CMOS SuperSync FIFO™
32,768 x 18
65,536 x 18
FEATURES:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Choose among the following memory organizations:
IDT72275 — 32,768 x 18
IDT72285 — 65,536 x 18
Pin-compatible with the IDT72255LA/72265LA SuperSync FIFOs
10ns read/write cycle time (6.5ns access time)
Fixed, low first word data latency time
Auto power down minimizes standby power consumption
Master Reset clears entire FIFO
Partial Reset clears data, but retains programmable
settings
Retransmit operation with fixed, low first word data
latency time
Empty, Full and Half-Full flags signal FIFO status
Programmable Almost-Empty and Almost-Full flags, each flag
can default to one of two preselected offsets
Program partial flags by either serial or parallel means
Select IDT Standard timing (using EF and FF flags) or First
Word Fall Through timing (using OR and IR flags)
Output enable puts data outputs into high impedance state
Easily expandable in depth and width
•
•
•
IDT72275
IDT72285
OBSOLETE PARTS
Independent Read and Write Clocks (permit reading and writing
simultaneously)
Available in the 64-pin Thin Quad Flat Pack (TQFP) and the 64pin Slim Thin Quad Flat Pack (STQFP)
High-performance submicron CMOS technology
Industrial temperature range (-40°°C to +85°°C) is available
DESCRIPTION:
The IDT72275/72285 are exceptionally deep, high speed, CMOS First-InFirst-Out (FIFO) memories with clocked read and write controls. These FIFOs
offer numerous improvements over previous SuperSync FIFOs, including the
following:
• The limitation of the frequency of one clock input with respect to the other has
been removed. The Frequency Select pin (FS) has been removed, thus
it is no longer necessary to select which of the two clock inputs, RCLK or
WCLK, is running at the higher frequency.
• The period required by the retransmit operation is now fixed and short.
• The first word data latency period, from the time the first word is written to an
empty FIFO to the time it can be read, is now fixed and short. (The variable
clock cycle counting delay associated with the latency period found on
previous SuperSync devices has been eliminated on this SuperSync family.)
R
T
O
R
F
A
P ED
E
D
T
S
N
E
N
E
L
G
M
O
I
S
M
S
B
E
O
O EC
D
R EW
T
N
O
N
FUNCTIONAL BLOCK DIAGRAM
WEN
D0 -D17
WCLK
INPUT REGISTER
LD SEN
OFFSET REGISTER
FLAG
LOGIC
WRITE CONTROL
LOGIC
RAM ARRAY
32,768 x 18
65,536 x 18
WRITE POINTER
FF/IR
PAF
EF/OR
PAE
HF
FWFT/SI
READ POINTER
READ
CONTROL
LOGIC
RT
OUTPUT REGISTER
MRS
PRS
RESET
LOGIC
RCLK
REN
OE
Q0 -Q17
1
4674 drw 01
AUGUST 2013
DSC-4674/6
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
DESCRIPTION (CONTINUED)
a rising RCLK edge, will shift the word from internal memory to the data output
lines.
In FWFT mode, the first word written to an empty FIFO is clocked directly
to the data output lines after three transitions of the RCLK signal. A REN
does not have to be asserted for accessing the first word. However,
subsequent words written to the FIFO do require a LOW on REN for access.
The state of the FWFT/SI input during Master Reset determines the timing
mode in use.
For applications requiring more data storage capacity than a single FIFO
can provide, the FWFT timing mode permits depth expansion by chaining
FIFOs in series (i.e. the data outputs of one FIFO are connected to the
corresponding data inputs of the next). No external logic is required.
These FIFOs have five flag pins, EF/OR (Empty Flag or Output Ready),
FF/IR (Full Flag or Input Ready), HF (Half-full Flag), PAE (Programmable
Almost-Empty flag) and PAF (Programmable Almost-Full flag). The EF and
FF functions are selected in IDT Standard mode. The IR and OR functions
are selected in FWFT mode. HF, PAE and PAF are always available for use,
irrespective of timing mode.
SuperSync FIFOs are particularly appropriate for network, video, telecommunications, data communications and other applications that need to buffer
large amounts of data.
The input port is controlled by a Write Clock (WCLK) input and a Write
Enable (WEN) input. Data is written into the FIFO on every rising edge of
WCLK when WEN is asserted. The output port is controlled by a Read Clock
(RCLK) input and Read Enable (REN) input. Data is read from the FIFO on
every rising edge of RCLK when REN is asserted. An Output Enable (OE)
input is provided for three-state control of the outputs.
The frequencies of both the RCLK and the WCLK signals may vary from
0 to fMAX with complete independence. There are no restrictions on the
frequency of the one clock input with respect to the other.
