0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
70V3589S133DRI

70V3589S133DRI

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    BFQFP-208

  • 描述:

    IC SRAM 2MBIT PARALLEL 208PQFP

  • 数据手册
  • 价格&库存
70V3589S133DRI 数据手册
70V3599/89S HIGH-SPEED 3.3V 128/64K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE Features: ◆ ◆ ◆ ◆ ◆ ◆ True Dual-Port memory cells which allow simultaneous access of the same memory location High-speed data access – Commercial: 3.6ns (166MHz)/4.2ns (133MHz) (max.) – Industrial: 4.2ns (133MHz) (max.) Selectable Pipelined or Flow-Through output mode Counter enable and repeat features Dual chip enables allow for depth expansion without additional logic Full synchronous operation on both ports – 6ns cycle time, 166MHz operation (12Gbps bandwidth) – Fast 3.6ns clock to data out – 1.7ns setup to clock and 0.5ns hold on all control, data, and address inputs @ 166MHz – Data input, address, byte enable and control registers – Self-timed write allows fast cycle time Separate byte controls for multiplexed bus and bus matching compatibility Dual Cycle Deselect (DCD) for Pipelined Output mode LVTTL- compatible, 3.3V (±150mV) power supply for core LVTTL compatible, selectable 3.3V (±150mV) or 2.5V (±100mV) power supply for I/Os and control signals on each port Industrial temperature range (-40°C to +85°C) is available at 133MHz. Available in a 208-pin Plastic Quad Flatpack (PQFP), 208-pin fine pitch Ball Grid Array (fpBGA), and 256-pin Ball Grid Array (BGA) Supports JTAG features compliant with IEEE 1149.1 Green parts available, see ordering information ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Functional Block Diagram BE3L BE3R BE2L BE2R BE1L BE1R BE0L BE0R FT/PIPEL 1/0 0a 1a 0b 1b 0c 1c 0d 1d 1d 0d 1c 0c 1b 0b 1a 0a a b c d d c b a FT/PIPER 1/0 R/WL R/WR CE0L CE1L 1 1 0 0 B B WW 0 1 L L 1/0 OEL B B B WWW 2 3 3 L L R Dout0-8_L Dout9-17_L Dout18-26_L Dout27-35_L B W 2 R B B WW 1 0 R R 1/0 OER Dout0-8_R Dout9-17_R Dout18-26_R Dout27-35_R 1d 0d 1c 0c 1b 0b 1a 0a FT/PIPEL CE0R CE1R 0a 1a 0b 1b 0c 1c 0d 1d FT/PIPER 0/1 0/1 ab cd d cba 128K x 36 MEMORY ARRAY I/O0L - I/O35L Din_L I/O0R - I/O35R Din_R CLKR CLKL A0L REPEATL ADSL CNTENL , A16R(1) A16L (1) Counter/ Address Reg. Counter/ Address Reg. ADDR_R ADDR_L A0R REPEATR ADSR CNTENR 5617 tbl 01 NOTE: 1. A16 is a NC for IDT70V3589. TDI JTAG TDO 1 Feb.03.20 TCK TMS TRST 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Description: The IDT70V3599/89 is a high-speed 128/64K x 36 bit synchronous Dual-Port RAM. The memory array utilizes Dual-Port memory cells to allow simultaneous access of any address from both ports. Registers on control, data, and address inputs provide minimal setup and hold times. The timing latitude provided by this approach allows systems to be designed with very short cycle times. With an input data register, the IDT70V3599/89 has been optimized for applications having unidirectional Industrial and Commercial Temperature Ranges or bidirectional data flow in bursts. An automatic power down feature, controlled by CE0 and CE1, permits the on-chip circuitry of each port to enter a very low standby power mode. The 70V3599/89 can support an operating voltage of either 3.3V or 2.5V on one or both ports, controllable by the OPT pins. The power supply for the core of the device (VDD) remains at 3.3V. Pin Configuration(1,2,3,4,5) A1 A2 IO19L IO18L A3 VSS A4 TDO A5 NC A7 A6 A16L(1 A12L A8 A8L A9 BE1L A11 A10 A12 A13 CLKL CNTENL A4L VDD A14 A0L A15 A17 A16 OPTL I/O17L VSS ) B1 B2 I/O20R C1 B3 VSS I/O18R C2 C3 B4 TDI C4 B5 NC C5 VDDQL I/O19R VDDQR PL/FTL D1 D2 I/O22L VSS E2 E1 D3 D4 NC D5 I/O21L I/O20L A15L E3 B6 A13L C6 A14L D6 A11L B7 A9L C7 A10L D7 A7L B8 BE2L C8 B9 CE0L C9 BE3L CE1L D8 BE0L D9 VDD B11 B10 ADSL VSS C11 C10 VSS D10 R/WL D11 OEL REPEATL B12 A5L C12 A6L D12 A3L B13 A1L C13 A2L D13 B14 VSS C14 B15 C15 D14 D15 E4 E14 E15 F1 F14 F3 G1 G2 I/O26L VSS H2 H1 G3 F4 G14 G4 J2 VDDQ VDD J3 VSS J4 I/O28R L1 K2 VSS L2 K3 VDD J14 VSS 208-Pin fpBGA Top View(7) K4 I/O27R VSS L3 H14 VSS L K1 K14 M2 M3 L4 L14 I/O6R M4 M14 VDDQL I/O29L I/O30R VSS N1 I/O31L P1 N2 N3 VSS N4 N14 P3 P4 P5 P6 P7 I/O32R I/O32L VDDQR I/O35R TRST A16R(1) A12R R1 VSS T1 R2 R3 R4 I/O33L I/O34R TCK T2 T3 T4 I/O33R I/O34L VDDQL TMS U1 VSS U2 U3 I/O35L PL/FTR U4 NC E17 VSS F16 I/O13L F17 G15 G16 G17 H15 IO9R J15 VDD K15 H16 H17 VSS J16 L L15 I/O7L M15 R5 NC T5 NC U5 A15R R6 A13R T6 A14R U6 A11R R7 A9R T7 A10R U7 A7R P8 A8R R8 P9 BE1R R9 BE2R CE0R T8 T9 BE3R CE1R U8 BE0R U9 VDD P10 VDD R10 VSS T10 VSS U10 P11 P12 CLKR CNTEN R11 ADSR T11 R/WR U11 R R12 A5R T12 A6R U12 OER REPEATR A3R P13 A4R R13 A1R T13 A2R U13 A0R P14 J17 K16 K17 L16 VSS T14 VSS U14 VDD VSS L17 VSS M16 I/O8L M17 I/O6L I/O5R VDDQR N15 P15 I/O2L I/O3L R14 I/O10R VSS VDDQR N16 N17 I/O3R VDDQL I/O4R VSS I/O31R I/O30L P2 F15 E16 I/O7R VDDQ I/O8R I/O29R I/O28L VDDQR I/O27L M1 D17 D16 I/O9L VDDQL I/O10L I/O11R 70V3599/89 BF208(6) BFG208(6) H4 VDD I/O26R VDDQR I/O25R J1 VSS VSS I/O12R I/O11L VDDQR VSS I/O25L I/O24R H3 C17 VDD I/O17R VDDQL I/O14L I/O14R I/O12L I/O13R F2 C16 VDD I/O16R I/O15L I/O23L I/O22R VDDQR I/O21R VDDQL I/O23R I/O24L B17 B16 VDDQR I/O16L I/O15R R15 P16 I/O5L P17 VSS R16 I/O4L R17 VDDQL I/O1R VDDQR T15 I/O0R U15 T17 T16 VSS U16 I/O2R U17 OPTR I/O0L I/O1L , 5617 drw 02c NOTES: 1. A16 is a NC for IDT70V3589. 