization, not tested in production. Electrical Characteristics – VDDSE Table 18. DC Electrical Characteristics for 3.3V LVCMOS (VDDSE = 3.3V ±5%, TA = -40°C to +85°C) Symbol Parameter Conditions Minimum Maximum Units VDDSE V 0.4 V 3 A VOH Output High Voltage IOH = -15mA. VOL Output Low Voltage IOL = 15mA. Output Leakage Current Tri-state outputs, V DDSE = 3.465V. VIH Input High Voltage Single-ended inputs – OE, SDA, SCL. 2 VDDSE + 0.3 V VIL Input Low Voltage Single-ended inputs – OE, SDA, SCL. GND - 0.3 0.8 V IOZDD ©2018 Integrated Device Technology, Inc. 2.4 Typical 12 May 2, 2018 5X35023 Datasheet Table 19. DC Electrical Characteristics for 2.5V LVCMOS (VDDSE = 2.5V ±5%, TA = -40°C to +85°C) Symbol Parameter Conditions Minimum Typical Units VDDSE V 0.4 V 3 A VOH Output High Voltage IOH = -12mA. VOL Output Low Voltage IOL = 12mA. Output Leakage Current Tri-state outputs, V DDSE = 2.625V. VIH Input High Voltage Single-ended inputs – OE, SDA, SCL. 1.7 VDDSE + 0.3 V VIL Input Low Voltage Single-ended inputs – OE, SDA, SCL. GND - 0.3 0.8 V Maximum Units VDDSE V 0.25 x VDDSE V 3 A IOZDD 0.7 x VDDSE Maximum Table 20. DC Electrical Characteristics for 1.8V LVCMOS (VDDSE = 1.8V ±5%, TA = -40°C to +85°C) Symbol Parameter Conditions Minimum Typical VOH Output High Voltage IOH = -8mA. VOL Output Low Voltage IOL = 8mA. Output Leakage Current Tri-state outputs, V DDSE = 1.89V. VIH Input High Voltage Single-ended inputs – OE, SDA, SCL. 0.65 x V DDSE VDDSE + 0.3 V VIL Input Low Voltage Single-ended inputs – OE, SDA, SCL. GND - 0.3 0.35 x VDDSE V IOZDD 0.7 x VDDSE Table 21. Power Consumption of 32.768kHz Output Only Operation (VDDSE = 3.3V +5%, 2.5V +5%, or 1.8V ±5%. TA = -40°C to +85°C) Symbol I_VBAT Parameter Conditions VBAT = 3.3V Power Input Current Minimum Typical Maximum Units 1.2 A I_VDDSEx VDDSEx = 1.8V Current 0.5 inch, no load, one output. 0.4 A I_VDDSEx VDDSEx = 1.8V Current 2.0 inch, no load, one output. 1.0 A I_VDDSEx VDDSEx = 1.8V Current 5.0 inch, no load, one output. 2.3 A I_VDDSEx VDDSEx = 2.5V Current 0.5 inch, no load, one output. 0.6 A I_VDDSEx VDDSEx = 2.5V Current 2.0 inch, no load, one output. 1.5 A I_VDDSEx VDDSEx = 2.5V Current 5.0 inch, no load, one output. 3.1 A I_VDDSEx VDDSEx = 3.3V Current 0.5 inch, no load, one output. 0.8 A I_VDDSEx VDDSEx = 3.3V Current 2.0 inch, no load, one output. 1.9 A I_VDDSEx VDDSEx = 3.3V Current 5.0 inch, no load, one output. 4.2 A ©2018 Integrated Device Technology, Inc. 13 May 2, 2018 5X35023 Datasheet AC Electrical Characteristics Table 22. AC Timing Electrical Characteristics for LVDS (VDDSE = 3.3V +5%, 2.5V +5%, or 1.8V ±5%, TA = -40°C to +85°C; spread spectrum = OFF) Symbol fOUT Parameter Output Frequency Conditions Minimum Typical Maximum Units Single-ended clock output limit (LVCMOS). 1 < 125 160 Differential clock output limit (LP-HCSL). 1 < 333 500 Differential clock output limit (LVDS). 1 < 333 500 Differential clock output limit (LVPECL). 1 500 MHz MHz fVCO1 VCO Frequency Range of PLL1 VCO operating frequency range. 300 600 MHz fVCO2 VCO Frequency Range of PLL2 VCO operating frequency range. 600 1000 MHz fVCO3 VCO Frequency Range of PLL3 VCO operating frequency range. 300 800 MHz t2 Input Duty Cycle Duty cycle. 45 55 % t3 Output Duty Cycle LVCMOS and differential clock < 333MHz, crossing point measurements. 45 55 % t3 Output Duty Cycle LVCMOS and differential clock > 333MHz, crossing point measurements. 40 60 % t3 Output Duty Cycle_REF Reference clock output or SE1–3 fan out clock. 40 60 % Rise/Fall, SLEW[0] = 1 Single-ended LVCMOS output clock rise and fall time, 20% to 80% of VDDSE 1.8V–3.3V. 1.0 Rise/Fall, SLEW[0] = 0 Single-ended LVCMOS output clock rise and fall time, 20% to 80% of V DDSE 1.8V–3.3V. 1.1 Rise Times LVDS, 20% to 80%. 300 Fall Times LVDS, 80% to 20%. 300 Rise Times LVPECL, 20% to 80%. 400 Fall Times LVPECL, 80% to 20%. 400 Cycle-to-cycle jitter (peak-to-peak), multiple output frequencies switching, differential outputs (1.8V to 3.3V nominal output voltage). SE1 = 25MHz. SE2 = 100MHz. SE3 = 125MHz. DIFF1/2 = 100MHz. 36 ps RMS phase jitter (12kHz to 20MHz integration range) differential output, VDDSE = 3.465V, 25MHz crystal. SE1 = 25MHz. SE2 = 100MHz. SE3 = 125MHz. DIFF1/2 = 100MHz. 1.57 ps Skew between the same frequencies with outputs using the same driver format. 152 ps t4 t5 t6 t7 Clock Jitter Output Skew ©2018 Integrated Device Technology, Inc. 14 ns ps May 2, 2018 5X35023 Datasheet Table 22. AC Timing Electrical Characteristics for LVDS (Cont.) (VDDSE = 3.3V +5%, 2.5V +5%, or 1.8V ±5%, TA = -40°C to +85°C; spread spectrum = OFF) Symbol Parameter Conditions Minimum Typical Maximum Units 20 ms t8 2 Lock Time PLL lock time from power-up. t9 Lock Time 32.768kHz clock, low power, power-up time. 10 100 ms t9 3 Lock Time PLL lock time from shutdown mode. 0.1 2 ms 1 Practical lower frequency is determined by loop filter settings. 