There are two possible timing modes of operation with these devices:
IDT Standard mode and First Word Fall Through (FWFT) mode.
In IDT Standard mode, the first word written to an empty FIFO will not
appear on the data output lines unless a specific read operation is
performed. A read operation, which consists of activating REN and enabling
RT
OE
RCLK
REN
EF/OR
PAF
HF
VCC
PAE
FF/IR
LD
FWFT/SI
GND
MRS
WCLK
PRS
PIN CONFIGURATIONS
PIN 1
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
39
38
37
36
35
34
33
15
16
Q17
Q16
GND
Q15
Q14
VCC
Q13
Q12
Q11
GND
Q10
Q9
Q8
Q7
Q6
GND
Q1
GND
Q2
Q3
VCC
Q4
Q5
GND
Q0
D1
D0
D5
D4
D3
D2
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
D6
WEN
SEN
DC
VCC
GND
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
TQFP (PN64-1, ORDER CODE: PF)
STQFP (PP64-1, ORDER CODE: TF)
TOP VIEW
2
4674 drw 02
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
DESCRIPTION (CONTINUED)
of 1,023 with serial programming. The flags are updated according to the timing
mode and default offsets selected.
The Partial Reset (PRS) also sets the read and write pointers to the first
location of the memory. However, the timing mode, partial flag programming method, and default or programmed offset settings existing before
Partial Reset remain unchanged. The flags are updated according to the
timing mode and offsets in effect. PRS is useful for resetting a device in midoperation, when reprogramming partial flags would be undesirable.
The Retransmit function allows data to be reread from the FIFO more
than once. A LOW on the RT input during a rising RCLK edge initiates a
retransmit operation by setting the read pointer to the first location of the
memory array.
If, at any time, the FIFO is not actively performing an operation, the chip
will automatically power down. Once in the power down state, the standby
supply current consumption is minimized. Initiating any operation (by
activating control inputs) will immediately take the device out of the power
down state.
The IDT72275/72285 are fabricated using high speed submicron CMOS
technology.
PAE and PAF can be programmed independently to switch at any point in
memory. (See Table I and Table II.) Programmable offsets determine the flag
switching threshold and can be loaded by two methods: parallel or serial. Two
default offset settings are also provided, so that PAE can be set to switch at 127
or 1,023 locations from the empty boundary and the PAF threshold can be set
at 127 or 1,023 locations from the full boundary. These choices are made with
the LD pin during Master Reset.
For serial programming, SEN together with LD on each rising edge of
WCLK, are used to load the offset registers via the Serial Input (SI). For
parallel programming, WEN together with LD on each rising edge of WCLK,
are used to load the offset registers via Dn. REN together with LD on each
rising edge of RCLK can be used to read the offsets in parallel from Qn
regardless of whether serial or parallel offset loading has been selected.
During Master Reset (MRS) the following events occur: The read and
write pointers are set to the first location of the FIFO. The FWFT pin selects
IDT Standard mode or FWFT mode. The LD pin selects either a partial flag
default setting of 127 with parallel programming or a partial flag default setting
PARTIAL RESET (PRS)
MASTER RESET (MRS)
WRITE CLOCK (WCLK)
READ CLOCK (RCLK)
WRITE ENABLE (WEN)
READ ENABLE (REN)
OUTPUT ENABLE (OE)
LOAD (LD)
DATA OUT (Q0 - Qn)
DATA IN (D0 - Dn)
SERIAL ENABLE(SEN)
FIRST WORD FALL THROUGH/SERIAL INPUT
(FWFT/SI)
IDT
72275
72285
RETRANSMIT (RT)
EMPTY FLAG/OUTPUT READY (EF/OR)
PROGRAMMABLE ALMOST-EMPTY (PAE)
FULL FLAG/INPUT READY (FF/IR)
HALF FULL FLAG (HF)
PROGRAMMABLE ALMOST-FULL (PAF)
4674 drw 03
Figure 1. Block Diagram of Single 32,768 x 18 and 65,536 x 18 Synchronous FIFO
3
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
PIN DESCRIPTION
Symbol
D0–D17
MRS
Name
Data Inputs
Master Reset
I/O
I
I
PRS
Partial Reset
I
RT
Retransmit
I
FWFT/SI
I
WCLK
First Word Fall
Through/Serial In
Write Clock
I
WEN
RCLK
Write Enable
Read Clock
I
I
REN
OE
SEN
LD
Read Enable
Output Enable
Serial Enable
Load
I
I
I
I
DC
FF/IR
Don't Care
Full Flag/
Input Ready
I
O
EF/OR
Empty Flag/
Output Ready
O
PAF
Programmable
Almost Full Flag
O
PAE
Programmable
Almost Empty Flag
O
HF
Q0–Q17
V CC
GND
Half-Full Flag
Data Outputs
Power
Ground
O
O
Description
Data inputs for a 18-bit bus.