2. All VDD pins must be connected to 3.3V power supply. 3. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is set to VIL (0V). 4. All VSS pins must be connected to ground supply. 5. Package body is approximately 15mm x 15mm x 1.4mm with 0.8mm ball pitch. 6. This package code is used to reference the package diagram. 7. This text does not indicate orientation of the actual part-marking. 6.42 2 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Pin Configuration (1,2,3,4,5) Industrial and Commercial Temperature Ranges (con't.) 70V3599/89 BC256(6) BCG256(6) 256-Pin BGA Top View(7) A1 NC B1 I/O18L C1 A2 TDI B2 NC C2 I/O18R I/O19L D1 D2 A3 NC B3 TDO C3 VSS D3 A4 NC B4 NC C4 A5 A6 A14L A11L B5 A15L C5 A16L(1) A13L D4 D5 B6 A12L C6 A10L D6 A7 A8L B7 A9L C7 A7L D7 A8 A9 BE2L CE1L B9 B8 BE3L C8 A10 A11 B10 B11 CE0L R/WL REPEATL C9 C10 C11 BE1L BE0L CLKL ADSL D9 D8 A12 OEL CNTENL A5L D10 D11 B12 A4L C12 A6L D12 A13 A2L B13 A1L C13 A3L D13 A14 A0L B14 VDD C14 A15 A16 NC B15 NC B16 I/O17L NC C16 C15 OPTL I/O17R I/O16L D14 D16 D15 I/O20R I/O19R I/O20L PIPE/FTL VDDQL VDDQL VDDQR VDDQR VDDQL VDDQL VDDQR VDDQR VDD I/O15R I/O15L I/O16R E1 E2 E3 E4 I/O21R I/O21L I/O22L VDDQL F1 F2 F3 F4 E5 VDD F5 I/O23L I/O22R I/O23R VDDQL VDD G1 G2 G3 G4 I/O24R I/O24L I/O25L VDDQR H1 H2 H3 H4 G5 VSS H5 I/O26L I/O25R I/O26R VDDQR VSS J1 J2 J3 J4 I/O27L I/O28R I/O27R VDDQL K1 K2 K3 K4 J5 VSS K5 I/O29R I/O29L I/O28L VDDQL VSS L1 L2 L3 L4 L5 I/O30L I/O31R I/O30R VDDQR VDD M1 M2 M3 M4 I/O32R I/O32L I/O31L VDDQR N1 N2 N3 N4 M5 VDD N5 E6 VDD F6 VSS G6 VSS H6 VSS J6 VSS K6 VSS L6 VSS M6 VDD N6 E7 VSS F7 VSS G7 VSS H7 VSS J7 VSS K7 VSS L7 VSS M7 VSS N7 E8 E9 VSS F9 F8 VSS VSS G9 G8 VSS H8 VSS H9 VSS J8 VSS J9 VSS K8 VSS K9 VSS L8 VSS L9 VSS M8 VSS M9 VSS N8 VSS VSS N9 E10 VSS F10 VSS G10 VSS H10 VSS J10 VSS K10 VSS L10 VSS M10 VSS N10 E11 VDD F11 VSS G11 VSS H11 VSS J11 VSS K11 VSS L11 VSS M11 VDD N11 E12 F12 P2 P3 P4 P5 I/O35R I/O34L TMS A16R(1) A13R R1 I/O35L T1 NC R2 NC T2 TCK R3 TRST T3 NC R4 NC T4 NC R5 A15R T5 A14R P6 A10R R6 A12R T6 A11R P7 A7R R7 A9R T7 A8R P8 P9 P10 P11 BE1R BE0R CLKR ADSR R8 R9 R10 R11 G12 VSS H12 VSS J12 T9 BE2R CE1R T10 T11 E16 E15 F13 F14 F15 F16 G13 G14 G16 G15 VDDQL I/O10L I/O11L I/O11R H13 H14 VDDQL I/O9R J13 J14 H16 H15 IO9L I/O10R J15 J16 VSS VDDQR I/O8R I/O7R I/O8L K12 VSS L12 VDD M12 VDD N12 P12 A6R R12 BE3R CE0R R/WR REPEATR A4R T8 E14 VDD VDDQR I/O12R I/O13R I/O12L I/O33L I/O34R I/O33R PIPE/FTR VDDQR VDDQR VDDQL VDDQL VDDQR VDDQR VDDQL VDDQL P1 E13 VDD VDDQR I/O13L I/O14L I/O14R T12 OER CNTENR A5R K13 K14 K15 K16 VDDQR I/O6R I/O6L I/O7L L13 L14 VDDQL I/O5L M13 M14 VDDQL I/O3R N13 VDD P13 A3R R13 A1R T13 A2R N14 I/O2L P14 L16 L15 I/O4R I/O5R M16 M15 I/O3L I/O4L N16 N15 I/O1R I/O2R P15 P16 I/O0L I/O0R R14 OPTR T14 A0R I/O1L R16 R15 NC T15 NC , T16 NC NC 5617 drw 02d , NOTES: 1. A16 is a NC for IDT70V3589. 2. All VDD pins must be connected to 3.3V power supply. 3. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is set to VIL (0V). 4. All VSS pins must be connected to ground supply. 5. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch. 6. This package code is used to reference the package diagram. 7. This text does not indicate orientation of the actual part-marking. 6.42 3 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges (con't.) 70V3599/89 DRG208(6) 208-Pin PQFP Top View 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 I/O19L I/O19R I/O20L I/O20R VDDQL VSS I/O21L I/O21R I/O22L I/O22R VDDQR VSS I/O23L I/O23R I/O24L I/O24R VDDQL VSS I/O25L I/O25R I/O26L I/O26R VDDQR VSS VDD VDD VSS VSS VDDQL VSS I/O27R I/O27L I/O28R I/O28L VDDQR VSS I/O29R I/O29L I/O30R I/O30L VDDQL VSS I/O31R I/O31L I/O32R I/O32L VDDQR VSS I/O33R I/O33L I/O34R I/O34L VSS VDDQR I/O17R I/O17L OPTL VSS VDD VDD A0L A1L A2L A3L A4L A5L A6L REPEATL CNTENL ADSL R/WL OEL CLKL VSS VSS VDD VDD CE0L CE1L BE0L BE1L BE2L BE3L A7L A8L A9L A10L A11L A12L A13L A14L A15L A16L(1) NC NC NC TDO TDI PL/FTL VSS I/O18L I/O18R VDDQ VSS 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 I/O16L I/O16R I/O15L I/O15R VSS VDDQL I/O14L I/O14R I/O13L I/O13R VSS VDDQR I/O12L I/O12R I/O11L I/O11R VSS VDDQL I/O10L I/O10R I/O9L I/O9R VSS VDDQR VDD VDD VSS VSS VSS VDDQL I/O8R I/O8L I/O7R I/O7L VSS VDDQR I/O6R I/O6L I/O5R I/O5L VSS VDDQL I/O4R I/O4L I/O3R I/O3L VSS VDDQR I/O2R I/O2L I/O1R I/O1L Pin Configuration (1,2,3,4,5) VSS VDDQL I/O0R I/O0L OPTR VSS VSS VDD A0R A1R A2R A3R A4R A5R A6R REPEATR CNTENR ADSR R/WR OER CLKR VSS VSS VDD VDD CE0R CE1R BE0R BE1R BE2R BE3R A7R A8R A9R A10R A11R A12R A13R A14R A15R A16R(1) NC NC NC TRST TCK TMS PL/FTR I/O35L I/O35R VDDQL VSS 5617 drw 02 NOTES: 1. 2. 3. 4. 5. 6. A16 is a NC for IDT70V3589. All VDD pins must be connected to 3.3V power supply. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is set to VIL (0V). All VSS pins must be connected to ground supply. Package body is approximately 28mm x 28mm x 3.5mm. This package code is used to reference the package diagram. 