0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
71V35761S183BGGI

71V35761S183BGGI

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    PBGA119_14X22MM

  • 描述:

    IC SRAM 4.5MBIT PARALLEL 119PBGA

  • 详情介绍
  • 数据手册
  • 价格&库存
71V35761S183BGGI 数据手册
128K x 36 3.3V Synchronous SRAMs 3.3V I/O, Pipelined Outputs Burst Counter, Single Cycle Deselect 71V35761S/SA Features ◆ ◆ ◆ ◆ ◆ 128K x 36 memory configurations Supports high system speed: Commercial: – 200MHz 3.1ns clock access time Commercial and Industrial: – 183MHz 3.3ns clock access time – 166MHz 3.5ns clock access time LBO input selects interleaved or linear burst mode 3.3V core power supply Self-timed write cycle with global write control (GW), byte write enable (BWE), and byte writes (BWx) ◆ ◆ ◆ ◆ ◆ ◆ Power down controlled by ZZ input 3.3V I/O Optional - Boundary Scan JTAG Interface (IEEE 1149.1 compliant) Packaged in a JEDEC Standard 100-pin plastic thin quad flatpack (TQFP), 119 ball grid array (BGA) and 165 fine pitch ball grid array Industrial temperature range (–40°C to +85°C) is available for selected speeds Green parts available, see ordering information Functional Block Diagram LBO ADV 2 Binary Counter ADSC INTERNAL ADDRESS Burst Sequence CEN CLK Burst Logic Q0 CLR ADSP 17/18 A0* Q1 2 CLK EN A0 - A16/17 GW BWE A1* 128K x 36BIT MEMORY ARRAY A0,A1 ADDRESS REGISTER A2–A17 36 17/18 Byte 1 Write Register 36 Byte 1 Write Driver BW1 9 Byte 2 Write Register Byte 2 Write Driver BW2 9 Byte 3 Write Register Byte 3 Write Driver BW3 9 Byte 4 Write Register Byte 4 Write Driver BW4 9 OUTPUT REGISTER CE CS0 CS1 D Q Enable Register DATA INPUT REGISTER CLK EN ZZ Powerdown D Q Enable Delay Register OE OE I/O0 — I/O31 I/OP1 — I/OP4 OUTPUT BUFFER 36 5301 drw 01 TMS TDI TCK TRST (Optional) JTAG (SA Version) TDO 1 May.18.20 , 11 x 36, 3.3V Synchronous SRAMs with 71V35761, 128K 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Description The IDT71V35761 are high-speed SRAMs organized as 128K x 36. The IDT71V35761 SRAMs contain write, data, address and control registers. Internal logic allows the SRAM to generate a self-timed write based upon a decision which can be left until the end of the write cycle. The burst mode feature offers the highest level of performance to the system designer, as the IDT71V35761 can provide four cycles of data for a single address presented to the SRAM. An internal burst address counter accepts the first cycle address from the processor, initiating the access sequence. The first cycle of output data will be pipelined Commercial and Industrial Temperature Ranges for one cycle before it is available on the next rising clock edge. If burst mode operation is selected (ADV=LOW), the subsequent three cycles of output data will be available to the user on the next three rising clock edges. The order of these three addresses are defined by the internal burst counter and the LBO input pin. The IDT71V35761 SRAM utilizes a high-performance CMOS process and is packaged in a JEDEC standard 14mm x 20mm 100-pin thin plastic quad flatpack (TQFP) as well as a 119 ball grid array (BGA) and 165 fine pitch ball grid array(fBGA). Pin Description Summary A0-A17 Address Inputs Input Synchronous CE Chip Enable Input Synchronous CS0, CS1 Chip Selects Input Synchronous OE Output Enable Input Asynchronous GW Global Write Enable Input Synchronous BWE Byte Write Enable Input Synchronous BW1, BW2, BW3, BW4(1) Individual Byte Write Selects Input Synchronous CLK Clock Input N/A ADV Burst Address Advance Input Synchronous ADSC Address Status (Cache Controller) Input Synchronous ADSP Address Status (Processor) Input Synchronous LBO Linear / Interleaved Burst Order Input DC TMS Test Mode Select Input Synchronous TDI Test Data Input Input Synchronous TCK Test Clock Input N/A TDO Test Data Output Output Synchronous TRST JTAG Reset (Optional) Input Asynchronous Input Asynchronous I/O Synchronous ZZ Sleep Mode I/O0-I/O31, I/OP1-I/OP4 Data Input / Output VDD, VDDQ Core Power, I/O Power Supply N/A VSS Ground Supply N/A 5301 tbl 01 6.42 2 May.18.20 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Pin Definitions Commercial and Industrial Temperature Ranges (1) Symbol Pin Function I/O Active Description A0-A17 Address Inputs I N/A Synchronous Address inputs. The address register is triggered by a combination of the rising edge of CLK and ADSC Low or ADSP Low and CE Low. ADSC Address Status (Cache Controller) I LOW Synchronous Address Status from Cache Controller. ADSC is an active LOW input that is used to load the address registers with new addresses. ADSP Address Status (Processor) I LOW Synchronous Address Status from Processor. ADSP