MRS initializes the read and write pointers to zero and sets the output register to all zeroes. During
Master Reset, the FIFO is configured for either FWFT or IDT Standard mode, one of two programmable
flag default settings, and serial or parallel programming of the offset settings.
PRS initializes the read and write pointers to zero and sets the output register to all zeroes. During
Partial Reset, the existing mode (IDT or FWFT), programming method (serial or parallel), and
programmable flag settings are all retained.
RT asserted on the rising edge of RCLK initializes the READ pointer to zero, sets the EF flag to LOW
(OR to HIGH in FWFT mode) temporarily and does not disturb the write pointer, programming
method, existing timing mode or programmable flag settings. RT is useful to reread data from the first
physical location of the FIFO.
During Master Reset, selects First Word Fall Through or IDT Standard mode. After Master Reset,
this pin functions as a serial input for loading offset registers
When enabled by WEN, the rising edge of WCLK writes data into the FIFO and offsets into the
programmable registers for parallel programming, and when enabled by SEN, the rising edge of
WCLK writes one bit of data into the programmable register for serial programming.
WEN enables WCLK for writing data into the FIFO memory and offset registers.
When enabled by REN, the rising edge of RCLK reads data from the FIFO memory and offsets from the
programmable registers.
REN enables RCLK for reading data from the FIFO memory and offset registers.
OE controls the output impedance of Qn.
SEN enables serial loading of programmable flag offsets.
During Master Reset, LD selects one of two partial flag default offsets (127 or 1,023 and determines the
flag offset programming method, serial or parallel. After Master Reset, this pin enables writing to and reading
from the offset registers
This pin must be tied to either VCC or GND and must not toggle after Master Reset.
In the IDT Standard mode, the FF function is selected. FF indicates whether or not the FIFO memory
is full. In the FWFT mode, the IR function is selected. IR indicates whether or not there is space available
for writing to the FIFO memory.
In the IDT Standard mode, the EF function is selected. EF indicates whether or not the FIFO memory
is empty. In FWFT mode, the OR function is selected. OR indicates whether or not there is valid data
available at the outputs.
PAF goes LOW if the number of words in the FIFO memory is more than total word capacity of the
FIFO minus the full offset value m, which is stored in the Full Offset register. There are two possible
default values for m: 127 or 1,023.
PAE goes LOW if the number of words in the FIFO memory is less than offset n, which is stored in the
Empty Offset register. There are two possible default values for n: 127 or 1,023. Other values for n can
be programmed into the device.
HF indicates whether the FIFO memory is more or less than half-full.
Data outputs for an 18-bit bus.
+5 Volt power supply pins.
Ground pins.
4
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
ABSOLUTE MAXIMUM RATINGS
Symbol
VTERM
Rating
Terminal Voltage
with respect to GND
Commercial
–0.5 to +7
Unit
V
TSTG
Storage
Temperature
–55 to +125
°C
IOUT
DC Output Current
–50 to +50
RECOMMENDED DC OPERATING
CONDITIONS
Symbol
VCC
mA
NOTE:
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.
Parameter
Supply Voltage(Com’l & Ind’l)
Min.
4.5
Typ.
5.0
Max.
5.5
GND
Supply Voltage(Com’l & Ind’l)
0
0
0
V
VIH
Input High Voltage
(Com’l & Ind’l)
2.0
—
—
V
Input Low Voltage
(Com’l & Ind’l)
VIL
(1)
Unit
V
—
—
0.8
V
TA
Operating Temperature
Commercial
0
—
+70
°C
TA
Operating Temperature
Industrial
-40
⎯
+85
°C
NOTE:
1. 1.5V undershoots are allowed for 10ns once per cycle.
DC ELECTRICAL CHARACTERISTICS
(Commercial: VCC = 5V ± 10%, TA = 0°C to +70°C; Industrial: VCC = 5V ± 10%, TA = -40°C to +85°C)
IDT72275
IDT72285
Commercial & Industrial(1)
tCLK = 10, 15, 20 ns
Symbol
Parameter
Min.
Max.
Unit
1
µA
ILI(2)
Input Leakage Current
–1
ILO
Output Leakage Current
–10
10
µA
VOH
Output Logic “1” Voltage, IOH = –2 mA
2.4
—
V
(3)
VOL
Output Logic “0” Voltage, IOL = 8 mA
—
0.4
V
ICC1(4,5,6)
Active Power Supply Current
—
90
mA
ICC2(4,7)
Standby Current
—
20
mA
NOTES:
1. Industrial temperature range product for 15ns and 20ns speed grade are available as a standard device.
2 .Measurements with 0.4 ≤ VIN ≤ VCC.