6.42 4 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges Pin Names Left Port Right Port Names CE0L, CE1L CE0R, CE1R Chip Enables(5) R/WL R/WR Read/Write Enable Output Enable OER OEL (1) (1) A0L - A16L A0R - A16R I/O0L - I/O35L I/O0R - I/O35R Data Input/Output CLKL CLKR Clock PL/FTL PL/FTR Pipeline/Flow-Through ADSL ADSR Address Strobe Enable CNTENL CNTENR Counter Enable REPEATL REPEATR Counter Repeat(4) BE0L - BE3L BE0R - BE3R Byte Enables (9-bit bytes)(5) VDDQL VDDQR OPTL OPTR Address Power (I/O Bus) (3.3V or 2.5V)(2) (2,3) Option for selecting VDDQX (2) VDD Power (3.3V) VSS Ground (0V) TDI Test Data Input TDO Test Data Output TCK Test Logic Clock (10MHz) TMS Test Mode Select TRST Reset (Initialize TAP Controller) 5617 tbl 01 NOTES: 1. A16 is a NC for IDT70V3589. 2. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to applying inputs on the I/Os and controls for that port. 3. OPTX selects the operating voltage levels for the I/Os and controls on that port. If OPTX is set to VIH (3.3V), then that port's I/Os and controls will operate at 3.3V levels and VDDQX must be supplied at 3.3V. If OPTX is set to VIL (0V), then that port's I/Os and address controls will operate at 2.5V levels and VDDQX must be supplied at 2.5V. The OPT pins are independent of one another—both ports can operate at 3.3V levels, both can operate at 2.5V levels, or either can operate at 3.3V with the other at 2.5V. 4. When REPEATX is asserted, the counter will reset to the last valid address loaded via ADSX. 5. Chip Enables and Byte Enables are double buffered when PL/FT = VIH, i.e., the signals take two cycles to deselect. 6.42 5 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges Truth Table I—Read/Write and Enable Control (1,2,3,4) OE CLK CE0 CE1 BE3 BE2 BE1 BE0 R/W Byte 3 I/O27-35 Byte 2 I/O18-26 Byte 1 I/O9-17 Byte 0 I/O0-8 MODE X ↑ H X X X X X X High-Z High-Z High-Z High-Z Deselected–Power Down X ↑ X L X X X X X High-Z High-Z High-Z High-Z Deselected–Power Down X ↑ L H H H H H X High-Z High-Z High-Z High-Z All Bytes Deselected X ↑ L H H H H L L High-Z High-Z High-Z DIN Write to Byte 0 Only X ↑ L H H H L H L High-Z High-Z DIN High-Z Write to Byte 1 Only X ↑ L H H L H H L High-Z DIN High-Z High-Z Write to Byte 2 Only X ↑ L H L H H H L DIN High-Z High-Z High-Z Write to Byte 3 Only X ↑ L H H H L L L High-Z High-Z DIN DIN Write to Lower 2 Bytes Only X ↑ L H L L H H L DIN DIN High-Z High-Z Write to Upper 2 bytes Only X ↑ L H L L L L L DIN DIN DIN DIN Write to All Bytes L ↑ L H H H H L H High-Z High-Z High-Z DOUT Read Byte 0 Only L ↑ L H H H L H H High-Z High-Z DOUT High-Z Read Byte 1 Only L ↑ L H H L H H H High-Z DOUT High-Z High-Z Read Byte 2 Only L ↑ L H L H H H H DOUT High-Z High-Z High-Z Read Byte 3 Only L ↑ L H H H L L H High-Z High-Z DOUT DOUT Read Lower 2 Bytes Only L ↑ L H L L H H H DOUT DOUT High-Z High-Z Read Upper 2 Bytes Only L ↑ L H L L L L H DOUT DOUT DOUT DOUT H ↑ L H L L L L X High-Z High-Z High-Z High-Z Read All Bytes Outputs Disabled NOTES: 1. "H" = VIH, "L" = VIL, "X" = Don't Care. 2. ADS, CNTEN, REPEAT = X. 3. OE is an asynchronous input signal. 4. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here. 5617 tbl 02 Truth Table II—Address Counter Control(1,2) External Address Previous Internal Address Internal Address Used CLK ADS CNTEN REPEAT(6) I/O(3) X X An ↑ X X L(4) DI/O(0) Counter Reset to last valid ADS load (4) MODE An X An ↑ L X H DI/O (n) External Address Used An Ap Ap ↑ H H H DI/O(p) External Address Blocked—Counter disabled (Ap reused) H DI/O(p+1) X Ap Ap + 1 ↑ H (5) L Counter Enabled—Internal Address generation 5617 tbl 03 NOTES: 1. "H" = VIH, "L" = VIL, "X" = Don't Care. 2. Read and write operations are controlled by the appropriate setting of R/W, CE0, CE1, BEn and OE. 3. Outputs configured in flow-through output mode: if outputs are in pipelined mode the date out will be delayed by one cycle. 4. ADS and REPEAT are independent of all other memory control signals including CE0, CE1 and BEn 5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other memory control signals including CE0, CE1, BEn. 6. When REPEAT is asserted, the counter will reset to the last valid address loaded via ADS. This value is not set at power-up: a known location should be loaded via ADS during initialization if desired. Any subsequent ADS access during operations will update the REPEAT address location. 6.42 6 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Recommended DC Operating Conditions with VDDQ at 2.5V Recommended Operating Temperature and Supply Voltage(1) Grade Commercial Industrial Industrial and Commercial Temperature Ranges Symbol Parameter Min. Typ. Max. Unit 3.15 3.3 3.45 V 2.4 2.5 2.6 V 0 0 0 Input High Voltage (Address & Control Inputs) 1.7 ____ VDDQ + 100mV (2) V Input High Voltage - I/O(3) 1.7 ____ VDDQ + 100mV(2) V ____ 0.7 V Ambient Temperature GND VDD VDD Core Supply Voltage 0OC to +70OC 0V 3.3V + 150mV VDDQ I/O Supply Voltage (3) -40OC to +85OC 0V 3.3V + 150mV VSS Ground VIH VIH 5617 tbl 04 NOTES: 1. This is the parameter TA. This is the "instant on" case temperature. VIL (1) Input Low Voltage -0.3 V 5617 tb l 05a NOTES: 1. Undershoot of VIL > -1.5V for pulse width less than 10ns is allowed. 