is an active LOW input that is used to load the address registers with new addresses. ADSP is gated by CE. ADV Burst Address Advance I LOW Synchronous Address Advance. ADV is an active LOW input that is used to advance the internal burst counter, controlling burst access after the initial address is loaded. When the input is HIGH the burst counter is not incremented; that is, there is no address advance. BWE Byte Write Enable I LOW Synchronous byte write enable gates the byte write inputs BW1-BW4. If BWE is LOW at the rising edge of CLK then BWx inputs are passed to the next stage in the circuit. If BWE is HIGH then the byte write inputs are blocked and only GW can initiate a write cycle. BW1-BW4 Individual Byte Write Enables I LOW Synchronous byte write enables. BW1 controls I/O0-7, I/OP1, BW2 controls I/O8-15, I/OP2, etc. Any active byte write causes all outputs to be disabled. CE Chip Enable I LOW Synchronous chip enable. CE is used with CS0 and CS1 to enable the IDT71V35761. CE also gates ADSP. CLK Clock I N/A CS0 Chip Select 0 I HIGH Synchronous active HIGH chip select. CS0 is used with CE and CS1 to enable the chip. This is the clock input. All timing references for the device are made with respect to this input. CS1 Chip Select 1 I LOW Synchronous active LOW chip select. CS1 is used with CE and CS0 to enable the chip. GW Global Write Enable I LOW Synchronous global write enable. This input will write all four 9-bit data bytes when LOW on the rising edge of CLK. GW supersedes individual byte write enables. I/O0-I/O31 I/OP1-I/OP4 Data Input/Output I/O N/A Synchronous data input/output (I/O) pins. Both the data input path and data output path are registered and triggered by the rising edge of CLK. LBO Linear Burst Order I LOW Asynchronous burst order selection input. When LBO is HIGH, the interleaved burst sequence is selected. When LBO is LOW the Linear burst sequence is selected. LBO is a static input and must not change state while the device is operating. OE Output Enable I LOW Asynchronous output enable. When OE is LOW the data output drivers are enabled on the I/O pins if the chip is also selected. When OE is HIGH the I/O pins are in a high-impedance state. TMS Test ModeSelect I N/A Gives input command for TAP controller. Sampled on rising edge of TDK. This pin has an internal pullup. TDI Test Data Input I N/A Serial input of registers placed between TDI and TDO. Sampled on rising edge of TCK. This pin has an internal pullup. TCK Test Clock I N/A Clock input of TAP controller. Each TAP event is clocked. Test inputs are captured on rising edge of TCK, while test outputs are driven from the falling edge of TCK. This pin has an internal pullup. TDO Test DataOutput O N/A Serial output of registers placed between TDI and TDO. This output is active depending on the state of the TAP controller. TRST JTAG Reset (Optional) I LOW Optional Asynchronous JTAG reset. Can be used to reset the TAP controller, but not required. JTAG reset occurs automatically at power up and also resets using TMS and TCK per IEEE 1149.1. If not used TRST can be left floating. This pin has an internal pullup. Only available in BGA package. ZZ Sleep Mode I HIGH Asynchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the IDT71V35761 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode.This pin has an internal pull down. VDD Power Supply N/A N/A 3.3V core power supply. VDDQ Power Supply N/A N/A 3.3V I/O Supply. VSS Ground N/A N/A Ground. NC No Connect N/A N/A NC pins are not electrically connected to the device. 5301tbl 02 NOTE: 1. All synchronous inputs must meet specified setup and hold times with respect to CLK. 6.42 3 May.18.20 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Absolute Maximum Ratings(1) Symbol Rating (2) Recommended Operating Temperature and Supply Voltage Commercial & Industrial Unit Grade Temperature(1) VSS VDD VDDQ Commercial 0°C to +70°C 0V 3.3V±5% 3.3V±5% Industrial -40°C to +85°C 0V 3.3V±5% 3.3V±5% VTERM Terminal Voltage with Respect to GND -0.5 to +4.6 V VTERM(3,6) Terminal Voltage with Respect to GND -0.5 to VDD V VTERM(4,6) Terminal Voltage with Respect to GND -0.5 to VDD +0.5 V VTERM(5,6) Terminal Voltage with Respect to GND -0.5 to VDDQ +0.5 V Commercial Operating Temperature -0 to +70 o Industrial Operating Temperature -40 to +85 o C Temperature Under Bias -55 to +125 o C TA(7) TBIAS Storage Temperature TSTG Commercial and Industrial Temperature Ranges -55 to +125 PT Power Dissipation 2.0 IOUT DC Output Current 50 o Recommended DC Operating Conditions C Symbol C W mA NOTES: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. VDD terminals only. 3. VDDQ terminals only. 4. Input terminals only. 5. I/O terminals only. 6. This is a steady-state DC parameter that applies after the power supplies have ramped up. Power supply sequencing is not necessary; however, the voltage on any input or I/O pin cannot exceed VDDQ during power supply ramp up. 7. TA is the "instant on" case temperature. 