2 Includes loading the configuration bits from EPROM to PLL registers. It does not include EPROM programming/write time. 3 Actual PLL lock time depends on the loop configuration. Spread Spectrum Generation Specifications Table 23. Spread Spectrum Generation Specification Symbol Parameter Description Minimum f OUT Output Frequency Output frequency range. fMOD Mod Frequency Modulation frequency. Spread Value Amount of spread value (programmable) – down spread. Spread% Value Variation of spread range. fSPREAD %tolerance Typical Maximum Units 330 MHz 1 30 to 63 kHz -0.5% to -5% % fOUT 15 % Glossary of Features Table 24. Glossary of Features Term Function Description Apply to DFC Dynamic Frequency Control; from selected PLL to support four VCO frequencies; means two different output frequencies by assigned H/W pin state changes. PLL2 ORT Overshoot Reduction; when the DFC dynamic frequency change is functional, the VCO changes frequencies smoothly to target frequency without overshoot or undershoot. PLL2 OE Output Enable function; each output can be controlled by assigned OE pin and the dedicated OE pin can be OTP programmable as Global Power Down function (PD#) or Output enable (OE) or proactive power saving function (PPS) or RESET pin function. OE1–3 SS Spread spectrum clock. Slew Rate PPS PLL1/PLL2 LVCMOS outputs with slew rate control – slow and fast. Proactive Power Saving; utilize OE pin as monitor pin for end device X2 clock status. See PPS Function description for details. ©2018 Integrated Device Technology, Inc. 15 LVCMOS SE1–3 May 2, 2018 5X35023 Datasheet Device Features and Functions DFC–Dynamic Frequency Control OTP program (only) setup 4 different feedback fractional divider (4 VCO frequencies) that apply to PLL2. ORT (overshoot reduction) function will be applied automatically during the VCO frequency change. Smooth frequency incremental or decremental from current VCO to targeted VCO base on DFC hardware pins selection. Figure 2. DFC Block Diagram M divider PLL2 OUT DIV Selector 00 N divider 01 N divider 10 N divider 11 N divider DFC1:0 OTP/I2C Table 25. DFC Function Priority DFC_EN bit (W32[4]) OE1_fun_sel OE3_fun_sel SCL_DFC1 DFC[1:0] Notes 1 11 (DFC) 00–10 (DFC) x [0,OE1] One pin DFC – OE1 1 11 (DFC) 11 (DFC) x [OE3,OE1] Two pin DFC – OE3,OE1 1 00–10 11 x Not permitted Not supported 1 00–10 00–10 0 [SCL_DFC1, SDA_DFC0] I2C pin as DFC control pins mode 1 00–10 00–10 1 W30[1:0] I2C control DFC mode 1 11 (DFC) 00–10 (DFC) x [0,OE1] One pin DFC - OE1 ©2018 Integrated Device Technology, Inc. 16 May 2, 2018 5X35023 Datasheet DFC Function Programming 1. Register B63b3:2 selects DFC00–DFC11 configuration. 2. Byte16–19 are the registers for PLL2 VCO setting. Based on B63b3:2 configuration selection, the data write to B16–19 will be stored in the selected configuration OTP memory. 3. Refer to DFC Function Priority table; select proper control pin(s) to activate DFC function. 4. Note the DFC function can also be controlled by I2C access. PPS–Proactive Power Saving Function PPS Proactive Power Saving is an IDT patented unique design for the clock generator that proactively detects end device power down state and then switches output clocks between the normal operation clock frequency, and the low power mode 32kHz clock that only consumes < 2 A current. The system could save power when the device goes into power down or sleep mode. The PPS function diagram is shown below. Figure 3. PPS Function Block Diagram I2C & Logic Xtal Oscillator PPS Control Logic Power Down Control Low Power DCO Xout OE SE Xin Xtal Oscillator Logic MHz/kHz Switching PLL Figure 4. PPS Assertion/Deassertion Timing Chart 3rd cycle 2nd cycle 1st cycle PPS assertion MHz clock 32K clocks PPS setting (1-2-4-8) 2nd cycle 1st cycle PPS deassertion 32K clocks ©2018 Integrated Device Technology, Inc. MHz clock 17 May 2, 2018 5X35023 Datasheet PPS Function Programming 1. Refer to OE_pin_fucntion_table to have the proper PPS function selected for OE pin(s). Note that the register default is set to Output enable (OE) function for OE pins. 2. Have proper setup to Byte 30 and 32 for OE1–OE3 function selection; for PPS function, select 10 to control register bits. Timer Function Description 1. The timer function can be used together with the DFC -Dynamic Frequency Control function or with another PLL frequency programming. 2. The timer provides 4 different delay times by two bits selection: 0.5 seconds, 1 seconds, 2 seconds, 4 seconds. 3. The timeout flag will be set when timer times out and the flag can be cleared by writing 0 to timer enable bit. 4. When timer times out, RESET pin can generate a 250ms pulse signal if RESET control bit is enabled. 5. When timer times out, DFC stage will switch back to DFC00 setting if DFC function is enabled and DFC function will be disabled after RESET. Figure 5. Timer Functions Select delay time 0.5 - 4.0 seconds and enable timer Program New VCO frequency or enable DFC System functional check Disable Timer Timer continue if system is not able to stop timer Timeout Flag set and generate RESET pulse OE Pin Function OE pins in the 5X35023 have multiple functions. The OE pins can be configured as output enable control (OE) or chip power-down control (PD#) or proactive power saving function (PPS). Furthermore, the OE pins can be configured as single or two pin dynamic frequency control (DFC), or the RESET out function that is associated with the Timer function. Table 26. OE Pin Functions Pin Function OE1 OE2 OE3 SE Output Enable/Disable SE1 (default) SE2 (default) SE3 (default) DIFF Output Enable/Disable — DIFF1/DIFF2 — Global Power Down (PD#) PD# — — Proactive Power Saving Input SE1_PPS SE2_PPS SE3_PPS DOC Control (Only PLL2) DFC0 — DFC1 RESET