3. OE ≥ VIH, 0.4 ≤ VOUT ≤ VCC.
4. Tested with outputs open (IOUT = 0).
5. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz.
6. Typical ICC1 = 20 + 1.8*fS + 0.02*CL*fS (in mA) with VCC = 5V, tA = 25°C, fS = WCLK frequency = RCLK frequency (in MHz, using TTL levels), data switching at
fS/2, CL = capacitive load (in pF).
7. All Inputs = VCC - 0.2V or GND + 0.2V, except RCLK and WCLK, which toggle at 20 MHz.
CAPACITANCE
(TA = +25°C, f = 1.0MHz)
Symbol
Parameter(1)
Conditions
Max.
Unit
CIN(2)
Input
Capacitance
VIN = 0V
10
pF
COUT(1,2)
Output
Capacitance
VOUT = 0V
10
pF
NOTES:
1. With output deselected, (OE ≥ VIH).
2. Characterized values, not currently tested.
5
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
AC ELECTRICAL CHARACTERISTICS(1)
(Commercial: VCC = 5V ± 10%, TA = 0°C to +70°C; Industrial: VCC = 5V ± 10%,TA = -40°C to +85°C)
Symbol
fS
Parameter
Clock Cycle Frequency
tA
Data Access Time
tCLK
tCLKH
Commercial
IDT72275L10
IDT72285L10
Min.
Max.
—
100
Commercial & Industrial(2)
IDT72275L15
IDT72275L20
IDT72285L15
IDT72285L20
Min.
Max.
Min.
Max.
—
66.7
—
50
Unit
MHz
2
6.5
2
10
2
12
ns
Clock Cycle Time
10
—
15
—
20
—
ns
Clock High Time
4.5
—
6
—
8
—
ns
tCLKL
Clock Low Time
4.5
—
6
—
8
—
ns
tDS
Data Setup Time
3
—
4
—
5
—
ns
tDH
Data Hold Time
0
—
1
—
1
—
ns
tENS
Enable Setup Time
3
—
4
—
5
—
ns
tENH
Enable Hold Time
0
—
1
—
1
—
ns
tLDS
Load Setup Time
3
—
4
—
5
—
ns
tLDH
Load Hold Time
0
—
1
—
1
—
ns
tRS
Reset Pulse Width(3)
10
—
15
—
20
—
ns
tRSS
Reset Setup Time
10
—
15
—
20
—
ns
tRSR
Reset Recovery Time
10
—
15
—
20
—
ns
tRSF
Reset to Flag and Output Time
—
10
—
15
—
20
ns
t FWFT
Mode Select Time
0
—
0
—
0
—
ns
tRTS
Retransmit Setup Time
3
—
4
—
5
—
ns
t OLZ
Output Enable to Output in Low Z(4)
0
—
0
—
0
—
ns
tOE
Output Enable to Output Valid
2
6
3
8
3
10
ns
t OHZ
Output Enable to Output in High Z(4)
2
6
3
8
3
10
ns
t WFF
Write Clock to FF or IR
—
6.5
—
10
—
12
ns
tREF
Read Clock to EF or OR
—
6.5
—
10
—
12
ns
t PAF
Write Clock to PAF
—
6.5
—
10
—
12
ns
tPAE
Read Clock to PAE
—
6.5
—
10
—
12
ns
tHF
Clock to HF
—
16
—
20
—
22
ns
tSKEW1
Skew time between RCLK and WCLK for FF/IR
5
—
6
—
10
—
ns
tSKEW2
Skew time between RCLK and WCLK for PAE and PAF
12
—
15
—
20
—
ns
tSKEW3
Skew time between RCLK and WCLK for EF/OR
60
—
60
—
60
—
ns
NOTES:
1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.
2. Industrial temperature range product fot 15ns and 20ns speed grade are available as a standard device.
3. Pulse widths less than minimum values are not allowed.
4. Values guaranteed by design, not currently tested.
5V
1.1K
D.U.T.
680Ω
AC TEST CONDITIONS
Input Pulse Levels
Input Rise/Fall Times
Input Timing Reference Levels
Output Reference Levels
Output Load
GND to 3.0V
3ns
1.5V
1.5V
See Figure 2
30pF*
4674 drw 04
* Includes jig and scope capacitances.
Figure 2. Output Load
6
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
FUNCTIONAL DESCRIPTION
When configured in IDT Standard mode, the EF and FF outputs are double
register-buffered outputs.
Relevant timing diagrams for IDT Standard mode can be found in Figure
7, 8 and 11.