100 Pin TQFP Capacitance Parameter CIN Input Capacitance CI/O I/O Capacitance Input Capacitance CI/O I/O Capacitance Core Supply Voltage 3.135 3.3 3.465 V VDDQ I/O Supply Voltage 3.135 3.3 3.465 V VSS Supply Voltage 0 0 0 V VIH Input High Voltage - Inputs 2.0 ____ VDD +0.3 VIH Input High Voltage - I/O 2.0 ____ VIL Input Low Voltage -0.3(2) ____ Max. Unit Symbol VIN = 3dV 5 pF CIN Input Capacitance VOUT = 3dV 7 pF CI/O I/O Capacitance Conditions Max. Unit VIN = 3dV 7 pF VOUT = 3dV 7 pF 5301 tbl 07b NOTE: 1. This parameter is guaranteed by device characterization, but not production tested. 6.42 4 May.18.20 Unit VDD Conditions (TA = +25°C, f = 1.0MHz) CIN Max. V (1) VDDQ +0.3 0.8 V V (TA = +25°C, f = 1.0MHz) 165 fBGA Capacitance Parameter(1) Typ. NOTES: 1. VIH (max) = VDDQ + 1.0V for pulse width less than tCYC/2, once per cycle. 2. VIL (min) = -1.0V for pulse width less than tCYC/2, once per cycle. 5301 tbl 07 Symbol Min. 119 BGA Capacitance (TA = +25°C, f = 1.0MHz) Symbol Parameter 5301 tbl 06 5301 tbl 03 (1) 5301 tbl 04 NOTE: 1. TA is the "instant on" case temperature. Parameter(1) Conditions Max. Unit VIN = 3dV 7 pF VOUT = 3dV 7 pF 5301 tbl 07a 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges A6 A7 CE CS0 BW4 BW3 BW2 BW1 CS1 VDD VSS CLK GW BWE OE ADSC ADSP ADV A8 A9 Pin Configuration(3) – 128K x 36 , PKG100 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 I/OP3 I/O16 I/O17 VDDQ VSS I/O18 I/O19 I/O20 I/O21 VSS VDDQ I/O22 I/O23 VDD / NC(1) VDD NC VSS I/O24 I/O25 VDDQ VSS I/O26 I/O27 I/O28 I/O29 VSS VDDQ I/O30 I/O31 I/OP4 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 10 11 12 71V35761 PKG100 72 71 70 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 24 58 57 25 56 26 55 27 54 53 28 29 52 51 30 I/OP2 I/O15 I/O14 VDDQ VSS I/O13 I/O12 I/O11 I/O10 VSS VDDQ I/O9 I/O8 VSS NC VDD ZZ(2) I/O7 I/O6 VDDQ VSS I/O5 I/O4 I/O3 I/O2 VSS VDDQ I/O1 I/O0 I/OP1 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 LBO A5 A4 A3 A2 A1 A0 NC NC VSS VDD NC NC A10 A11 A12 A13 A14 A15 A16 5301drw 02 Top View 100 TQFP NOTES: 1. Pin 14 can either be directly connected to VDD, or connected to an input voltage ≥ VIH, or left unconnected. 2. Pin 64 can be left unconnected and the device will always remain in active mode. 3. This text does not indicate orientation of actual part-marking. 6.42 5 May.18.20 , 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges Pin Configuration(5) – 128K x 36, BG119, BGG119 1 2 3 4 5 6 7 A VDDQ A6 A4 ADSP A8 A16 VDDQ B NC CS0 A3 ADSC A9 CS1 NC C NC A7 A2 VDD A12 A15 NC D I/O16 I/OP3 VSS NC VSS I/OP2 I/O15 E I/O17 I/O18 VSS CE VSS I/O13 I/O14 VSS OE VSS I/O12 VDDQ I/O10 F VDDQ I/O19 G I/O20 I/O21 BW3 ADV BW 2 I/O11 H I/O22 I/O23 VSS GW VSS I/O9 I/O8 J VDDQ VDD NC VDD NC VDD VDDQ K I/O24 I/O26 VSS CLK VSS I/O6 I/O7 L I/O25 I/O27 BW4 NC BW1 I/O4 I/O5 M VDDQ I/O28 VSS BWE VSS I/O3 VDDQ N I/O29 I/O30 VSS A1 VSS I/O2 I/O1 P I/O31 I/OP4 VSS A0 VSS I/O0 I/OP1 A13 NC NC ZZ(3) R NC T NC U VDDQ A5 LBO VDD NC A10 A11 NC/TMS(2) NC/TDI(2) NC/TCK(2) VDD / NC(1) A14 , NC/TDO(2) NC/TRST(2,4) VDDQ 5301 drw 04 Top View 119 BGA NOTES: 1. R5 can either be directly connected to VDD, or connected to an input voltage ≥ VIH, or left unconnected. 2. These pins are NC for the "S" version or the JTAG signal listed for the "SA" version. Note: If NC, these pins can either be tied to VSS, VDD or left floating. 3. T7 can be left unconnected and the device will always remain in active mode. 4. TRST is offered as an optional JTAG Reset if required in the application. If not needed, can be left floating and will internally be pulled to VDD. 5. This text does not indicate orientation of actual part-marking. 6.42 6 May.18.20 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Pin Configuration (6) Commercial and Industrial Temperature Ranges – 128K x 36, BQG165 1 2 3 4 5 6 7 8 9 10 11 A NC A7 CE1 BW3 BW2 CS1 BWE ADSC ADV A8 NC B NC A6 CS0 BW4 BW1 CLK GW OE ADSP A9 NC(4) C I/OP3 NC VDDQ VSS VSS VSS VSS VSS VDDQ NC I/OP2 D I/O17 I/O16 VDDQ VDD VSS VSS VSS VDD VDDQ I/O15 I/O14 E I/O19 I/O18 VDDQ VDD VSS VSS VSS VDD VDDQ I/O13 I/O12 F I/O21 I/O20 VDDQ VDD VSS VSS VSS VDD VDDQ I/O11 I/O10 G I/O23 I/O22 VDDQ VDD VSS VSS VSS VDD VDDQ I/O9 I/O8 H VDD(1) NC NC VDD VSS VSS VSS VDD NC NC ZZ(3) J I/O25 I/O24 VDDQ VDD VSS VSS VSS VDD VDDQ I/O7 I/O6 K I/O27 I/O26 VDDQ VDD VSS VSS VSS VDD VDDQ I/O5 I/O4 L I/O29 I/O28 VDDQ VDD VSS VSS VSS VDD VDDQ I/O3 I/O2 M I/O31 I/O30 VDDQ VDD VSS VSS VSS VDD VDDQ I/O1 I/O0 N I/OP4 NC VDDQ VSS NC/TRST(2,5) NC(4) NC P NC (4) NC A5 A2 NC/TDI R LBO NC(4) A4 A3 NC/TMS (2) (4) (2) VSS VDDQ NC I/OP1 A1 NC/TDO (2) A10 A13 A14 NC(4) A0 NC/TCK (2) A11 A12 A15 A16 5301 tbl 17 Top View 165 fBGA NOTES: 1. H1 can either be directly connected to VDD, or connected to an input voltage ≥ VIH, or left unconnected. 