2. VTERM must not exceed VDDQ + 100mV. 3. To select operation at 2.5V levels on the I/Os and controls of a given port, the OPT pin for that port must be set to VIL (0V), and VDDQX for that port must be supplied as indicated above. Absolute Maximum Ratings(1) Symbol Rating Commercial & Industrial Unit VTERM(2) Terminal Voltage with Respect to GND -0.5 to +4.6 V TBIAS(3) Temperature Under Bias -55 to +125 o C TSTG Storage Temperature -65 to +150 o C Symbol TJN Junction Temperature +150 o C VDD VDDQ I/O Supply Voltage VSS Ground VIH VIH IOUT DC Output Current 50 Recommended DC Operating Conditions with VDDQ at 3.3V mA 5617 tbl 06 NOTES: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. VTERM must not exceed VDD + 150mV for more than 25% of the cycle time or 4ns maximum, and is limited to < 20mA for the period of VTERM > VDD + 150mV. 3. Ambient Temperature Under Bias. No AC Conditions. Chip Deselected. VIL Min. Typ. Max. Unit Core Supply Voltage 3.15 3.3 3.45 V (3) 3.15 3.3 3.45 V 0 0 0 Input High Voltage (Address & Control Inputs)(3) 2.0 ____ VDDQ + 150mV (2) V Input High Voltage - I/O(3) 2.0 ____ VDDQ + 150mV(2) V ____ 0.8 V Input Low Voltage (1) -0.3 V 5617 tbl 05b NOTES: 1. Undershoot of VIL > -1.5V for pulse width less than 10ns is allowed. 2. VTERM must not exceed VDDQ + 150mV. 3. To select operation at 3.3V levels on the I/Os and controls of a given port, the OPT pin for that port must be set to VIH (3.3V), and VDDQX for that port must be supplied as indicated above. 6.42 7 Feb.03.20 Parameter 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges Capacitance(1) (TA = +25°C, F = 1.0MHZ) PQFP ONLY Symbol CIN COUT(3) Parameter Input Capacitance Output Capacitance Conditions(2) Max. Unit V IN = 3dV 8 pF VOUT = 3dV 10.5 pF 5617 tbl 07 NOTES: 1. These parameters are determined by device characterization, but are not production tested. 2. 3dV references the interpolated capacitance when the input and output switch from 0V to 3V or from 3V to 0V. 3. COUT also references CI/O. DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V ± 150mV) 70V3599/89S Symbol |ILI| |ILO| Parameter Input Leakage Current(1) (1) Output Leakage Current Test Conditions Min. Max. Unit VDDQ = Max., VIN = 0V to V DDQ ___ 10 µA 10 µA CE0 = VIH or CE1 = VIL, VOUT = 0V to V DDQ ___ VOL (3.3V) Output Low Voltage (2) IOL = +4mA, VDDQ = Min. ___ 0.4 V VOH (3.3V) Output High Voltage (2) IOH = -4mA, VDDQ = Min. 2.4 ___ V VOL (2.5V) (2) IOL = +2mA, VDDQ = Min. ___ 0.4 V (2) IOH = -2mA, VDDQ = Min. 2.0 ___ V VOH (2.5V) Output Low Voltage Output High Voltage 5617 tbl 08 NOTE: 1. At VDD < 2.0V leakages are undefined. 2. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to p.5 for details. 6.42 8 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range(3) (VDD = 3.3V ± 150mV) Symbol IDD ISB1 ISB2 ISB3 ISB4 Parameter Test Condition Version 70V3599/89S166 Com'l Only 70V3599/89S133 Com'l & Ind Typ. (4) Max. Typ.(4) Max. Unit mA Dynamic Operating Current (Both Ports Active) CEL and CER= VIL, Outputs Disabled, f = fMAX(1) COM'L S 370 500 320 400 IND S ____ ____ 320 480 Standby Current (Both Ports - TTL Level Inputs) CEL = CER = VIH, Outputs Disabled, f = fMAX(1) COM'L S 125 200 115 160 IND S ____ ____ 115 195 Standby Current (One Port - TTL Level Inputs) CE"A" = VIL and CE"B" = VIH Active Port Outputs Disabled, f=fMAX(1) COM'L S 250 350 220 290 IND S ____ ____ 220 350 Full Standby Current (Both Ports - CMOS Level Inputs) Both Ports Outputs Disabled CEL and CER > VDDQ - 0.2V, VIN > VDDQ - 0.2V or VIN < 0.2V, f = 0(2) COM'L S 15 30 15 30 IND S ____ ____ 15 40 Full Standby Current (One Port - CMOS Level Inputs) CE"A" < 0.2V and CE"B" > VDDQ - 0.2V(5) VIN > VDDQ - 0.2V or VIN < 0.2V, Active Port, Outputs Disabled, f = fMAX(1) COM'L S 250 350 220 290 IND S ____ ____ 220 350 (5) mA mA mA mA 5617 tbl 09 NOTES: 1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tCYC, using "AC TEST CONDITIONS" at input levels of GND to 3V. 2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby. 3. Port "A" may be either left or right port. Port "B" is the opposite from port "A". 4. VDD = 3.3V, TA = 25°C for Typ, and are not production tested. IDD DC(f=0) = 120mA (Typ). 5. CEX = VIL means CE0X = VIL and CE1X = VIH CEX = VIH means CE0X = VIH or CE1X = VIL CEX < 0.2V means CE0X < 0.2V and CE1X > VDDQ - 0.2V CEX > VDDQ - 0.2V means CE0X > VDDQ - 0.2V or CE1X - 0.2V "X" represents "L" for left port or "R" for right port. 6.42 9 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges AC Test Conditions (VDDQ - 3.3V/2.5V) Input Pulse Levels (Address & Controls) GND to 3.0V/GND to 2.4V Input Pulse Levels (I/Os) GND to 3.0V/GND to 2.4V Input Rise/Fall Times 2.5V 833Ω 2ns Input Timing Reference Levels 1.5V/1.25V Output Reference Levels 1.5V/1.25V Output Load DATAOUT 5pF* 770Ω Figures 1 and 2 5617 tbl 10 , 3.3V 590Ω 50Ω 50Ω DATAOUT 1.5V/1.25 10pF (Tester) , DATAOUT 435Ω 5pF* 5617 drw 03 Figure 1. AC Output Test load. 5617 drw 04 Figure 2. Output Test Load (For tCKLZ, tCKHZ, tOLZ, and tOHZ). *Including scope and jig. 10.5pF is the I/O capacitance of this device, and 10pF is the AC Test Load Capacitance. 