OUT — RESET OUT — ©2018 Integrated Device Technology, Inc. 18 May 2, 2018 5X35023 Datasheet Table 27. OE Pin Function Summary OE Pin Description OE1: SE1 OE1 only control SE1 enable/disable; other outputs are not affected by this pin status. OE2: SE2 OE2 only control SE2 enable/disable; other outputs are not affected by this pin status. OE2: SE3 OE3 only control SE3 enable/disable; other outputs are not affected by this pin status. OE2: DIFF1/DIFF2 OE1: PD# OE2 control differential outputs 1 and 2 only; other SE outputs are not affected by this pin status. OE1 control chip global power down (PD#) except 32.768kHz on OE1 (when 32K is enabled). When the PD# pin is active low, the chip goes to lowest power down mode and all outputs are disabled except 32kHz output and only keep 32K/Xtal calibration. OE1: SE1_PPS Configure OE1 as SE1_PPS (Proactive Power Saving) function pin. OE2: SE2_PPS Configure OE2 as SE2_PPS (Proactive Power Saving) function pin. OE3: SE3_PPS Configure OE3 as SE3_PPS (Proactive Power Saving) function pin. OE1: DFC0 Configure OE1 as DFC0 control pin 0. OE3/DFC1 Configure OE3 as DFC1 control pin 1. Table 28. PD# Priority PD# I2C_OE_EN_bit SE1/2/3, DIFF1/DIFF2 Output Notes 0 x x stop 32kHz free run 1 0 x stop 1 1 0 stop 1 1 1 running ©2018 Integrated Device Technology, Inc. 19 May 2, 2018 5X35023 Datasheet Spread Spectrum The 5X35023 supports spread spectrum clocks from PLL1 and PLL2; the PLL1 built-in with analog spread spectrum and PLL2 has digital spread spectrum. Figure 6. Digital Spread Spectrum N Fvco 2 * Fout period step Fpfd 2 * Fss N * SSamount period Down spread or Spread off N = Fvco/Fpfd Center Spread N = Nssoff + N × SSamount/2 N: include integer and fraction Fvco: VCOs frequency Fpfd: PLLs pfd frequency Fss: spread modulation rate SSamount: spread percentage The black line is for the down spread; N will decrease to make the center frequency is lower than spread off. The blue line is for the center spread; there is an offset put on divider ratio to make the center frequency keep same as spread off. ©2018 Integrated Device Technology, Inc. 20 May 2, 2018 5X35023 Datasheet VBAT The 5X35023 V BAT supports a low-power operation 32.768kHz RTC clock with only coin cell battery supply. The coin cell battery power capacitance is usually 170mAhr or higher, with less than 2 A low-power DCO operation mode will support application up to few years clock source for date/time keeping circuit (RTC). When there is main power existing in VDD33 and VDDA, the 5X35023 will switch DCO power source to main power to save battery power. VBAT should be powered earlier or at same time with other VDD power up. Connecting with a coin cell battery is suggested. Figure 7. VBAT Switching Threshold VBAT VDD33 Switch to VBAT (VDD33 falling down to 2.3V) Switch to VDD33 (VDD33 raise up to 2.5V ) VDD33 VBAT DCO Power Source > 2.5V — VDD33 < 2.3V — V BAT ORT–VCO Overshoot Reduction Technology The 5X35023 supports the VCO overshoot reduction technology (ORT) to prevent an output clock frequency spike when the device is changing frequency on the fly or doing DFC (Dynamic Frequency Control) function. The VCO frequency changes are under control instead of free-run to targeted frequency. PLL Features and Descriptions Table 29. Output 1 Divider Output Divider bits Output Divider bits 00 01 10 11 00 1 2 4 8 01 4 8 16 32 10 5 10 20 40 11 6 12 24 48 Table 30. Output 2, 4, and 5 Divider Output Divider bits Output Divider bits 00 01 10 11 00 1 2 4 5 01 3 6 12 15 10 5 10 20 25 11 10 20 40 50 ©2018 Integrated Device Technology, Inc. 21 May 2, 2018 5X35023 Datasheet Table 31. Output 3 Divider Output Divider bits Output Divider bits 00 01 10 11 00 1 2 4 8 01 3 6 12 24 10 5 10 20 40 11 10 20 40 80 Output Clock Test Conditions Figure 8. LVCMOS Output Test Conditions 33 ohm 2 inches 2pF LVCMOS Figure 9. LP-HCSL Output Test Conditions 33 ohm 33 ohm 5 inches 2pF LPHCSL ©2018 Integrated Device Technology, Inc. 22 2pF May 2, 2018 5X35023 Datasheet I2C Bus Characteristics Table 32. I2C Bus DC Characteristics Symbol Parameter VIH Input High Level VIL Input c Level VHYS Conditions Minimum Typical Maximum 0.7 x VDD33 V 0.3 x VDD33 Hysteresis of Inputs 0.05 x VDD33 IIN Input Leakage Current VOL Output Low Voltage Units V V ±1 A 0.4 V Typical Maximum Units 100 400 kHz IOL = 3mA Table 33. I2C Bus AC Characteristics Symbol FSCLK tBUF Parameter Conditions Minimum Serial Clock Frequency (SCL) Bus Free Time between STOP and START 1.3 s tSU:START Setup Time, START 0.6 s tHD:START Hold Time, START 0.6 s tSU:DATA Setup Time, Data Input (SDA) 100 ns tHD:DATA Hold Time, Data Input (SDA) 1 0 s tOVD Output Data Valid from Clock 0.9 s CB Capacitive Load for Each Bus Line 400 pF tR Rise Time, Data and Clock (SDA, SCL) 20 + 0.1 x CB 300 ns tF Fall Time, Data and Clock (SDA, SCL) 20 + 0.1 x CB 300 ns tHIGH High Time, Clock (SCL) 0.6 s tLOW High Time, Clock (SCL) 1.3 s Setup Time, STOP 0.6 s tSU:STOP ©2018 Integrated Device Technology, Inc. 23 May 2, 2018 5X35023 Datasheet General I2C Mode Operations The device acts as a slave device on the I 2C bus using one of the four I 2C addresses (0xD0, 0xD2, 0xD4, or 0xD6) to allow multiple devices to be used in the system. The interface accepts byte-oriented block write and block read operations. Two address bytes specify the