2. These pins are NC for the "S" version or the JTAG signal listed for the "SA" version. Note: If NC, these pins can either be tied to VSS, VDD or left floating. 3. H11 can be left unconnected and the device will always remain in active mode. 4. Pins P11, N6, B11, A1, R2 and P2 are reserved for 9M, 18M, 36M, 72M, 144M and 288M respectively. 5. TRST is offered as an optional JTAG Reset if required in the application. If not needed, can be left floating and will internally be pulled to VDD. 6. This text does not indicate orientation of actual part-marking. 6.42 7 May.18.20 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (VDD = 3.3V ± 5%) Symbol Parameter Test Conditions Min. Max. Unit 5 µA |ILI| Input Leakage Current VDD = Max., VIN = 0V to V DD ___ |ILZZ| ZZ, LBO and JTAG Input Leakage Current(1) VDD = Max., VIN = 0V to V DD ___ 30 µA |ILO| Output Leakage Current VOUT = 0V to V DDQ , Device Deselected ___ 5 µA VOL Output Low Voltage IOL = +8mA, VDD = Min. ___ 0.4 V VOH Output High Voltage IOH = -8mA, VDD = Min. 2.4 ___ V 5301 tbl 08 NOTE: 1. The LBO, TMS, TDI, TCK & TRST pins will be internally pulled to VDD and the ZZ pin will be internally pulled to VSS if they are not actively driven in the application. DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range(1) 200MHz Symbol Parameter Test Conditions 183MHz 166 MHz Com'l Com'l Ind Com'l Ind Unit IDD Operating Power Supply Current Device Selected, Outputs Open, VDD = Max., VDDQ = Max., VIN > VIH or < VIL, f = fMAX(2) 360 340 350 320 330 mA ISB1 CMOS Standby Power Supply Current Device Deselected, Outputs Open, V DD = Max., VDDQ = Max., VIN > VHD or < VLD, f = 0(2,3) 30 30 35 30 35 mA ISB2 Clock Running Power Supply Current Device Deselected, Outputs Open, V DD = Max., VDDQ = Max., VIN > VHD or < VLD, f = fMAX(2,3) 130 120 130 110 120 mA IZZ Full Sleep Mode Supply Current ZZ > VHD, VDD = Max. 30 30 35 30 35 mA 5301 tbl 09 NOTES: 1. All values are maximum guaranteed values. 2. At f = fMAX, inputs are cycling at the maximum frequency of read cycles of 1/tCYC while ADSC = LOW; f=0 means no input lines are changing. 3. For I/Os VHD = VDDQ - 0.2V, VLD = 0.2V. For other inputs VHD = VDD - 0.2V, VLD = 0.2V. AC Test Conditions AC Test Load (VDDQ = 3.3V) Input Pulse Levels 50Ω 0 to 3V I/O Input Rise/Fall Times 2ns Input Timing Reference Levels 1.5V Output Timing Reference Levels 1.5V 6 See Figure 1 5 AC Test Load VDDQ/2 Z0 = 50Ω 5301 drw 06 , Figure 1. AC Test Load 5301 tbl 10 4 ΔtCD 3 (Typical, ns) 2 1 20 30 50 80 100 Capacitance (pF) Figure 2. Lumped Capacitive Load, Typical Derating 6.42 8 May.18.20 200 5301 drw 07 , 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges Synchronous Truth Table(1,3) Address Used CE CS0 CS 1 ADSP ADSC ADV GW BWE BWx OE (2) CLK I/O Deselected Cycle, Power Down None H X X X L X X X X X - HI-Z Deselected Cycle, Power Down None L X H L X X X X X X - HI-Z Deselected Cycle, Power Down None L L X L X X X X X X - HI-Z Deselected Cycle, Power Down None L X H X L X X X X X - HI-Z Deselected Cycle, Power Down None L L X X L X X X X X - HI-Z Read Cycle, Begin Burst External L H L L X X X X X L - DOUT Read Cycle, Begin Burst External L H L L X X X X X H - HI-Z Read Cycle, Begin Burst External L H L H L X H H X L - DOUT Read Cycle, Begin Burst External L H L H L X H L H L - DOUT Read Cycle, Begin Burst External L H L H L X H L H H - HI-Z Write Cycle, Begin Burst External L H L H L X H L L X - DIN Write Cycle, Begin Burst External L H L H L X L X X X - DIN Read Cycle, Continue Burst Next X X X H H L H H X L - DOUT Read Cycle, Continue Burst Next X X X H H L H H X H - HI-Z Read Cycle, Continue Burst Next X X X H H L H X H L - DOUT Read Cycle, Continue Burst Next X X X H H L H X H H - HI-Z Read Cycle, Continue Burst Next H X X X H L H H X L - DOUT Read Cycle, Continue Burst Next H X X X H L H H X H - HI-Z Read Cycle, Continue Burst Next H X X X H L H X H L - DOUT Read Cycle, Continue Burst Next H X X X H L H X H H - HI-Z Write Cycle, Continue Burst Next X X X H H L H L L X - DIN Write Cycle, Continue Burst Next X X X H H L L X X X - DIN Write Cycle, Continue Burst Next H X X X H L H L L X - DIN Write Cycle, Continue Burst Next H X X X H L L X X X - DIN Read