7 6 5 4 ΔtCD (Typical, ns) 3 2 • 1 • 20.5 • 30 • 50 80 100 200 -1 Capacitance (pF) 5617 drw 05 Figure 3. Typical Output Derating (Lumped Capacitive Load). 6.42 10 Feb.03.20 , , 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges AC Electrical Characteristics Over the Operating Temperature Range (Read and Write Cycle Timing)(2,3) (VDD = 3.3V ± 150mV) 70V3599/89S166 Com'l Only Symbol tCYC1 tCYC2 Parameter Clock Cycle Time (Flow-Through)(1) Clock Cycle Time (Pipelined) (1) (1) tCH1 Clock High Time (Flow-Through) tCL1 Clock Low Time (Flow-Through)(1) tCH2 Clock High Time (Pipelined) (2) (1) 70V3599/89S133 Com'l & Ind Min. Max. Min. Max. Unit 20 ____ 25 ____ ns 6 ____ 7.5 ____ ns 6 ____ 7 ____ ns 6 ____ 7 ____ ns 2.1 ____ 2.6 ____ ns 2.1 ____ 2.6 ____ ns ns tCL2 Clock Low Time (Pipelined) tSA Address Setup Time 1.7 ____ 1.8 ____ tHA Address Hold Time 0.5 ____ 0.5 ____ ns tSC Chip Enable Setup Time 1.7 ____ 1.8 ____ ns tHC Chip Enable Hold Time 0.5 ____ 0.5 ____ ns tSB Byte Enable Setup Time 1.7 ____ 1.8 ____ ns tHB Byte Enable Hold Time 0.5 ____ 0.5 ____ ns tSW R/W Setup Time 1.7 ____ 1.8 ____ ns tHW R/W Hold Time 0.5 ____ 0.5 ____ ns tSD Input Data Setup Time 1.7 ____ 1.8 ____ ns tHD Input Data Hold Time 0.5 ____ 0.5 ____ ns ADS Setup Time 1.7 ____ 1.8 ____ ns ns tSAD ADS Hold Time 0.5 ____ 0.5 ____ tSCN CNTEN Setup Time 1.7 ____ 1.8 ____ ns tHCN CNTEN Hold Time 0.5 ____ 0.5 ____ ns REPEAT Setup Time 1.7 ____ 1.8 ____ ns tHRPT REPEAT Hold Time 0.5 ____ 0.5 ____ ns tOE Output Enable to Data Valid ____ 4.0 ____ 4.2 ns tOLZ Output Enable to Output Low-Z 1 ____ 1 ____ ns tOHZ Output Enable to Output High-Z tHAD tSRPT tCD1 Clock to Data Valid (Flow-Through) (1) (1) 1 3.6 1 4.2 ns ____ 12 ____ 15 ns ____ 3.6 ____ 4.2 ns ____ 1 ____ ns tCD2 Clock to Data Valid (Pipelined) tDC Data Output Hold After Clock High 1 tCKHZ Clock High to Output High-Z 1 3 1 3 ns tCKLZ Clock High to Output Low-Z 1 ____ 1 ____ ns 5 ____ 6 ____ ns Port-to-Port Delay tCO Clock-to-Clock Offset 5617 tbl 11 NOTES: 1. The Pipelined output parameters (tCYC2, tCD2) apply to either or both left and right ports when FT/PIPEX = VIH. Flow-through parameters (tCYC1, tCD1) apply when FT/PIPE = VIL for that port. 2. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE) and FT/PIPE. FT/PIPE should be treated as a DC signal, i.e. steady state during operation. 3. These values are valid for either level of VDDQ (3.3V/2.5V). See page 5 for details on selecting the desired operating voltage levels for each port. 6.42 11 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Read Cycle for Pipelined Operation (FT/PIPE'X' = VIH)(2) tCYC2 tCH2 tCL2 CLK CE0 tSC tSC tHC tHC (3) CE1 tSB tSB tHB BEn R/W ADDRESS (4) tSW tHW tSA tHA An An + 1 (1 Latency) An + 2 An + 3 tDC tCD2 DATAOUT Qn tCKLZ OE tHB (5) Qn + 1 Qn + 2 (5) (1) tOHZ tOLZ (1) tOE 5617 drw 06 Timing Waveform of Read Cycle for Flow-through Output (FT/PIPE"X" = VIL)(2,6) tCYC1 tCH1 tCL1 CLK CE0 tSC tSC tHC (3) CE1 tSB tHB BEn tSB R/W tHB tSW tHW tSA ADDRESS tHC (4) tHA An An + 1 tCD1 An + 2 tCKHZ Qn DATAOUT Qn + 2 (5) Qn + 1 tCKLZ OE An + 3 tDC tOHZ tOLZ tDC (1) tOE NOTES: 1. OE is asynchronously controlled; all other inputs are synchronous to the rising clock edge. 2. ADS = VIL and REPEAT = VIH. 3. The output is disabled (High-Impedance state) by CE0 = VIH, CE1 = VIL, BEn = VIH following the next rising edge of the clock. Refer to Truth Table 1. 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. 5. If BEn was HIGH, then the appropriate Byte of DATAOUT for Qn + 2 would be disabled (High-Impedance state). 6. "x" denotes Left or Right port. The diagram is with respect to that port. 6.42 12 Feb.03.20 5617 drw 07 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of a Multi-Device Pipelined Read(1,2) tCH2 tCYC2 tCL2 CLK tSA tHA A0 ADDRESS(B1) tSC tHC CE0(B1) tSC tHC tCD2 tCD2 Q0 DATAOUT(B1) tCKHZ tSA Q3 tCKLZ tDC tCKHZ tHA A0 tSC A6 A5 A4 A3 A2 A1 tSC CE0(B2) tCD2 Q1 tDC ADDRESS(B2) A6 A5 A4 A3 A2 A1 tHC tHC tCD2 DATAOUT(B2) tCKHZ tCD2 Q4 Q2 tCKLZ tCKLZ 5617 drw 08 Timing Waveform of a Multi-Device Flow-Through Read(1,2) tCH1 tCYC1 tCL1 CLK tSA A0 ADDRESS(B1) CE0(B1) tHA tSC tHC tSC tCD1 tHC tCD1 tCKHZ D0 DATAOUT(B1) tSC tCD1 D3 tCKLZ tDC A1 (1) D5 tCKHZ (1) tCKLZ (1) A6 A5 A4 A3 A2 tSC CE0(B2) tCD1 tHA A0 ADDRESS(B2) (1) D1 tDC tSA A6 A5 A4 A3 A2 A1 tHC tHC tCD1 DATAOUT(B2) tCKLZ (1) tCKHZ (1) tCD1 D2 tCKLZ (1) tCKHZ (1) D4 5617 drw 09 NOTES: 1. B1 Represents Device #1; B2 Represents Device #2. Each Device consists of one IDT70V3599/89 for this waveform, and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation. 