register address of the byte position of the first register to write or read. Data bytes (registers) are accessed in sequential order from the lowest to the highest byte (most significant bit first). Read and write block transfers can be stopped after any complete byte transfer. During a write operation, data will not be moved into the registers until the STOP bit is received, at which point, all data received in the block write will be written simultaneously. For full electrical I2C compliance, it is recommended to use external pull-up resistors for SDATA and SCLK. The internal pull-down resistors have a size of 100k typical. Figure 10. I2C Slave Read and Write Cycle Sequencing Current Read S Dev Addr + R A Data 0 A Data 1 A A Data n Abar P Sequential Read S Dev Addr + W A Reg start Addr A A Reg start Addr A Sr Dev Addr + R A Data 0 Data 1 A A Data 1 A A Data n Abar P Sequential Write S Dev Addr + W from master to slave from slave to master Data 0 A A Data n A P S = start Sr = repeated start A = acknowledge Abar = none acknowledge P = stop ©2018 Integrated Device Technology, Inc. 24 May 2, 2018 5X35023 Datasheet Byte 0: General Control Byte 00h Name Control Function Type 0 1 PWD Bit 7 OTP_Burned OTP memory programming indication R/W OTP memory non-programmed OTP memory programmed 0 Bit 6 I2C_addr[1] I2C address select bit 1 R/W Bit 5 I2C_addr[0] I2C address select bit 0 R/W Bit 4 PLL1_SSEN PLL1 Spread Spectrum enable R/W disable enable 0 Bit 3 DIV1_src_sel Divider 1 source clock select R/W PLL1 Xtal 0 Bit 2 PLL3_refin_sel PLL3 source selection R/W Xtal Seed (DIV2) 0 Bit 1 EN_CLKIN Enable CLKIN R/W disable enable 0 Bit 0 OTP_protect OTP memory protection R/W read/write write locked 0 00: D0 10: D4 0 / 01: D2 / 11: D6 0 Byte 1: Dash Code ID (optional) Byte 01h Name Control Function Type 0 1 PWD Bit 7 DashCode ID[7] Dash code ID R/W — — 0 Bit 6 DashCode ID[6] Dash code ID R/W — — 0 Bit 5 DashCode ID[5] Dash code ID R/W — — 0 Bit 4 DashCode ID[4] Dash code ID R/W — — 0 Bit 3 DashCode ID[3] Dash code ID R/W — — 0 Bit 2 DashCode ID[2] Dash code ID R/W — — 0 Bit 1 DashCode ID[1] Dash code ID R/W — — 0 Bit 0 DashCode ID[0] Dash code ID R/W — — 0 0 1 PWD Byte 2: Crystal Cap Setting Byte 02h Name Control Function Type Bit 7 Xtal_Cap[7] Xtal cap load trimming bits R/W 0 Bit 6 Xtal_Cap[6] Xtal cap load trimming bits R/W 0 Bit 5 Xtal_Cap[5] Xtal cap load trimming bits R/W 0 x1 x2 x4 x8 total 15pf Bit 4 Xtal_Cap[4] Xtal cap load trimming bits R/W Bit 3 Xtal_Cap[3] Xtal cap load trimming bits R/W Bit 2 Xtal_Cap[2] Xtal cap load trimming bits R/W 0 Bit 1 Xtal_Cap[1] Xtal cap load trimming bits R/W 0 Bit 0 Xtal_Cap[0] Xtal cap load trimming bits R/W 1 ©2018 Integrated Device Technology, Inc. 25 1 0 May 2, 2018 5X35023 Datasheet Byte 3: PLL3 M Divider Byte 03h Name Control Function Type 0 1 PWD Bit 7 PLL3_MDIV1 PLL3 source clock divider R/W disable M DIV1 bypadd divider (/1) 0 Bit 6 PLL3_MDIV2 PLL3 source clock divider R/W disable M DIV2 bypadd divider (/2) 0 Bit 5 PLL3 M_DIV[5] PLL3 reference integer divider R/W 3–64 default 25 0 Bit 4 PLL3 M_DIV[4] PLL3 reference integer divider R/W — — 1 Bit 3 PLL3 M_DIV[3] PLL3 reference integer divider R/W — — 1 Bit 2 PLL3 M_DIV[2] PLL3 reference integer divider R/W — — 0 Bit 1 PLL3 M_DIV[1] PLL3 reference integer divider R/W — — 0 Bit 0 PLL3 M_DIV[0] PLL3 reference integer divider R/W — — 1 Byte 4: PLL3 N Divider Byte 04h Name Control Function Type 0 1 PWD Bit 7 PLL3 N_DIV[7] PLL3 VCO feedback integer divider bit7 R/W 1 Bit 6 PLL3 N_DIV[6] PLL3 VCO feedback integer divider bit6 R/W 1 Bit 5 PLL3 N_DIV[5] PLL3 VCO feedback integer divider bit5 R/W 1 Bit 4 PLL3 N_DIV[4] PLL3 VCO feedback integer divider bit4 R/W Bit 3 PLL3 N_DIV[3] PLL3 VCO feedback integer divider bit3 R/W Bit 2 PLL3 N_DIV[2] PLL3 VCO feedback integer divider bit2 R/W 0 Bit 1 PLL3 N_DIV[1] PLL3 VCO feedback integer divider bit1 R/W 0 Bit 0 PLL3 N_DIV[0] PLL3 VCO feedback integer divider bit0 R/W 0 0 12~2048, default VCO setting is 480MHz 0 Byte 5: PLL3 Loop Filter Setting and N Divider 10:8 Byte 05h Name Control Function Type 0 1 PWD Bit 7 PLL3_R100K PLL3 Loop filter resister 100kOhm R/W bypass plus 100kOhm 0 Bit 6 PLL3_R50K PLL3 Loop filter resister 50kOhm R/W bypass plus 50kOhm 0 Bit 5 PLL3_R25K PLL3 Loop filter resister 25kOhm R/W bypass plus 25kOhm 0 Bit 4 PLL3_R12.5K PLL3 Loop filter resister 12.5kOhm R/W bypass plus 12.5kOhm 1 Bit 3 PLL3_R6K PLL3 Loop filter resister 6kOhm R/W bypass only 6Kohm applied 0 Bit 2 PLL3 N_DIV[10] PLL3 VCO feedback integer divider bit10 R/W Bit 1 PLL3 N_DIV[9] PLL3 VCO feedback integer divider bit9 R/W Bit 0 PLL3 N_DIV[8] PLL3 VCO feedback integer divider bit8 R/W ©2018 Integrated Device Technology, Inc. 26 0 12–2048, default VCO setting is 480MHz 0 1 May 2, 2018 5X35023 Datasheet Byte 6: PLL3 Charge Pump Control Byte 06h Name Control Function Type 0 1 PWD Bit 7 OUTDIV 3 Source Output divider 3 source clock selection R/W PLL2 PLL3 0 Bit 6 PLL3_CP_8X PLL3 charge pump control R/W — x8 1 Bit 5 PLL3_CP_4X PLL3 charge pump control R/W — x4 1 Bit 4 PLL3_CP_2X PLL3 charge pump control R/W — x2 0 Bit 3 PLL3_CP_1X PLL3 charge pump control R/W — x1 1 Bit 2 PLL3_CP_/24 PLL3 charge pump control R/W — /24 1 Bit 1 PLL3_CP_/3 PLL3 charge pump control R/W — /3 0 Bit 0 PLL3_SIREF PLL3 SiRef current selection R/W 