TIMING MODES
IDT STANDARD VS FIRST WORD FALL THROUGH (FWFT) MODE
The IDT72275/72285 support two different timing modes of operation: IDT
Standard mode or First Word Fall Through (FWFT) mode. The selection of
which mode will operate is determined during Master Reset, by the state of the
FWFT/SI input.
If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard mode
will be selected. This mode uses the Empty Flag (EF) to indicate whether
or not there are any words present in the FIFO. It also uses the Full Flag
function (FF) to indicate whether or not the FIFO has any free space for
writing. In IDT Standard mode, every word read from the FIFO, including
the first, must be requested using the Read Enable (REN) and RCLK.
If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will
be selected. This mode uses Output Ready (OR) to indicate whether or not
there is valid data at the data outputs (Qn). It also uses Input Ready (IR)
to indicate whether or not the FIFO has any free space for writing. In the
FWFT mode, the first word written to an empty FIFO goes directly to Qn after
three RCLK rising edges, REN = LOW is not necessary. Subsequent words
must be accessed using the Read Enable (REN) and RCLK.
Various signals, both input and output signals operate differently depending on which timing mode is in effect.
FIRST WORD FALL THROUGH MODE (FWFT)
In this mode, the status flags, IR, PAF, HF, PAE, and OR operate in the
manner outlined in Table 2. To write data into to the FIFO, WEN must be
LOW. Data presented to the DATA IN lines will be clocked into the FIFO on
subsequent transitions of WCLK. After the first write is performed, the
Output Ready (OR) flag will go LOW. Subsequent writes will continue to fill
up the FIFO. PAE will go HIGH after n + 2 words have been loaded into the
FIFO, where n is the empty offset value. The default setting for this value
is stated in the footnote of Table 2. This parameter is also user programmable. See section on Programmable Flag Offset Loading.
If one continued to write data into the FIFO, and we assumed no read
operations were taking place, the HF would toggle to LOW once the
16,386th word for the IDT72275 and 32,770th word for the IDT72285,
respectively was written into the FIFO. Continuing to write data into the
FIFO will cause the PAF to go LOW. Again, if no reads are performed, the
PAF will go LOW after (32,769-m) writes for the IDT72275 and (65,537-m)
writes for the IDT72285, where m is the full offset value. The default setting
for this value is stated in the footnote of Table 2.
When the FIFO is full, the Input Ready (IR) flag will go HIGH, inhibiting
further write operations. If no reads are performed after a reset, IR will go
HIGH after D writes to the FIFO. D = 32,769 writes for the IDT72275 and
65,537 writes for the IDT72285, respectively. Note that the additional word
in FWFT mode is due to the capacity of the memory plus output register.
If the FIFO is full, the first read operation will cause the IR flag to go LOW.
Subsequent read operations will cause the PAF and HF to go HIGH at the
conditions described in Table 2. If further read operations occur, without
write operations, the PAE will go LOW when there are n + 1 words in the
FIFO, where n is the empty offset value. Continuing read operations will
cause the FIFO to become empty. When the last word has been read from
the FIFO, OR will go HIGH inhibiting further read operations. REN is ignored
when the FIFO is empty.
When configured in FWFT mode, the OR flag output is triple registerbuffered, and the IR flag output is double register-buffered.
Relevant timing diagrams for FWFT mode can be found in Figure 9, 10
and 12.
IDT STANDARD MODE
In this mode, the status flags, FF, PAF, HF, PAE, and EF operate in the
manner outlined in Table 1. To write data into to the FIFO, Write Enable
(WEN) must be LOW. Data presented to the DATA IN lines will be clocked
into the FIFO on subsequent transitions of the Write Clock (WCLK). After the
first write is performed, the Empty Flag (EF) will go HIGH. Subsequent
writes will continue to fill up the FIFO. The Programmable Almost-Empty
flag (PAE) will go HIGH after n + 1 words have been loaded into the FIFO,
where n is the empty offset value. The default setting for this value is stated
in the footnote of Table 1. This parameter is also user programmable. See
section on Programmable Flag Offset Loading.
If one continued to write data into the FIFO, and we assumed no read
operations were taking place, the Half-Full flag (HF) would toggle to LOW
once the 16,385th word for IDT72275 and 32,769th word for IDT72285
respectively was written into the FIFO. Continuing to write data into the
FIFO will cause the Programmable Almost-Full flag (PAF) to go LOW.
Again, if no reads are performed, the PAF will go LOW after (32,768-m)
writes for the IDT72275 and (65,536-m) writes for the IDT72285. The offset
“m” is the full offset value. The default setting for this value is stated in the
footnote of Table 1. This parameter is also user programmable. See section
on Programmable Flag Offset Loading.