2. BEn, OE, and ADS = VIL; CE1(B1), CE1(B2), R/W and REPEAT = VIH. 6.42 13 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Left Port Write to Pipelined Right Port Read(1,2,4) CLK"A" tSW tHW tSA tHA R/W"A" ADDRESS"A" tSD DATAIN"A" NO MATCH MATCH tHD VALID tCO(3) CLK"B" tCD2 R/W"B" ADDRESS"B" tSW tHW tSA tHA NO MATCH MATCH DATAOUT"B" VALID tDC 5617 drw 10 NOTES: 1. CE0, BEn, and ADS = VIL; CE1 and REPEAT = VIH. 2. OE = VIL for Port "B", which is being read from. OE = VIH for Port "A", which is being written to. 3. If tCO < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (ie, time from write to valid read on opposite port will be tCO + 2 tCYC2 + tCD2). If tCO > minimum, then data from Port "B" read is available on first Port "B" clock cycle (ie, time from write to valid read on opposite port will be tCO + tCYC2 + tCD2). 4. All timing is the same for Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite of Port "A" Timing Waveform with Port-to-Port Flow-Through Read(1,2,4) CLK "A" tSW tHW tSA tHA R/W "A" ADDRESS "A" tSD DATAIN "A" NO MATCH MATCH tHD VALID tCO (3) CLK "B" tCD1 R/W "B" ADDRESS "B" tSW tHW tSA tHA NO MATCH MATCH tCD1 DATAOUT "B" VALID VALID tDC tDC 5617 drw 11 NOTES: 1. CE0, BEn, and ADS = VIL; CE1 and REPEAT = VIH. 2. OE = VIL for the Right Port, which is being read from. OE = VIH for the Left Port, which is being written to. 3. If tCO < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (i.e., time from write to valid read on opposite port will be tCO + tCYC + tCD1). If tCO > minimum, then data from Port "B" read is available on first Port "B" clock cycle (i.e., time from write to valid read on opposite port will be tCO + tCD1). 4. All timing is the same for both left and right ports. Port "A" may be either left or right port. Port "B" is the opposite of Port "A". 6.42 14 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Pipelined Read-to-Write-to-Read tCYC2 (OE = VIL)(2) tCH2 tCL2 CLK CE0 tSC tHC tSB tHB CE1 BEn tSW tHW R/W (3) ADDRESS tSW tHW An tSA tHA An +1 An + 2 An + 3 An + 2 An + 4 tSD tHD DATAIN Dn + 2 tCD2 (1) tCKHZ tCKLZ tCD2 Qn + 3 Qn DATAOUT READ NOP (4) WRITE READ 5617 drw 12 NOTES: 1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. 2. CE0, BEn, and ADS = VIL; CE1 and REPEAT = VIH. "NOP" is "No Operation". 3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. 4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity. Timing Waveform of Pipelined Read-to-Write-to-Read ( OE Controlled)(2) tCH2 tCYC2 tCL2 CLK CE0 tSC tHC tSB tHB CE1 BEn tSW tHW R/W (3) ADDRESS tSW tHW An tSA tHA An +1 An + 2 tSD DATAIN Qn DATAOUT An + 4 An + 5 tHD Dn + 2 tCD2 (1) An + 3 Dn + 3 tCKLZ tCD2 Qn + 4 (4) tOHZ OE READ WRITE READ 5617 drw 13 NOTES: 1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. 2. CE0, BEn, and ADS = VIL; CE1 and REPEAT = VIH. 3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. 4. This timing does not meet requirements for fastest speed grade. This waveform indicates how logically it could be done if timing so allows. 6.42 15 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Flow-Through Read-to-Write-to-Read (OE = VIL)(2) tCH1 tCYC1 tCL1 CLK CE0 tSC tHC tSB tHB CE1 BEn tSW tHW R/W tSW tHW (3) ADDRESS tSA An tHA An +1 An + 2 An + 4 An + 3 An + 2 tSD tHD DATAIN Dn + 2 tCD1 (1) tCD1 Qn DATAOUT tCD1 tCD1 Qn + 1 tDC tCKLZ tCKHZ READ NOP (5) Qn + 3 tDC READ WRITE 6517 drw 14 Timing Waveform of Flow-Through Read-to-Write-to-Read (OE Controlled)(2) tCYC1 tCH1 tCL1 CLK CE0 tSC tHC tSB tHB CE1 BEn tSW tHW tSW tHW R/W (3) An tSA tHA ADDRESS An +1 DATAIN (1) DATAOUT An + 2 tSD tHD An + 3 Dn + 2 Dn + 3 tDC tCD1 An + 4 tOE tCD1 Qn tCKLZ tOHZ An + 5 tCD1 Qn + 4 tDC OE READ WRITE READ 5617 drw 15 NOTES: 1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. 2. CE0, BEn, and ADS = VIL; CE1 and REPEAT = VIH. 3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. 4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity. 6.42 16 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Pipelined Read with Address Counter Advance(1) tCH2 tCYC2 tCL2 CLK tSA tHA An ADDRESS tSAD tHAD ADS tSAD tHAD CNTEN tSCN tHCN tCD2 DATAOUT Qx - 1(2) Qn + 2(2) Qn + 1 Qn Qx Qn + 3 tDC READ EXTERNAL ADDRESS READ WITH COUNTER COUNTER HOLD READ WITH COUNTER 5617 drw 16 Timing Waveform of Flow-Through Read with Address Counter Advance(1) tCH1 tCYC1 tCL1 CLK tSA tHA ADDRESS An tSAD tHAD ADS tSAD tHAD tSCN tHCN CNTEN tCD1 DATAOUT Qx(2) Qn Qn + 1 Qn + 2 Qn + 3(2) Qn + 4 tDC READ EXTERNAL ADDRESS READ WITH COUNTER COUNTER HOLD READ WITH COUNTER 5617 drw 17 NOTES: 1. CE0, OE, BEn = VIL; CE1, R/W, and REPEAT = VIH. 2. If there is no address change via ADS = VIL (loading a new address) or CNTEN = VIL (advancing the address), i.e. ADS = VIH and CNTEN = VIH, then the data output remains constant for subsequent clocks. 6.42 17 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges Timing Waveform of Write with Address Counter Advance (Flow-through or Pipelined Inputs)(1) tCH2 tCYC2 tCL2 CLK tSA tHA An ADDRESS INTERNAL(3) ADDRESS An(7) An + 2 An + 1 An + 4 An + 3 tSAD tHAD ADS tSCN tHCN CNTEN tSD tHD Dn + 1 Dn DATAIN WRITE EXTERNAL ADDRESS Dn + 1 Dn + 4 Dn + 3 Dn + 2 WRITE WRITE WITH COUNTER COUNTER HOLD WRITE WITH COUNTER 5617 drw 18 Timing Waveform of Counter Repeat(2) tCH2 tCYC2 tCL2 CLK tSA tHA (4) An ADDRESS INTERNAL(3) ADDRESS LAST ADS LOAD Ax An + 2 An + 1 LAST ADS +1 An An + 1 tSW tHW R/W ADS tSAD tHAD CNTEN tSCN tHCN tSRPT tHRPT REPEAT tSD tHD D0 DATAIN (5) QLAST DATAOUT (6) EXECUTE REPEAT WRITE LAST ADS ADDRESS READ LAST ADS ADDRESS READ LAST ADS ADDRESS + 1 QLAST+1 READ ADDRESS n Qn READ ADDRESS n+1 5617 drw 19 NOTES: 1. CE0, BEn, and R/W = VIL; CE1 and REPEAT = VIH. 2. CE0, BEn = VIL; CE1 = VIH. 3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH. 4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference use only. 5. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals. 6. No dead cycle exists during REPEAT operation. A READ or WRITE cycle may be coincidental with the counter REPEAT cycle: Address loaded by last valid ADS load will be accessed. Extra cycles are shown here simply for clarification. For more information on REPEAT function refer to Truth Table II. 7. CNTEN = VIL advances Internal Address from ‘An’ to ‘An +1’. The transition shown indicates the time required for the counter to advance. The ‘An +1’Address is written to during this cycle. 6.42 18 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges Functional Description Depth and Width Expansion The IDT70V3599/89 provides a true synchronous Dual-Port Static RAM interface. Registered inputs provide minimal set-up and hold times on address, data, and all critical control inputs. All internal registers are clocked on the rising edge of the clock signal, however, the self-timed internal write pulse is independent of the LOW to HIGH transition of the clock signal. An asynchronous output enable is provided to ease asynchronous bus interfacing. Counter enable inputs are also provided to stall the operation of the address counters for fast interleaved memory applications. A HIGH on CE0 or a LOW on CE1 for one clock cycle will power down the internal circuitry to reduce static power consumption. Multiple chip enables allow easier banking of multiple IDT70V3599/89s for depth expansion configurations. Two cycles are required with CE0 LOW and CE1 HIGH to re-activate the outputs. The IDT70V3599/89 features dual chip enables (refer to Truth Table I) in order to facilitate rapid and simple depth expansion with no requirements for external logic. Figure 4 illustrates how to control the various chip enables in order to expand two devices in depth. The IDT70V3599/89 can also be used in applications requiring expanded width, as indicated in Figure 4. Through combining the control signals, the devices can be grouped as necessary to accommodate applications needing 72-bits or wider. A17/A16(1) IDT70V3599/89 CE0 CE1 IDT70V3599/89 CE1 VDD VDD Control Inputs Control Inputs IDT70V3599/89 CE0 IDT70V3599/89 CE1 CE1 CE0 CE0 Control Inputs Control Inputs 5617 drw 20 Figure 4. Depth and Width Expansion with IDT70V3599/89 NOTE: 1. A17 is for IDT70V3599, A16 is for IDT70V3589. 6.42 19 Feb.03.20 BE, R/W, OE, CLK, ADS, REPEAT, CNTEN 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges JTAG Timing Specifications tJF tJCL tJCYC tJR tJCH TCK Device Inputs(1)/ TDI/TMS tJS Device Outputs(2)/ TDO tJDC tJH tJRSR tJCD TRST , 5617 drw 21 tJRST Figure 5. Standard JTAG Timing NOTES: 1. Device inputs = All device inputs except TDI, TMS, and TRST. 2. Device outputs = All device outputs except TDO. JTAG AC Electrical Characteristics(1,2,3,4) 70V3599/89 Symbol Parameter Min. Max. Units tJCYC JTAG Clock Input Period 100 ____ ns tJCH JTAG Clock HIGH 40 ____ ns tJCL JTAG Clock Low 40 ____ ns (1) tJR JTAG Clock Rise Time ____ 3 ns tJF JTAG Clock Fall Time ____ 3(1) ns tJRST JTAG Reset 50 ____ ns tJRSR JTAG Reset Recovery 50 ____ ns tJCD JTAG Data Output ____ 25 ns tJDC JTAG Data Output Hold 0 ____ ns tJS JTAG Setup 15 ____ ns tJH JTAG Hold 15 ____ ns 5617 tbl 12 NOTES: 1. Guaranteed by design. 2. 30pF loading on external output signals. 3. Refer to AC Electrical Test Conditions stated earlier in this document. 4. JTAG operations occur at one speed (10MHz). The base device may run at any speed specified in this datasheet. 6.42 20 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges Identification Register Definitions Instruction Field Value Revision Number (31:28) Description 0x0 Reserved for version number IDT Device ID (27:12) 0x0312(1) IDT JEDEC ID (11:1) 0x33 ID Register Indicator Bit (Bit 0) Defines IDT part number Allows unique identification of device vendor as IDT 1 Indicates the presence of an ID register 5617 tbl 13 NOTE: 1. Device ID for IDT70V3589 is 0x0313. Scan Register Sizes Register Name Bit Size Instruction (IR) 4 Bypass (BYR) 1 Identification (IDR) Boundary Scan (BSR) 32 Note (3) 5617 tbl 14 System Interface Parameters Instruction Code Description EXTEST 0000 Forces contents of the bound ary scan cells onto the device outputs (1). Places the boundary scan registe r (BSR) between TDI and TDO. BYPASS 1111 Places the bypass registe r (BYR) between TDI and TDO. IDCODE 0010 Loads the ID register (IDR) with the vendor ID code and places the register between TDI and TDO. 0011 Places the bypass register (BYR) be tween TDI and TDO. Forces all device output drivers to a High-Z state. 