10 A 20 A 0 Formula: (iRef (10 A) × (1 + SIREF) × (1 × 1X + 2 × 2X + 4 × 4X + 8 × 8X + 16 × 16X))/((24 × /24) + (3 × /3)) Byte 7: PLL1 Control and OUTDIV5 Divider Byte 07h Name Control Function Type 0 1 PWD Bit 7 PLL1_MDIV_Doubler PLL1 reference clock doubler R/W disable enable 0 Bit 6 PLL1_SIREF PLL1 SiRef current selection R/W 10.8 A 21.6 A 0 Bit 5 PLL1_EN_CH2 PLL1 output Channel 2 control R/W disable enable 1 Bit 4 PLL1_EN_3rdpole PLL1 3rd Pole control R/W disable enable 0 Bit 3 OUTDIV5[3] Output divider5 control bit 3 R/W — — 0 Bit 2 OUTDIV5[2] Output divider5 control bit 2 R/W — — 0 Bit 1 OUTDIV5[1] Output divider5 control bit 1 R/W — — 1 Bit 0 OUTDIV5[0] Output divider5 control bit 0 R/W — — 1 Byte 8: PLL1 M Divider Byte 08h Name Control Function Type 0 1 PWD Bit 7 PLL1_MDIV1 PLL3 VCO reference clock divider 1 R/W disable M DIV1 bypass divider (/1) 0 Bit 6 PLL1_MDIV2 PLL3 VCO reference clock divider 2 R/W disable M DIV2 bypass divider (/2) 0 Bit 5 PLL1 M_DIV[5] PLL1 reference clock divider control bit 5 R/W 0 Bit 4 PLL1 M_DIV[4] PLL1 reference clock divider control bit 4 R/W 1 Bit 3 PLL1 M_DIV[3] PLL1 reference clock divider control bit 3 R/W Bit 2 PLL1 M_DIV[2] PLL1 reference clock divider control bit 2 R/W Bit 1 PLL1 M_DIV[1] PLL1 reference clock divider control bit 1 R/W 0 Bit 0 PLL1 M_DIV[0] PLL1 reference clock divider control bit 0 R/W 1 ©2018 Integrated Device Technology, Inc. 27 3–64, default is 25 1 0 May 2, 2018 5X35023 Datasheet Byte 9: PLL1 VCO N Divider Byte 09h Name Control Function Type 0 1 PWD Bit 7 PLL1 N_DIV[7] PLL1 VCO feedback divider control bit 7 R/W 0 Bit 6 PLL1 N_DIV[6] PLL1 VCO feedback divider control bit 6 R/W 1 Bit 5 PLL1 N_DIV[5] PLL1 VCO feedback divider control bit 5 R/W 0 Bit 4 PLL1 N_DIV[4] PLL1 VCO feedback divider control bit 4 R/W Bit 3 PLL1 N_DIV[3] PLL1 VCO feedback divider control bit 3 R/W Bit 2 PLL1 N_DIV[2] PLL1 VCO feedback divider control bit 2 R/W 0 Bit 1 PLL1 N_DIV[1] PLL1 VCO feedback divider control bit 1 R/W 0 Bit 0 PLL1 N_DIV[0] PLL1 VCO feedback divider control bit 0 R/W 0 1 12–2048, default is 600 1 Byte 10: PLL Loop Filter and N Divider Byte 0Ah Name Control Function Type 0 1 PWD Bit 7 PLL1_R100K PLL1 Loop filter resister 100kOhm R/W bypass plus 100kOhm 1 Bit 6 PLL1_R50K PLL1 Loop filter resister 50kOhm R/W bypass plus 50kOhm 0 Bit 5 PLL1_R25K PLL1 Loop filter resister 25kOhm R/W bypass plus 25kOhm 1 Bit 4 PLL1_R12.5K PLL1 Loop filter resister 12.5kOhm R/W bypass plus 12.5kOhm 1 Bit 3 PLL1_R1.0K PLL1 Loop filter resister 1kOhm R/W bypass only 1.0kOhm applied 0 Bit 2 PLL1 N_DIV[10] PLL1 VCO feedback integer divider bit10 R/W Bit 1 PLL1 N_DIV[9] PLL1 VCO feedback integer divider bit9 R/W Bit 0 PLL1 N_DIV[8] PLL1 VCO feedback integer divider bit8 R/W 0 12–2048, default is 600 1 0 Byte 11: PLL1 Charge Pump Byte 0Bh Name Control Function Type 0 1 PWD Bit 7 PLL1_CP_32X PLL1 charge pump control R/W — x32 0 Bit 6 PLL1_CP_16X PLL1 charge pump control R/W — x16 0 Bit 5 PLL1_CP_8X PLL1 charge pump control R/W — x8 0 Bit 4 PLL1_CP_4X PLL1 charge pump control R/W — x4 0 Bit 3 PLL1_CP_2X PLL1 charge pump control R/W — x2 0 Bit 2 PLL1_CP_1X PLL1 charge pump control R/W — x1 1 Bit 1 PLL1_CP_/24 PLL1 charge pump control R/W — /24 1 Bit 0 PLL1_CP_/3 PLL1 charge pump control R/W — /3 0 ©2018 Integrated Device Technology, Inc. 28 May 2, 2018 5X35023 Datasheet Byte 12: PLL1 Spread Spectrum Control Byte 0Ch Name Control Function Type 0 1 PWD Bit 7 PLL1_SS_REFDIV23 PLL1 Spread Spectrum control - Ref divider 23 R/W — — 0 Bit 6 PLL1_SS_REFDIV[6] PLL1 Spread Spectrum control - Ref divider 6 R/W — — 0 Bit 5 PLL1_SS_REFDIV[5] PLL1 Spread Spectrum control - Ref divider 5 R/W — — 0 Bit 4 PLL1_SS_REFDIV[4] PLL1 Spread Spectrum control - Ref divider 4 R/W — — 0 Bit 3 PLL1_SS_REFDIV[3] PLL1 Spread Spectrum control - Ref divider 3 R/W — — 0 Bit 2 PLL1_SS_REFDIV[2] PLL1 Spread Spectrum control - Ref divider 2 R/W — — 0 Bit 1 PLL1_SS_REFDIV[1] PLL1 Spread Spectrum control - Ref divider 1 R/W — — 0 Bit 0 PLL1_SS_REFDIV[0] PLL1 Spread Spectrum control - Ref divider 0 R/W — — 0 Byte 13: PLL1 Spread Spectrum Control Byte 0Dh Name Control Function Type 0 1 PWD Bit 7 PLL1_SS_FBDIV[7] PLL1 Spread Spectrum - feedback divider 7 R/W — — 0 Bit 6 PLL1_SS_FBDIV[6] PLL1 Spread Spectrum - feedback divider 6 R/W — — 0 Bit 5 PLL1_SS_FBDIV[5] PLL1 Spread Spectrum - feedback divider 5 R/W — — 0 Bit 4 PLL1_SS_FBDIV[4] PLL1 Spread Spectrum - feedback divider 4 R/W — — 0 Bit 3 PLL1_SS_FBDIV[3] PLL1 Spread Spectrum - feedback divider 3 R/W — — 0 Bit 2 PLL1_SS_FBDIV[2] PLL1 Spread Spectrum - feedback divider 2 R/W — — 0 Bit 1 PLL1_SS_FBDIV[1] PLL1 Spread Spectrum - feedback divider 1 R/W — — 0 Bit 0 PLL1_SS_FBDIV[0] PLL1 Spread Spectrum - feedback divider 0 R/W — — 0 Byte 14: PLL1 Spread Spectrum Control Byte 0Eh Name Control Function Type 0 1 PWD Bit 7 PLL1_SS_FBDIV[15] PLL1 Spread Spectrum - feedback divider 15 R/W — — 0 Bit 6 PLL1_SS_FBDIV[14] PLL1 Spread Spectrum - feedback divider 14 R/W — — 0 Bit 5 PLL1_SS_FBDIV[13] PLL1 Spread Spectrum - feedback divider 13 R/W — — 0 Bit 4 PLL1_SS_FBDIV[12] PLL1 Spread Spectrum - feedback divider 12 R/W — — 0 Bit 3 PLL1_SS_FBDIV[11] PLL1 Spread Spectrum - feedback divider 11 R/W — — 0 Bit 2 PLL1_SS_FBDIV[10] PLL1 Spread Spectrum - feedback divider 10 R/W — — 0 Bit 1 