Cycle, Suspend Burst Current X X X H H H H H X L - DOUT Read Cycle, Suspend Burst Current X X X H H H H H X H - HI-Z Read Cycle, Suspend Burst Current X X X H H H H X H L - DOUT Read Cycle, Suspend Burst Current X X X H H H H X H H - HI-Z Read Cycle, Suspend Burst Current H X X X H H H H X L - DOUT Read Cycle, Suspend Burst Current H X X X H H H H X H - HI-Z Read Cycle, Suspend Burst Current H X X X H H H X H L - DOUT Read Cycle, Suspend Burst Current H X X X H H H X H H - HI-Z Write Cycle, Suspend Burst Current X X X H H H H L L X - DIN Write Cycle, Suspend Burst Current X X X H H H L X X X - DIN Write Cycle, Suspend Burst Current H X X X H H H L L X - DIN Write Cycle, Suspend Burst Current H X X X H H L X X X - Operation NOTES: 1. L = VIL, H = VIH, X = Don’t Care. 2. OE is an asynchronous input. 3. ZZ = low for this table. 6.42 9 May.18.20 DIN 5301tbl 11 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges Synchronous Write Function Truth Table(1) Operation GW BWE BW1 BW2 BW3 BW4 Read H H X X X X Read H L H H H H Write all Bytes L X X X X X Write all Bytes H L L L L L (3) H L L H H H (3) H L H L H H (3) H L H H L H (3) H L H H H L Write Byte 1 Write Byte 2 Write Byte 3 Write Byte 4 5301 tbl 12 NOTES: 1. L = VIL, H = VIH, X = Don’t Care. 3. Multiple bytes may be selected during the same cycle. Asynchronous Truth Table(1) Operation(2) OE ZZ I/O Status Power Read L L Data Out Active Read H L High-Z Active Write X L High-Z – Data In Active Deselected X L High-Z Standby Sleep Mode X H High-Z Sleep 5301 tbl 13 NOTES: 1. L = VIL, H = VIH, X = Don’t Care. 2. Synchronous function pins must be biased appropriately to satisfy operation requirements. Interleaved Burst Sequence Table (LBO=VDD) Sequence 1 Sequence 2 Sequence 3 Sequence 4 A1 A0 A1 A0 A1 A0 A1 A0 First Address 0 0 0 1 1 0 1 1 Second Address 0 1 0 0 1 1 1 0 Third Address 1 0 1 1 0 0 0 1 1 1 1 0 0 1 0 0 Fourth Address (1) 5301 tbl 14 NOTE: 1. Upon completion of the Burst sequence the counter wraps around to its initial state. Linear Burst Sequence Table (LBO=VSS) Sequence 1 Sequence 2 Sequence 3 Sequence 4 A1 A0 A1 A0 A1 A0 A1 A0 First Address 0 0 0 1 1 0 1 1 Second Address 0 1 1 0 1 1 0 0 Third Address 1 0 1 1 0 0 0 1 Fourth Address (1) 1 1 0 0 0 1 1 0 NOTE: 1. Upon completion of the Burst sequence the counter wraps around to its initial state. 6.42 10 May.18.20 5301 tbl 15 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges AC Electrical Characteristics (VDD = 3.3V ±5%, Commercial and Industrial Temperature Ranges) 200MHz(5) Symbol Parameter 166MHz 183MHz Min. Max. Min. Max. Min. Max. Unit tCYC Clock Cycle Time 5 — 5.5 — 6 — ns tCH(1) Clock High Pulse Width 2 — 2.2 — 2.4 — ns tCL(1) Clock Low Pulse Width 2 — 2.2 — 2.4 — ns Output Parameters tCD Clock High to Valid Data — 3.1 — 3.3 — 3.5 ns tCDC Clock High to Data Change 1.0 — 1.0 — 1.0 — ns tCLZ(2) Clock High to Output Active 0 — 0 — 0 — ns tCHZ(2) Clock High to Data High-Z 1.5 3.1 1.5 3.3 1.5 3.5 ns tOE Output Enable Access Time — 3.1 — 3.3 — 3.5 ns tOLZ(2) Output Enable Low to Output Active 0 — 0 — 0 — ns tOHZ(2) Output Enable High to Output High-Z — 3.1 — 3.3 — 3.5 ns tSA Address Setup Time 1.2 — 1.5 — 1.5 — ns tSS Address Status Setup Time 1.2 — 1.5 — 1.5 — ns tSD Data In Setup Time 1.2 — 1.5 — 1.5 — ns tSW Write Setup Time 1.2 — 1.5 — 1.5 — ns tSAV Address Advance Setup Time 1.2 — 1.5 — 1.5 — ns tSC Chip Enable/Select Setup Time 1.2 — 1.5 — 1.5 — ns tHA Address Hold Time 0.4 — 0.5 — 0.5 — ns tHS Address Status Hold Time 0.4 — 0.5 — 0.5 — ns tHD Data In Hold Time 0.4 — 0.5 — 0.5 — ns tHW Write Hold Time 0.4 — 0.5 — 0.5 — ns tHAV Address Advance Hold Time 0.4 — 0.5 — 0.5 — ns tHC Chip Enable/Select Hold Time 0.4 — 0.5 — 0.5 — ns Set Up Times Hold Times Sleep Mode and Configuration Parameters tZZPW ZZ Pulse Width 100 — 100 — 100 — ns tZZR(3) ZZ Recovery Time 100 — 100 — 100 — ns tCFG (4) Configuration Set-up Time 20 — 22 — 24 — ns 5301tbl 16 NOTES: 1. Measured as HIGH above VIH and LOW below VIL. 2. Transition is measured ±200mV from steady-state. 3. Device must be deselected when powered-up from sleep mode. 4. tCFG is the minimum time required to configure the device based on the LBO input. LBO is a static input and must not change during normal operation. 5. Commercial temperature range only. 6.42 11 May.18.20 May.18.20 6.42 12 Output Disabled tSC tSA tSS tHS Ax Pipelined Read tOLZ tOE tHC tHA O1(Ax) Ay (1) tCH tCLZ tOHZ tCD tSW tCL tSAV O1(Ay) tCDC tHAV O2(Ay) tHW Burst Pipelined Read O3(Ay) ADV HIGH suspends burst O4(Ay) (Burst wraps around to its initial state) O1(Ay) tCHZ O2(Ay) 5301 drw 08 , NOTES: 1. O1 (Ax) represents the first output from the external address Ax. O1 (Ay) represents the first output from the external address Ay; O2 (Ay) represents the next output data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. 