When the FIFO is full, the Full Flag (FF) will go LOW, inhibiting further
write operations. If no reads are performed after a reset, FF will go LOW
after D writes to the FIFO. D = 32,768 writes for the IDT72275 and 65,536
for the IDT72285, respectively.
If the FIFO is full, the first read operation will cause FF to go HIGH.
Subsequent read operations will cause PAF and HF to go HIGH at the
conditions described in Table 1. If further read operations occur, without
write operations, PAE will go LOW when there are n words in the FIFO,
where n is the empty offset value. Continuing read operations will cause the
FIFO to become empty. When the last word has been read from the FIFO,
the EF will go LOW inhibiting further read operations. REN is ignored when the
FIFO is empty.
PROGRAMMING FLAG OFFSETS
Full and Empty Flag offset values are user programmable. The IDT72275/
72285 has internal registers for these offsets. Default settings are stated in
the footnotes of Table 1 and Table 2. Offset values can be programmed into
the FIFO in one of two ways; serial or parallel loading method. The selection
of the loading method is done using the LD (Load) pin. During Master Reset,
the state of the LD input determines whether serial or parallel flag offset
programming is enabled. A HIGH on LD during Master Reset selects serial
loading of offset values and in addition, sets a default PAE offset value of
3FFH (a threshold 1,023 words from the empty boundary), and a default
PAF offset value of 3FFH (a threshold 1,023 words from the full boundary).
A LOW on LD during Master Reset selects parallel loading of offset values,
and in addition, sets a default PAE offset value of 07FH (a threshold 127
words from the empty boundary), and a default PAF offset value of 07FH
(a threshold 127 words from the full boundary). See Figure 3, Offset Register
Location and Default Values.
7
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
In addition to loading offset values into the FIFO, it also possible to read the
current offset values. It is only possible to read offset values via parallel read.
Figure 4, Programmable Flag Offset Programming Sequence, summarizes
the control pins and sequence for both serial and parallel programming modes.
For a more detailed description, see discussion that follows.
The offset registers may be programmed (and reprogrammed) any time
after Master Reset, regardless of whether serial or parallel programming
has been selected.
TABLE 1 — STATUS FLAGS FOR IDT STANDARD MODE
Number of
Words in
FIFO
IDT72275
IDT72285
FF
PAF
HF
PAE
EF
0
0
H
H
H
L
L
1 to n(1)
H
H
H
L
H
(n + 1) to 16,384
(n + 1) to 32,768
H
H
H
H
H
16,385 to (32,768-(m+1))
32,769 to (65,536-(m+1))
H
H
L
H
H
(65,536-m)(2) to 65,535
H
L
L
H
H
65,536
L
L
L
H
H
1 to n
(1)
(2) to 32,767
(32,768-m)
32,768
NOTES:
1. n = Empty Offset, Default Values: n = 127 when parallel offset loading is selected or n = 1,023 when serial offset loading is selected.
2. m = Full Offset, Default Values: m = 127 when parallel offset loading is selected or m = 1,023 when serial offset loading is selected.
TABLE 2 — STATUS FLAGS FOR FWFT MODE
Number of
Words in
FIFO(1)
IDT72275
IDT72285
IR
PAF
HF
PAE
OR
0
0
L
H
H
L
H
1 to n+ 1(1)
L
H
H
L
L
(n + 2) to 32,769
L
H
H
H
L
1 to n+ 1
(1)
(n + 2) to 16,385
16,386 to
(32,769-(m+1))(2)
32,770 to
(65,537-(m+1))(2)
L
H
L
H
L
(32,769-m) to 32,768
(65,537-m) to 65,536
L
L
L
H
L
32,769
65,537
H
L
L
H
L
NOTES:
1. n = Empty Offset, Default Values: n = 127 when parallel offset loading is selected or n = 1,023 when serial offset loading is selected.
2. m = Full Offset, Default Values: m = 127 when parallel offset loading is selected or m = 1,023 when serial offset loading is selected.
8
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
IDT72275 (32,768 x 18 ⎯ BIT)
17
IDT72285 (65,536 x 18 ⎯ BIT)
15 14
0
17
16 15
EMPTY OFFSET REGISTER
EMPTY OFFSET REGISTER
DEFAULT VALUE
007FH if LD is LOW at Master Reset,
03FFH if LD is HIGH at Master Reset
17
0
DEFAULT VALUE
007FH if LD is LOW at Master Reset,
03FFH if LD is HIGH at Master Reset
0
15 14
17
0
16 15
FULL OFFSET REGISTER
FULL OFFSET REGISTER
DEFAULT VALUE
007FH if LD is LOW at Master Reset,
03FFH if LD is HIGH at Master Reset
DEFAULT VALUE
007FH if LD is LOW at Master Reset,
03FFH if LD is HIGH at Master Reset
4674 drw06
Figure 3. Offset Register Location and Default Values
LD
WEN
REN
SEN
0
0
1
1
0
1
0
1
0
1
1
0
X
1
1
1
1
0
X
X
1
X
0
X
X
1
1
1
X
X
WCLK
IDT72275
IDT72285
RCLK
X
Parallel write to registers:
Empty Offset
Full Offset
Parallel read from registers:
Empty Offset
Full Offset
X
X
X
Serial shift into registers:
30 bits for the IDT72275
32 bits for the IDT72285
1 bit for each rising WCLK edge
Starting with Empty Offset (LSB)
Ending with Full Offset (MSB)
X
No Operation
X
Write Memory
Read Memory
X
No Operation
4674 drw07
NOTES:
1. The programming method can only be selected at Master Reset.
2. Parallel reading of the offset registers is always permitted regardless of which programming method has been selected.
3. The programming sequence applies to both IDT Standard and FWFT modes.
Figure 4. Programmable Flag Offset Programming Sequence
9
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
SERIAL PROGRAMMING MODE
If Serial Programming mode has been selected, as described above,
then programming of PAE and PAF values can be achieved by using a
combination of the LD, SEN, WCLK and SI input pins. Programming PAE
and PAF proceeds as follows: when LD and SEN are set LOW, data on the SI
input are written, one bit for each WCLK rising edge, starting with the Empty Offset
LSB and ending with the Full Offset MSB. A total of 30 bits for the IDT72275 and
32 bits for the IDT72285. See Figure 13, Serial Loading of Programmable Flag
Registers, for the timing diagram for this mode.
Using the serial method, individual registers cannot be programmed selectively. PAE and PAF can show a valid status only after the complete set of bits
(for all offset registers) has been entered. The registers can be reprogrammed
as long as the complete set of new offset bits is entered. When LD is LOW and
SEN is HIGH, no serial write to the registers can occur.
Write operations to the FIFO are allowed before and during the serial
programming sequence. In this case, the programming of all offset bits does not
have to occur at once. A select number of bits can be written to the SI input and
then, by bringing LD and SEN HIGH, data can be written to FIFO memory via
Dn by toggling WEN. When WEN is brought HIGH with LD and SEN restored
to a LOW, the next offset bit in sequence is written to the registers via SI. If an
interruption of serial programming is desired, it is sufficient either to set LD LOW
and deactivate SEN or to set SEN LOW and deactivate LD. Once LD and SEN
are both restored to a LOW level, serial offset programming continues.
From the time serial programming has begun, neither partial flag will be valid
until the full set of bits required to fill all the offset registers has been written.
Measuring from the rising WCLK edge that achieves the above criteria; PAF
will be valid after two more rising WCLK edges plus tPAF, PAE will be valid after
the next two rising RCLK edges plus tPAE plus tSKEW2.
It is not possible to read the flag offset values in a serial mode.
the register(s) pertaining to that flag. Measuring from the rising WCLK edge that
achieves the above criteria; PAF will be valid after two more rising WCLK edges
plus tPAF, PAE will be valid after the next two rising RCLK edges plus tPAE plus
tSKEW2.
The act of reading the offset registers employs a dedicated read offset
register pointer. The contents of the offset registers can be read on the Q0-Qn
pins when LD is set LOW and REN is set LOW. Data are read via Qn from the
Empty Offset Register on the first LOW-to-HIGH transition of RCLK. Upon the
second LOW-to-HIGH transition of RCLK, data are read from the Full Offset
Register. The third transition of RCLK reads, once again, from the Empty Offset
Register. See Figure 15, Parallel Read of Programmable Flag Registers, for
the timing diagram for this mode.
It is permissible to interrupt the offset register read sequence with reads
or writes to the FIFO. The interruption is accomplished by deasserting REN,
LD, or both together. When REN and LD are restored to a LOW level, reading
of the offset registers continues where it left off. It should be noted, and care should
be taken from the fact that when a parallel read of the flag offsets is performed,
the data word that was present on the output lines Qn will be overwritten.
Parallel reading of the offset registers is always permitted regardless of which
timing mode (IDT Standard or FWFT modes) has been selected.
RETRANSMIT OPERATION
The Retransmit operation allows data that has already been read to be
accessed again. There are two stages: first, a setup procedure that resets the
read pointer to the first location of memory, then the actual retransmit, which
consists of reading out the memory contents, starting at the beginning of memory.
Retransmit setup is initiated by holding RT LOW during a rising RCLK edge.
REN and WEN must be HIGH before bringing RT LOW. At least one word, but
no more than D - 2 words should have been written into the FIFO between Reset
(Master or Partial) and the time of Retransmit setup. D = 32,768 for the
IDT72275 and D = 65,536 for the IDT72285. In FWFT mode, D = 32,769 for
the IDT72275 and D= 65,537 for the IDT72285.