PLL1_SS_FBDIV[09] PLL1 Spread Spectrum - feedback divider 9 R/W — — 0 Bit 0 PLL1_SS_FBDIV[08] PLL1 Spread Spectrum - feedback divider 8 R/W — — 0 ©2018 Integrated Device Technology, Inc. 29 May 2, 2018 5X35023 Datasheet Byte 15: Output Divider1 Control Byte 0Fh Name Control Function Type 0 1 PWD Bit 7 OUTDIV1[3] Output divider1 control bit 3 R/W — — 0 Bit 6 OUTDIV1[2] Output divider1 control bit 2 R/W — — 0 Bit 5 OUTDIV1[1] Output divider1 control bit 1 R/W — — 1 Bit 4 OUTDIV1[0] Output divider1 control bit 0 R/W — — 1 Bit 3 OUTDIV2[3] Output divider2 control bit 3 R/W — — 0 Bit 2 OUTDIV2[2] Output divider2 control bit 2 R/W — — 0 Bit 1 OUTDIV2[1] Output divider2 control bit 1 R/W — — 1 Bit 0 OUTDIV2[0] Output divider2 control bit 0 R/W — — 1 0 1 Byte 16: PLL2 Integer Feedback Divide Byte 10h Name Control Function Type PWD Bit 7 Reserved 0 Bit 6 Reserved 0 Bit 5 Reserved 0 Bit 4 Reserved 0 Bit 3 Reserved 0 Bit 2 PLL2_FB_INT[10] PLL2 feedback integer divider 10 R/W — — 0 Bit 1 PLL2_FB_INT[9] PLL2 feedback integer divider 9 R/W — — 0 Bit 0 PLL2_FB_INT[8] PLL2 feedback integer divider 8 R/W — — 0 Byte 17: PLL2 Integer Feedback Divider Byte 11h Name Control Function Type 0 1 PWD Bit 7 PLL2_FB_INT_DIV[7] PLL2 feedback integer divider 7 R/W — — 0 Bit 6 PLL2_FB_INT_DIV[6] PLL2 feedback integer divider 6 R/W — — 0 Bit 5 PLL2_FB_INT_DIV[5] PLL2 feedback integer divider 5 R/W — — 1 Bit 4 PLL2_FB_INT_DIV[4] PLL2 feedback integer divider 4 R/W — — 0 Bit 3 PLL2_FB_INT_DIV[3] PLL2 feedback integer divider 3 R/W — — 1 Bit 2 PLL2_FB_INT_DIV[2] PLL2 feedback integer divider 2 R/W — — 0 Bit 1 PLL2_FB_INT_DIV[1] PLL2 feedback integer divider 1 R/W — — 0 Bit 0 PLL2_FB_INT_DIV[0] PLL2 feedback integer divider 0 R/W — — 0 ©2018 Integrated Device Technology, Inc. 30 May 2, 2018 5X35023 Datasheet Byte 18: PLL2 Fractional Feedback Divider Byte 12h Name Control Function Type 0 1 PWD Bit 7 PLL2_FB_FRC_DIV[7] PLL2 feedback fractional divider 7 R/W — — 0 Bit 6 PLL2_FB_FRC_DIV[6] PLL2 feedback fractional divider 6 R/W — — 0 Bit 5 PLL2_FB_FRC_DIV[5] PLL2 feedback fractional divider 5 R/W — — 0 Bit 4 PLL2_FB_FRC_DIV[4] PLL2 feedback fractional divider 4 R/W — — 0 Bit 3 PLL2_FB_FRC_DIV[3] PLL2 feedback fractional divider 3 R/W — — 0 Bit 2 PLL2_FB_FRC_DIV[2] PLL2 feedback fractional divider 2 R/W — — 0 Bit 1 PLL2_FB_FRC_DIV[1] PLL2 feedback fractional divider 1 R/W — — 0 Bit 0 PLL2_FB_FRC_DIV[0] PLL2 feedback fractional divider 0 R/W — — 0 Byte 19: PLL2 Fractional Feedback Divider Byte 13h Name Control Function Type 0 1 PWD Bit 7 PLL2_FB_FRC_DIV[15] PLL2 feedback fractional divider 15 R/W — — 0 Bit 6 PLL2_FB_FRC_DIV[14] PLL2 feedback fractional divider 14 R/W — — 0 Bit 5 PLL2_FB_FRC_DIV[13] PLL2 feedback fractional divider 13 R/W — — 0 Bit 4 PLL2_FB_FRC_DIV[12] PLL2 feedback fractional divider 12 R/W — — 0 Bit 3 PLL2_FB_FRC_DIV[11] PLL2 feedback fractional divider 11 R/W — — 0 Bit 2 PLL2_FB_FRC_DIV[10] PLL2 feedback fractional divider 10 R/W — — 0 Bit 1 PLL2_FB_FRC_DIV[9] PLL2 feedback fractional divider 9 R/W — — 0 Bit 0 PLL2_FB_FRC_DIV[8] PLL2 feedback fractional divider 8 R/W — — 0 Byte 20: PLL2 Spread Spectrum Control Byte 14h Name Control Function Type 0 1 PWD Bit 7 PLL2_STEP[7] PLL2 spread step size control bit 7 R/W — — 0 Bit 6 PLL2_STEP[6] PLL2 spread step size control bit 6 R/W — — 0 Bit 5 PLL2_STEP[5] PLL2 spread step size control bit 5 R/W — — 0 Bit 4 PLL2_STEP[4] PLL2 spread step size control bit 4 R/W — — 0 Bit 3 PLL2_STEP[3] PLL2 spread step size control bit 3 R/W — — 0 Bit 2 PLL2_STEP[2] PLL2 spread step size control bit 2 R/W — — 0 Bit 1 PLL2_STEP[1] PLL2 spread step size control bit 1 R/W — — 0 Bit 0 PLL2_STEP[0] PLL2 spread step size control bit 0 R/W — — 0 ©2018 Integrated Device Technology, Inc. 31 May 2, 2018 5X35023 Datasheet Byte 21: PLL2 Spread Spectrum Control Byte 15h Name Control Function Type 0 1 PWD Bit 7 PLL2_STEP[15] PLL2 spread step size control bit 15 R/W — — 0 Bit 6 PLL2_STEP[14] PLL2 spread step size control bit 14 R/W — — 0 Bit 5 PLL2_STEP[13] PLL2 spread step size control bit 13 R/W — — 0 Bit 4 PLL2_STEP[12] PLL2 spread step size control bit 12 R/W — — 0 Bit 3 PLL2_STEP[11] PLL2 spread step size control bit 11 R/W — — 0 Bit 2 PLL2_STEP[10] PLL2 spread step size control bit 10 R/W — — 0 Bit 1 PLL2_STEP[9] PLL2 spread step size control bit 9 R/W — — 0 Bit 0 PLL2_STEP[8] PLL2 spread step size control bit 8 R/W — — 0 Byte 22: PLL2 Spread Spectrum Control Byte 16h Name Control Function Type 0 1 PWD Bit 7 PLL2_STEP_DELTA[7] PLL2 spread step size control delta bit 7 R/W — — 0 Bit 6 PLL2_STEP_DELTA[6] PLL2 spread step size control delta bit 6 R/W — — 0 Bit 5 PLL2_STEP_DELTA[5] PLL2 spread step size control delta bit 5 R/W — — 0 Bit 4 PLL2_STEP_DELTA[4] PLL2 spread step size control delta bit 4 R/W — — 0 Bit 3 PLL2_STEP_DELTA[3] PLL2 spread step size control delta bit 3 R/W — — 0 Bit 2 PLL2_STEP_DELTA[2] PLL2 spread step size control delta bit 2 R/W — — 0 Bit 1 PLL2_STEP_DELTA[1] PLL2 spread step size control delta bit 1 R/W — — 0 Bit 0 PLL2_STEP_DELTA[0] PLL2 spared step size control delta bit 0 R/W — — 0 Byte 23: PLL2 Period Control Byte 17h Name Control Function Type 0 1 PWD Bit 7 PLL2_PERIOD[7] PLL2 period control bit 7 R/W — — 0 Bit 6 PLL2_PERIOD[6] PLL2 period control bit 6 R/W — — 0 Bit 5 PLL2_PERIOD[5] PLL2 period control bit 