2. ZZ input is LOW and LBO is Don't Care for this cycle. 3. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH. DATAOUT OE ADV (Note 3) CE, CS1 GW, BWE, BWx ADDRESS ADSC ADSP CLK tCYC 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges Timing Waveform of Pipelined Read Cycle(1,2) May.18.20 6.42 13 tSA tHA tSS tHS tCLZ tCD Single Read Ax (2) tOE O1(Ax) tOHZ tSW Ay tCH Pipelined Write I1(Ay) tSD tHD tCL tHW Az tOLZ tCD O2(Az) Pipelined Burst Read O1(Az) tCDC 5301 drw 09 O3(Az) , NOTES: 1. Device is selected through entire cycle; CE and CS1 are LOW, CS0 is HIGH. 2. ZZ input is LOW and LBO is Don't Care for this cycle. 3. O1 (Ax) represents the first output from the external address Ax. I1 (Ay) represents the first input from the external address Ay; O1 (Az) represents the first output from the external address Az; O2 (Az) represents the next output data in the burst sequence of the base address Az, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. DATAOUT DATAIN OE ADV GW ADDRESS ADSP CLK tCYC 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges Timing Waveform of Combined Pipelined Read and Write Cycles(1,2,3) May.18.20 6.42 14 O4(Aw) Ax Burst Read tHC O3(Aw) tSC tSA tHA tSS tHS Ay tCL Single Write tOHZ I1(Ax) I1(Ay) I2(Ay) Burst Write I2(Ay) (ADV HIGH suspends burst) tSAV GW is ignored when ADSP initiates a cycle and is sampled on the next clock rising edge tCH I3(Ay) tHAV I4(Ay) tSD I1(Az) tHW tSW Az I3(Az) 5301 drw 10 Burst Write I2(Az) tHD NOTES: 1. ZZ input is LOW, BWE is HIGH and LBO is Don't Care for this cycle. 2. O4 (Aw) represents the final output data in the burst sequence of the base address Aw. I1 (Ax) represents the first input from the external address Ax. I1 (Ay) represents the first input from the external address Ay; I2 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. In the case of input I2 (Ay) this data is valid for two cycles because ADV is high and has suspended the burst. 3. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH. DATAOUT DATAIN OE ADV (Note 3) CE, CS1 GW ADDRESS ADSC ADSP CLK tCYC 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges Timing Waveform of Write Cycle No. 1 - GW Controlled(1,2,3) , May.18.20 6.42 15 tHC Burst Read O3(Aw) tSC tSA tHA tSS tHS O4(Aw) Ax Ay tCL Single Write tOHZ I1(Ax) I1(Ay) Burst Write I2(Ay) (ADV suspends burst) BWx is ignored when ADSP initiates a cycle and is sampled on next clock rising edge BWE is ignored when ADSP initiates a cycle and is sampled on next clock rising edge tCH I2(Ay) I3(Ay) I4(Ay) tSD Extended Burst Write I1(Az) tSAV tHW tSW tHW tSW Az I2(Az) tHD NOTES: 1. ZZ input is LOW, GW is HIGH and LBO is Don't Care for this cycle. 2. O4 (Aw) represents the final output data in the burst sequence of the base address Aw. I1 (Ax) represents the first input from the external address Ax. I1 (Ay) represents the first input from the external address Ay; I2 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input. In the case of input I2 (Ay) this data is valid for two cycles because ADV is high and has suspended the burst. 3. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH. DATAOUT DATAIN OE ADV (Note 3) CE, CS1 BWx BWE ADDRESS ADSC ADSP CLK tCYC 5301 drw 11 I3(Az) 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges Timing Waveform of Write Cycle No. 2 - Byte Controlled(1,2,3) , May.18.20 6.42 16 tSS tSC tSA tHS Ax Single Read tOLZ tOE tHC tHA O1(Ax) tCH tCL tZZPW Snooze Mode tZZR NOTES: 1. Device must power up in deselected Mode 2. LBO is Don't Care for this cycle. 3. It is not necessary to retain the state of the input registers throughout the Power-down cycle. 4. CS0 timing transitions are identical but inverted to the CE and CS1 signals. For example, when CE and CS1 are LOW on this waveform, CS0 is HIGH. ZZ DATAOUT OE ADV (Note 4) CE, CS1 GW ADDRESS ADSC ADSP CLK tCYC Az 5301 drw 12 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges Timing Waveform of Sleep (ZZ) and Power-Down Modes(1,2,3) , 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges Non-Burst Read Cycle Timing Waveform CLK ADSP ADSC ADDRESS Av Aw Ax Ay Az GW, BWE, BWx CE, CS1 CS0 OE (Av) DATAOUT (Aw) (Ax) (Ay) NOTES: 1. ZZ input is LOW, ADV is HIGH and LBO is Don't Care for this cycle. 2. (Ax) represents the data for address Ax, etc. 3. For read cycles, ADSP and ADSC function identically and are therefore interchangeable. , 5301 drw 14 Non-Burst Write Cycle Timing Waveform CLK ADSP ADSC ADDRESS Av Aw Ax Ay Az (Ax) (Ay) (Az) GW CE, CS1 CS0 DATAIN (Av) (Aw) NOTES: 1. ZZ input is LOW, ADV and OE are HIGH, and LBO is Don't Care for this cycle. 