0001 Places the boundary scan registe r (BSR) between TDI and TDO. SAMPLE allows data from device inputs (2) to be captured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be input serially into the b oundary scan cells via the TDI. All other codes Several combinations are reserved. Do not use codes other than those identified above. HIGHZ SAMPLE/PRELOAD RESERVED NOTES: 1. Device outputs = All device outputs except TDO. 2. Device inputs = All device inputs except TDI, TMS, and TRST. 3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local IDT sales representative. 6.42 21 Feb.03.20 5617 tbl 15 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges Ordering Information A XXXXX A 999 A Device Type Power Speed Package A A Process/ Temperature Range Blank 8 Tray Tape and Reel Blank I Commercial (0°C to +70°C) Industrial (-40°C to +85°C) G(1) Green BF DR BC 208-pin fpBGA (BF208, BFG208) 208-pin PQFP (DRG208) 256-pin BGA (BC256, BCG256) 166 133 Commercial Only Speed in Megahertz Commercial & Industrial S Standard Power 70V3599 4Mbit (128K x 36-Bit) Synchronous Dual-Port RAM 70V3589 2Mbit (64K x 36-Bit) Synchronous Dual-Port RAM 5617 drw 22 NOTE: 1. Green parts available. For specific speeds, packages and powers contact your local sales office. LEAD FINISH (containing SnPb) are obsolete excluding BGA and Hermetic packages. Note; the information regarding recently obsoleted parts is included in this datasheet for customer convenience. Please see the Orderable Parts Table for the current, active part list. ORDERABLE PART INFORMATION 133 Pkg. Type Temp. Grade 70V3589S133BC BC256 CABGA C C 70V3589S133BC8 BC256 CABGA C I 70V3589S133BCI BC256 CABGA I I 70V3589S133BCI8 BC256 CABGA I CABGA I 70V3589S133BF BF208 CABGA C CABGA C 70V3589S133BF8 BF208 CABGA C BF208 CABGA C 70V3589S133BFI BF208 CABGA I BFG208 CABGA I 70V3589S133BFI8 BF208 CABGA I DRG208 PQFP C DRG208 PQFP I 70V3589S166BC BC256 CABGA C BC256 CABGA C BCG256 CABGA C Pkg. Type Temp. Grade Speed (MHz) BC256 CABGA C 133 70V3599S133BC8 BC256 CABGA 70V3599S133BCGI BCG256 CABGA 70V3599S133BCI BC256 CABGA 70V3599S133BCI8 BC256 70V3599S133BF BF208 70V3599S133BF8 70V3599S133BFGI Orderable Part ID 70V3599S133BC Orderable Part ID BFG208 CABGA I 70V3589S133DRG 70V3599S133BFI BF208 CABGA I 70V3589S133DRGI 70V3599S133BFI8 BF208 CABGA I 70V3599S133BFGI8 166 DRG208 PQFP I 70V3589S166BC8 70V3599S166BC BC256 CABGA C 70V3589S166BCG 70V3599S166BC8 BC256 CABGA C 70V3589S166BF BF208 CABGA C BF208 CABGA C BFG208 CABGA C 70V3599S133DRGI 166 Pkg. Code Pkg. Code Speed (MHz) BCG256 CABGA C 70V3589S166BF8 70V3599S166BF BF208 CABGA C 70V3589S166BFG 70V3599S166BF8 BF208 CABGA C 70V3589S166BFG8 BFG208 CABGA C 70V3589S166DRG DRG208 PQFP C 70V3599S166BCG 70V3599S166BFG BFG208 CABGA C 70V3599S166BFG8 BFG208 CABGA C 70V3599S166DRG DRG208 PQFP C 6.42 22 Feb.03.20 70V3599/89S High-Speed 3.3V 128/64K x 36 Dual-Port Synchronous Static RAM Industrial and Commercial Temperature Ranges Datasheet Document History: 06/02/00: 07/12/00: 07/30/01: 11/20/01: Page 20 Page 9 Pages 2, 3 & 4 Page 11 Pages 1 & 22 Page 10 07/01/02: Pages 1 & 5 Page 7 Page 9 Page 11 05/19/03: 01/10/06: 07/25/08: 01/19/09: 07/26/10: Page 11 Page 22 Page 1 Page 5 Page 22 Page 9 Page 22 Page 11 Pages 13-16 10/14/14: 06/21/18: Page 22 03/07/19: 11/05/19: Pages 1, 22 Pages 2 - 4 Page 4 Page 23 Pages 1 - 24 Page 22 02/03/20: Initial Public Offering Added mux to functional block diagram Changed maximum value for JTAG AC Electrical Characteristics for tJCD from 20ns to 25ns Added Industrial Temperature DC Parameters Added date revision for pin configurations Changed tOE value in AC Electrical Characteristics, please refer to Errata #SMEN-01-05 Replaced TM logo with ® logo Changed AC Test Conditions Input Rise/Fall Times Consolidated multiple devices into one datasheet Added DCD capability for Pipelined Outputs Clarified TBIAS and added TJN Changed DC Electrical Parameters Removed Clock Rise & Fall Time from AC Electrical Characteristics Table Removed Preliminary status Added Byte Enable SetupTime & Byte Enable Hold Time to AC Electrical Characteristics Table Added IDT Clock Solution Table Added green availability to features Changed footnote 2 for Truth Table I from ADS, CNTEN, REPEAT = VIH to ADS, CNTEN, REPEAT = X Added green indicator to ordering information Corrected a typo in the DC Chars table Removed "IDT" from orderable part number In order to correct the header notes of the AC Elect Chars Table and align them with the Industrial temp range values located in the table, the commercial TA header note has been removed In order to correct the footnotes of timing diagrams, CNTEN has been removed to reconcile the footnotes with the CNTEN logic definition found in Truth Table II - Address Counter Control Added Tape & Reel to Ordering Information Product Discontinuation Notice - PDN# SP-17-02 Last time buy expires June 15, 2018 Added orderable part information table. Updated EOL note to obsolete status. Updated package codes Rotated DRG208 TQFP pin configuration to accurately reflect pin 1 orientation Deleted IDT Clock Solution table Rebranded as Renesas datasheet Corrected "ns" to "MHz" in the header of the Orderable Part Information tables 6.42 23 Feb.03.20 IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved.
70V3589S133DRI 价格&库存

很抱歉,暂时无法提供与“70V3589S133DRI”相匹配的价格&库存,您可以联系我们找货

免费人工找货