5 R/W — — 0 Bit 4 PLL2_PERIOD[4] PLL2 period control bit 4 R/W — — 0 Bit 3 PLL2_PERIOD[3] PLL2 period control bit 3 R/W — — 0 Bit 2 PLL2_PERIOD[2] PLL2 period control bit 2 R/W — — 0 Bit 1 PLL2_PERIOD[1] PLL2 period control bit 1 R/W — — 0 Bit 0 PLL2_PERIOD[0] PLL2 period control bit 0 R/W — — 0 ©2018 Integrated Device Technology, Inc. 32 May 2, 2018 5X35023 Datasheet Byte 24: PLL2 Control Register Byte 18h Name Control Function Type 0 1 PWD Bit 7 PLL2_PERIOD[9] PLL2 period control bit 9 R/W — — 0 Bit 6 PLL2_PERIOD[8] PLL2 period control bit 8 R/W — — 0 Bit 5 PLL2_SSEN PLL2 spread spectrum enable R/W disable enable 0 Bit 4 PLL2_R100K PLL2 Loop filter resister 100kOhm — bypass plus 100kOhm 0 Bit 3 PLL2_R50K PLL2 Loop filter resister 50kOhm — bypass plus 50kOhm 0 Bit 2 PLL2_R25K PLL2 Loop filter resister 25kOhm — bypass plus 25kOhm 0 Bit 1 PLL2_R12.5K PLL2 Loop filter resister 12.5kOhm — bypass plus 12.5kOhm 0 Bit 0 PLL2_R6K PLL2 Loop filter resister 6kOhm — bypass only 6k ohm applied 0 Byte 25: PLL2 Charge Pump Control Byte 19h Name Control Function Type 0 1 PWD Bit 7 PLL2_CP_16X PLL2 charge pump control R/W — x16 0 Bit 6 PLL2_CP_8X PLL2 charge pump control R/W — x8 0 Bit 5 PLL2_CP_4X PLL2 charge pump control R/W — x4 1 Bit 4 PLL2_CP_2X PLL2 charge pump control R/W — x2 0 Bit 3 PLL2_CP_1X PLL2 charge pump control R/W — x1 0 Bit 2 PLL2_CP_/24 PLL2 charge pump control R/W — /24 1 Bit 1 PLL2_CP_/3 PLL2 charge pump control R/W — /3 0 Bit 0 PLL2_SIREF PLL2 SiRef current selection R/W 10 A 20 A 0 Byte 26: PLL2 M Divider Setting Byte 1Ah Name Control Function Type 0 1 PWD Bit 7 PLL2_MDIV_Doubler PLL2 reference divider - doubler R/W disable enable 0 Bit 6 PLL2_MDIV1 PLL2 reference divider 1 R/W disable M DIV1 bypadd divider (/1) 1 Bit 5 PLL2_MDIV2 PLL2 reference divider 2 R/W disable M DIV2 bypadd divider (/2) 0 Bit 4 PLL2_MDIV[4] PLL2 reference divider control bit 4 R/W 0 Bit 3 PLL2_MDIV[3] PLL2 reference divider control bit 3 R/W 0 Bit 2 PLL2_MDIV[2] PLL2 reference divider control bit 2 R/W Bit 1 PLL2_MDIV[1] PLL2 reference divider control bit 1 R/W 0 Bit 0 PLL2_MDIV[0] PLL2 reference divider control bit 0 R/W 0 ©2018 Integrated Device Technology, Inc. 33 3–64, default is 25 0 May 2, 2018 5X35023 Datasheet Byte 27: Output Divider 4 Byte 1Bh Name Control Function Type 0 1 PWD Bit 7 OUTDIV3[3] Out divider 4 control bit 7 R/W — — 0 Bit 6 OUTDIV3[2] Out divider 4 control bit 6 R/W — — 0 Bit 5 OUTDIV3[1] Out divider 4 control bit 5 R/W — — 1 Bit 4 OUTDIV3[0] Out divider 4 control bit 4 R/W — — 1 Bit 3 OUTDIV4[3] Out divider 4 control bit 3 R/W — — 0 Bit 2 OUTDIV4[2] Out divider 4 control bit 2 R/W — — 0 Bit 1 OUTDIV4[1] Out divider 4 control bit 1 R/W — — 1 Bit 0 OUTDIV4[0] Out divider 4 control bit 0 R/W — — 1 Byte 28: PLL Operation Control Register Byte 1Ch Name Control Function Type 0 1 PWD Bit 7 PLL2_HRS_EN PLL2 spread high resolution selection enable R/W normal enable (shift 4 bits) 0 Bit 6 PLL2_refin_sel PLL2 reference clock source select R/W Xtal DIV2 0 Bit 5 PLL3_PDB PLL3 Power Down R/W Power Down running 1 Bit 4 PLL3_LCKBYPSSB PLL3 lock bypass R/W bypass lock lock 1 Bit 3 PLL2_PDB PLL2 Power Down R/W Power Down running 1 Bit 2 PLL2_LCKBYPSSB PLL2 lock bypass R/W bypass lock lock 1 Bit 1 PLL1_PDB PLL1 Power Down R/W Power Down running 1 Bit 0 PLL1_LCKBYPSSB PLL1 lock bypass R/W bypass lock lock 1 0 1 PWD Byte 29: Output Control Byte 1Dh Name Control Function Bit 7 DIFF1_SEL Differential clock 1 output OE2 control not controlled controlled 0 Bit 6 DIFF2_SEL Differential clock 2 output OE2 control not controlled controlled 0 Bit 5 DIFF1_EN Differential clock 1 output enable R/W disable enable 1 Bit 4 DIFF2_EN Differential clock 2 output enable R/W disable enable 1 Bit 3 OUTDIV4_Source Output divider 4 source clock selection R/W PLL2 Xtal 0 Bit 2 SE1_SLEW SE 1 slew rate control R/W normal strong 0 Bit 1 VDD1_SEL[1] VDD1 level control bit 1 R/W Bit 0 VDD1_SEL[0] VDD1 level control bit 0 R/W ©2018 Integrated Device Technology, Inc. 34 Type 00/01: 3.3V 10: 2.5V 11: 1.8 0 0 May 2, 2018 5X35023 Datasheet Byte 30: OE and DFC Control Byte 1Eh Name Control Function Type 0 1 PWD Bit 7 SE1_EN SE1 output enable control R/W disable enable 1 Bit 6 OE1_fun_sel[1] OE1 pin function selection bit 1 R/W OE1_fun_sel[0] OE1 pin function selection bit 0 R/W 10: SE1_PPS 00: SE1 OE 0 Bit 5 11:DFC0 01: PD# 0 Bit 4 SE3_EN SE3 output enable R/W disable enable 1 Bit 3 OE3_fun_sel[1] OE3 pin function selection bit 1 R/W Bit 2 OE3_fun_sel[0] OE3 pin function selection bit 0 R/W Bit 1 DFC_SW_Sel[1] DFC frequency select bit 1 R/W Bit 0 DFC_SW_Sel[0] DFC frequency select bit 0 R/W Type 11: DFC1 10: SE3_PPS 01:xx 00:SE3_OE 00: N0 01: N1 10:N2 11:N3 0 0 0 0 Byte 31: Control Register Byte 1Fh Name Control Function Bit 7 SE2_CLKSEL1 SE2 source clock selection Bit 6 VDD2_SEL[1] VDD2 level control bit 1 R/W Bit 5 VDD2_SEL[0] VDD2 level control bit 0 R/W Bit 4 SE2_SLEW SE 2 slew rate control R/W Bit 3 PLL2_3rd_EN_CFG PLL2 3rd order control Bit 2 PLL2_EN_CH2 PLL2 channel 2 enable control Bit 1 PLL2_EN_3rdpole PLL2 3rd Pole control Bit 0 SE2_CLKSEL1 SE2 source clock selection 0 1 PWD DIV5 DIV4 0 00/01: 3.3V 10: 2.5V 11: 1.8 0 0 normal strong 0 1st order 3rd order 1 R/W disable enable 0 R/W disable enable 1 DIV5 DIV4 0 Byte 32: Control Register Byte 20h Name