2. (Ax) represents the data for address Ax, etc. 3. Although only GW writes are shown, the functionality of BWE and BWx together is the same as GW. 4. For write cycles, ADSP and ADSC have different limitations. 6.42 17 May.18.20 , 5301 drw 15 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges JTAG Interface Specification (SA Version only) tJF tJCL tJCYC tJR tJCH TCK Device Inputs(1)/ TDI/TMS tJS Device Outputs(2)/ TDO tJDC tJH tJRSR tJCD TRST(3) x M5301 drw 01 tJRST NOTES: 1. Device inputs = All device inputs except TDI, TMS and TRST. 2. Device outputs = All device outputs except TDO. 3. During power up, TRST could be driven low or not be used since the JTAG circuit resets automatically. TRST is an optional JTAG reset. JTAG AC Electrical Characteristics(1,2,3,4) Symbol Parameter Min. Max. Units tJCYC JTAG Clock Input Period 100 ____ ns tJCH JTAG Clock HIGH 40 ____ ns tJCL JTAG Clock Low 40 ____ ns tJR JTAG Clock Rise Time ____ 5(1) ns tJF JTAG Clock Fall Time ____ 5(1) ns JTAG Identification (JIDR) tJRST JTAG Reset 50 ____ ns Boundary Scan (BSR) tJRSR JTAG Reset Recovery 50 ____ ns tJCD JTAG Data Output ____ 20 ns tJDC JTAG Data Output Hold 0 ____ ns tJS JTAG Setup 25 ____ ns tJH JTAG Hold 25 ____ Scan Register Sizes Register Name Instruction (IR) 4 Bypass (BYR) 1 32 Note (1) I5301 tbl 03 NOTE: 1. The Boundary Scan Descriptive Language (BSDL) file for this device is available by contacting your local IDT sales representative. ns I5301 tbl 01 NOTES: 1. Guaranteed by design. 2. AC Test Load (Fig. 1) on external output signals. 3. Refer to AC Test Conditions stated earlier in this document. 4. JTAG operations occur at one speed (10MHz). The base device may run at any speed specified in this datasheet. 6.42 18 May.18.20 Bit Size 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges JTAG Identification Register Definitions (SA Version only) Instruction Field Value Revision Number (31:28) Description 0x2 IDT Device ID (27:12) 0x23C, 0x23E IDT JEDEC ID (11:1) 0x33 ID Register Indicator Bit (Bit 0) Reserved for version number. Defines IDT part number 71V35761SA. Allows unique identification of device vendor as IDT. 1 Indicates the presence of an ID register. I5301 tbl 02 Available JTAG Instructions Instruction Description OPCODE EXTEST Forces contents of the bound ary scan cells onto the device outputs (1). Places the boundary scan registe r (BSR) between TDI and TDO. 0000 SAMPLE/PRELOAD Places the boundary scan registe r (BSR) between TDI and TDO. SAMPLE allows data from device inputs (2) and outputs(1) to be captured in the boundary scan cells and shifted serially through TDO. PRELOAD allows data to be input serially into the bo undary scan cells via the TDI. 0001 DEVICE_ID Loads the JTAG ID register (JIDR) with the vendor ID code and places the register between TDI and TDO. 0010 HIGHZ Places the bypass register (BYR) be tween TDI and TDO. Forces all device o utput drivers to a High-Z state. 0011 RESERVED RESERVED RESERVED 0100 Several combinations are reserved. Do not use codes other than those identified for EXTEST, SAMPLE/PRELOAD, DEVICE_ID, HIGHZ, CLAMP, VALIDATE and BYPASS instructions. RESERVED CLAMP RESERVED 0110 0111 Uses BYR. Forces contents of the bound ary scan cells onto the device outputs. Places the byp ass registe r (BYR) between TDI and TDO. RESERVED RESERVED 0101 1000 1001 1010 Same as above. 1011 RESERVED 1100 VALIDATE Automatically loaded into the instruction register whenever the TAP controller passes through the CAPTURE-IR state. The lower two bits '01' are mand ated by the IEEE std. 1149.1 specification. 1101 RESERVED Same as above. 1110 BYPASS The BYPASS instruction is used to truncate the boundary scan register as a single bit in length. 1111 I5301 tbl 04 NOTES: 1. Device outputs = All device outputs except TDO. 2. Device inputs = All device inputs except TDI, TMS, and TRST. 6.42 19 May.18.20 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges Ordering Information XXXX XX XX XX Device Type Power Speed Package X X X Process/ Temperature Range Blank 8 Tray Tape and Reel Blank I(1) Commercial (0°C to +70°C) Industrial (-40°C to +85°C) G(2) Green PF** BG BQ 100-pin Plastic Thin Quad Flatpack (PKG100) 119 Ball Grid Array (BG119, BGG119) 165 Fine Pitch Ball Grid Array (BQG165) 200* 183 166 Frequency in Megahertz S SA Standard Power Standard Power with JTAG interface 71V35761 128K x 36 Pipelined Burst Synchronous SRAM with 3.3V I/O *Commercial temperature range only ** JTAG (SA version) is not available with 100 pin TQFP package. NOTES: 1. Contact your local sales office for Industrial temp range for other speeds, packages and powers. 2. Green parts available. For specific speeds, packages and powers contact your local sales office. 6.42 20 May.18.20 5301 drw 13 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges Orderable Part Information Pkg. Code Pkg. Type Temp. Grade Speed (MHz) Pkg. Code Pkg. Type Temp. Grade 71V35761S166PFG PKG100 TQFP C 166 71V35761S166PFG8 PKG100 TQFP C 71V35761SA166BG BG119 PBGA C 71V35761SA166BG8 BG119 PBGA C 71V35761S166PFGI PKG100 TQFP I 71V35761SA166BGG BGG119 PBGA C 71V35761S166PFGI8 PKG100 TQFP I 71V35761SA166BGG8 BGG119 PBGA C 71V35761S183PFG 71V35761S183PFG8 PKG100 TQFP C 71V35761SA166BGGI BGG119 PBGA I PKG100 TQFP C 71V35761SA166BGGI8 BGG119 PBGA I 71V35761S183PFGI PKG100 TQFP I 71V35761SA166BGI BG119 PBGA I 71V35761S183PFGI8 PKG100 TQFP I 71V35761SA166BGI8 BG119 PBGA I 71V35761S200PFG PKG100 TQFP C 71V35761SA166BQG BQG165 CABGA C 71V35761S200PFG8 PKG100 TQFP C 71V35761SA166BQG8 BQG165 CABGA C Speed (MHz) 166 183 200 Orderable Part ID 183 200 6.42 21 May.18.20 Orderable Part ID 71V35761SA166BQGI BQG165 CABGA I 71V35761SA166BQGI8 BQG165 CABGA I 71V35761SA183BG BG119 PBGA C 71V35761SA183BG8 BG119 PBGA C 71V35761SA183BGG BGG119 PBGA C 71V35761SA183BGG8 BGG119 PBGA C 71V35761SA183BGGI BGG119 PBGA I 71V35761SA183BGGI8 BGG119 PBGA I 71V35761SA183BGI BG119 PBGA I 71V35761SA183BGI8 BG119 PBGA I 71V35761SA183BQG BQG165 CABGA C 71V35761SA183BQG8 BQG165 CABGA C 71V35761SA200BG BG119 PBGA C 71V35761SA200BG8 BG119 PBGA C 71V35761SA200BGG BGG119 PBGA C 71V35761SA200BGG8 BGG119 PBGA C 71V35761SA200BQG BQG165 CABGA C 71V35761SA200BQG8 BQG165 CABGA C 71V35761, 128K x 36, 3.3V Synchronous SRAMs with 3.3V I/O, Pipelined Outputs, Burst Counter, Single Cycle Deselect Commercial and Industrial Temperature Ranges Datasheet Document History 12/31/99 04/04/00 Pg. 1, 4, 8, 11, 19 Pg. 18 Pg. 4 06/01/00 07/15/00 Pg. 20 Pg. 7 Pg. 8 Pg. 20 10/25/00 04/22/03 06/30/03 Pg. 8 Pg.4 Pg. 1,2,3,5-9 Pg. 5-8 Pg. 19,20 Pg. 21-23 Pg. 24 03/02/09 06/01/10 Pg. 21 Pg. 1-21 08/01/14 Pg. 1-3 11/06/14 Pg. 20 Pg. 1 05/18/20 Pg. 1 Pg. 2 Pg. 3 Pg. 21 Pg. 22 Pg. 1-23 Pg. 1&20 Pg. 5-7 Pg. 21 Created new datasheet from 71v3576 and 71v3578 datasheet. Added industrial temperature range offering from 166MHz and 183MHz Added 100 pin TQFP package Diagram Outline Add BGA capacitance table; Add industrial temperature to table; Insert note to Absolute Max Rating and Recommended Operating Temperature tables Add new package diagram outline, 13 x 15mm 165fBGA Correct BG119 Package Diagram Outline Add note reference to BG119 pinout Add DNU reference note to BQ165 pinout Update BG119 Package Diagram Outline Dimensions Remove Preliminary status Add reference note to N5 on the BQ165 pinout, reserved for JTAG TRST Updated 165 BGA table information from TBD to 7 Updated datasheet with JTAG information Removed note for NC pins (38,39(PF package); L4, U4 (BG package) H2, N7 (BQ package)) requiring NC or connection to Vss. Added two pages of JTAG Specification, AC Electrical, Definitions and Instructions Removed old package information from the datasheet Updated ordering information with JTAG and Y stepping information. Added information regarding packages available IDT website. Removed "IDT" from orderable part number Added "Restricted hazardous substance device" to the ordering information. Removed IDT71V35781S/SA from datasheet. Moved the FBD, the pin description and pin definition tables to pages 1 - 3 respectively to align the datasheet reading flow to that of our other established datasheets In the Ordering Information, Tape & Reel added & RoHS designation changed to Green Removed "Y" stepping from the datasheet part number. Changed DS Device to IDT71V35761S/SA In Features: Added text: "Green parts available, see ordering information" In Description: Clarified text in last paragraph Removed device 71V35781 in the Pin Definitions Table Removed stepping from Ordering Information Updated sramhelp contact information Rebranded as Renesas datasheet Updated Green & Industrial temp range offerings Updated package codes Added Orderable Part Information tables 6.42 22 May.18.20 IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved.
71V35761S183BGGI
物料型号:71V35761S/SA 器件简介:这是瑞萨电子生产的高速SRAM存储器,具有128K x 36的存储配置,支持高达200MHz的系统速度,适用于商业和工业温度范围。 引脚分配:文档提供了详细的引脚分配图和说明,包括地址输入、片选、输出使能、全局写使能、字节写使能等。 参数特性:包括核心电源电压、I/O电源电压、地、输入高电平电压、输入低电平电压等。 功能详解:SRAM具有突发模式功能,可以为单个地址提供四个周期的数据。内部逻辑允许SRAM基于可以在写周期结束时做出的决定来自定时写入。 应用信息:适用于需要高速数据访问的系统设计,例如缓存控制器或处理器的地址状态。 封装信息:提供100引脚塑料薄四边扁平包(TQFP)、119球栅阵列(BGA)和165细间距球栅阵列(fBGA)。
71V35761S183BGGI 价格&库存

很抱歉,暂时无法提供与“71V35761S183BGGI”相匹配的价格&库存,您可以联系我们找货

免费人工找货