Control Function Type 0 1 PWD Bit 7 SE2_EN SE2 output enable R/W disable enable 1 Bit 6 OE2_fun_sel[1] OE2 pin function selection bit 1 R/W Bit 5 OE2_fun_sel[0] OE2 pin function selection bit 0 R/W Bit 4 DFC_EN DFC function control R/W disable enable 0 Bit 3 WD_EN WatchDog timer control R/W disable enable 0 Bit 2 Timer_sel Watchdog timer select bit 1 R/W Bit 1 Timer_sel Watchdog timer select bit 0 R/W Bit 0 Alarm_Flag Alarm Status (Read Only) R ©2018 Integrated Device Technology, Inc. 35 11: RESET 10: SE2_PPS 01: DIFF1/2 OE 00: SE2 OE 00: 250ms 01: 500ms 10: 2s 11: 4s No alarm Alarmed 0 0 0 0 0 May 2, 2018 5X35023 Datasheet Byte 33: SE3 and DIFF1 Control Register Byte 21h Name Control Function Type 0 1 PWD Bit 7 SE3_Freerun_32K SE3 32K free run R/W freerun 32K DIV2 or DIV4 selected by B33bit6 1 Bit 6 SE3_CLKSEL1 SE3 source clock selection R/W DIV2 DIV4 0 Bit 5 VDD3_SEL[1] VDD3 level control bit 1 R/W Bit 4 VDD3_SEL[0] VDD3 level control bit 0 R/W Bit 3 SE3_SLEW SE 3 slew rate control R/W normal strong 0 Bit 2 DIFF_PDBHiZEN Differential output high-Z at power down R/W TBD output tri-state, bias off 0 Bit 1 DIFF1_CMOS2_FLIP Differential 1/2 LVCMOS output control R/W DIFF1_B inverted DIFF1_B non-inverted 0 Bit 0 DIFF2_CMOS2_FLIP Differential 1/2 LVCMOS output control R/W DIFF2_B inverted DIFF2_B non-inverted 0 0 11: 1.8V 10: 2.5V 0x: 3.3V 0 Byte 34: DIFF1 Control Register Byte 22h Name Control Function Type 0 1 PWD Bit 7 DIFF1_CLK_SEL Differential clock 1 source selection R/W DIV1 DIV3 1 Bit 6 DIFF1_io_pwr_sel Differential clock 1 output power R/W 2.5V 3.3V 1 Bit 5 DIFF1_OUTPUT_TYPE[1] Differential clock 1 type select bit 1 R/W 1 Bit 4 DIFF1_OUTPUT_TYPE[0] Differential clock 1 type select bit 0 R/W 00: LVMOS 01: LVDS 10: LVPECL 11: LP-HCSL Bit 3 DIFF1_AMP[1] Differential clock 1 amplitude control bit 1 R/W Bit 2 DIFF1_AMP[0] Differential clock 1 amplitude control bit 0 R/W Bit 1 DIFF1_CMOS_SLEW Differential clock 1 LVCMOS slew rate control R/W normal strong 0 Bit 0 D1FF1_CMOS2_EN Differential clock 1 LVCMOS output_B control R/W disable enable 0 ©2018 Integrated Device Technology, Inc. 36 1 LP-HCSL: 00 = 740mV, 01 = 800mV, 10 = 855mV,11 = 910mV LPECL:00 = 710mV, 01 = 810mV, 10 = 875mV, 11 = 920mV LVDS:00 = 311mV,01 = 344mV, 10 = 376mV, 11 = 408mV 0 1 May 2, 2018 5X35023 Datasheet Byte 35: DIFF2 Control Register Byte 23h Name Control Function Type 0 1 PWD Bit 7 DIFF2_CLK_SEL Differential clock 2 source selection R/W DIV1 DIV3 0 Bit 6 DIFF2_IO_PWR_SEL Differential clock 2 output power R/W 2.5V 3.3V 1 Bit 5 DIFF2_OUTPUT_TYPE[1] Differential clock 2 type select bit 1 R/W 1 Bit 4 DIFF2_OUTPUT_TYPE[0] Differential clock 2 type select bit 0 R/W 00: LVMOS 01: LVDS 10: LVPECL 11: LP-HCSL Bit 3 DIFF2_AMP[1] Differential clock 2 amplitude control bit 1 R/W Bit 2 DIFF2_AMP[0] Differential clock 2 amplitude control bit 0 R/W Bit 1 DIFF2_CMOS_SLEW Differential clock 2 LVCMOS slew rate control R/W normal strong 0 Bit 0 DIFF2_CMOS2_EN Differential clock 2 LVCMOS output_B control R/W disable enable 0 1 LP-HCSL: 00 = 740mV, 01 = 800mV, 10 = 855mV,11 = 910mV LPECL:00 = 710mV, 01 = 810mV, 10 = 875mV, 11 = 920mV LVDS:00 = 311mV,01 = 344mV, 10 = 376mV, 11 = 408mV 0 1 Byte 36: SE1 and DIV4 control Byte 24h Name Control Function Type 0 1 PWD Bit 7 I2C_PDB chip power down control bit R/W power down normal 1 Bit 6 Ref_free_run Reference clock output (SE2/SE3) R/W stop freerun 0 Bit 5 free_run_output_config SE clocks free run control R/W SE2 free run SE2/3 free run 0 Bit 4 SE1_Freerun_32K SE1 clock output default R/W 32K freerun B36bit3 control 0 Bit 3 SE1_CLKSEL1 SEL1 output select R/W DIV5 DIV4 1 Bit 2 REF_EN REF output enable R/W disable enable 1 Bit 1 DIV4_CH3_EN DIV4 channel 3 output control R/W disable enable 0 Bit 0 DIV4_CH2_EN DIV4 channel 3 output control R/W disable enable 0 ©2018 Integrated Device Technology, Inc. 37 May 2, 2018 5X35023 Datasheet Package Outline Drawings The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available. www.idt.com/document/psc/nxg24-package-outline-40-x-40-mm-body-epad-270x-270mm-05-mm-pitch-qfn Marking Diagrams 1. Lines 1 and 2: truncated part number 2. “YWW” is the last digit of the year and week that the part was assembled. 5X3502 3000I YWW**$ 5X3502 3dddI YWW**$ 3. “**” is the lot sequence number. 4. “$” is the assembler mark code. Ordering Information Orderable Part Number Package Carrier Type Temperature 5X35023-dddNXGI 4 x 4 mm, 0.5mm pitch 24-QFN Tray -40° to +85°C 5X35023-dddNXGI8 4 x 4 mm, 0.5mm pitch 24-QFN Reel -40° to +85°C 5X35023-000NXGI 4 x 4 mm, 0.5mm pitch 24-QFN Tray -40° to +85°C 5X35023-000NXGI8 4 x 4 mm, 0.5mm pitch 24-QFN Reel -40° to +85°C 1 “ddd” denotes factory programmed configurations based on required settings. Contact factory for programming configurations. 2 “000” denotes unprogrammed part for customization. Revision History Revision Date May 2, 2018 Description of Change Initial release. Corporate Headquarters Sales Tech Support 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales www.IDT.com/go/support DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT’s sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc. All rights reserved. ©2018 Integrated Device Technology, Inc. 38 May 2, 2018
5X35023-002NXGI 价格&库存

很抱歉,暂时无法提供与“5X35023-002NXGI”相匹配的价格&库存,您可以联系我们找货

免费人工找货