If IDT Standard mode is selected, the FIFO will mark the beginning of the
Retransmit setup by setting EF LOW. The change in level will only be noticeable
if EF was HIGH before setup. During this period, the internal read pointer is
initialized to the first location of the RAM array.
When EF goes HIGH, Retransmit setup is complete and read operations
may begin starting with the first location in memory. Since IDT Standard mode
is selected, every word read including the first word following Retransmit setup
requires a LOW on REN to enable the rising edge of RCLK. See Figure 11,
Retransmit Timing (IDT Standard Mode), for the relevant timing diagram.
If FWFT mode is selected, the FIFO will mark the beginning of the Retransmit
setup by setting OR HIGH. During this period, the internal read pointer is set
to the first location of the RAM array.
When OR goes LOW, Retransmit setup is complete; at the same time, the
contents of the first location appear on the outputs. Since FWFT mode is selected,
the first word appears on the outputs, no LOW on REN is necessary. Reading
all subsequent words requires a LOW on REN to enable the rising edge of
RCLK. See Figure 12, Retransmit Timing (FWFT Mode), for the relevant timing
diagram.
For either IDT Standard mode or FWFT mode, updating of the PAE, HF and
PAF flags begin with the rising edge of RCLK that RT is setup. PAE is
synchronized to RCLK, thus on the second rising edge of RCLK after RT is setup,
the PAE flag will be updated. HF is asynchronous, thus the rising edge of RCLK
that RT is setup will update HF. PAF is synchronized to WCLK, thus the second
rising edge of WCLK that occurs tSKEW after the rising edge of RCLK that RT
is setup will update PAF. RT is synchronized to RCLK.
PARALLEL MODE
If Parallel Programming mode has been selected, as described above,
then programming of PAE and PAF values can be achieved by using a
combination of the LD, WCLK , WEN and Dn input pins. Programming PAE and
PAF proceeds as follows: when LD and WEN are set LOW, data on the inputs
Dn are written into the Empty Offset Register on the first LOW-to-HIGH transition
of WCLK. Upon the second LOW-to-HIGH transition of WCLK, data are written
into the Full Offset Register. The third transition of WCLK writes, once again, to
the Empty Offset Register. See Figure 14, Parallel Loading of Programmable
Flag Registers, for the timing diagram for this mode.
The act of writing offsets in parallel employs a dedicated write offset register
pointer. The act of reading offsets employs a dedicated read offset register
pointer. The two pointers operate independently; however, a read and a write
should not be performed simultaneously to the offset registers. A Master Reset
initializes both pointers to the Empty Offset (LSB) register. A Partial Reset has
no effect on the position of these pointers.
Write operations to the FIFO are allowed before and during the parallel
programming sequence. In this case, the programming of all offset registers
does not have to occur at one time. One, two or more offset registers can be
written and then by bringing LD HIGH, write operations can be redirected to
the FIFO memory. When LD is set LOW again, and WEN is LOW, the next offset
register in sequence is written to. As an alternative to holding WEN LOW and
toggling LD, parallel programming can also be interrupted by setting LD LOW
and toggling WEN.
Note that the status of a partial flag (PAE or PAF) output is invalid during the
programming process. From the time parallel programming has begun, a partial
flag output will not be valid until the appropriate offset word has been written to
10
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
SIGNAL DESCRIPTION
INPUTS:
DATA IN (D0 - D17)
Data inputs for 18-bit wide data.
CONTROLS:
MASTER RESET (MRS)
A Master Reset is accomplished whenever the MRS input is taken to a LOW
state. This operation sets the internal read and write pointers to the first location
of the RAM array. PAE will go LOW, PAF will go HIGH, and HF will go HIGH.
If FWFT is LOW during Master Reset then the IDT Standard mode, along
with EF and FF are selected. EF will go LOW and FF will go HIGH. If FWFT
is HIGH, then the First Word Fall Through mode (FWFT), along with IR and
OR, are selected. OR will go HIGH and IR will go LOW.
If LD is LOW during Master Reset, then PAE is assigned a threshold 127
words from the empty boundary and PAF is assigned a threshold 127 words
from the full boundary; 127 words corresponds to an offset value of 07FH.
Following Master Reset, parallel loading of the offsets is permitted, but not serial
loading.
If LD is HIGH during Master Reset, then PAE is assigned a threshold 1,023
words from the empty boundary and PAF is assigned a threshold 1,023 words
from the full boundary; 1,023 words corresponds to an offset value of 3FFH.
Following Master Reset, serial loading of the offsets is permitted, but not parallel
loading.
Parallel reading of the registers is always permitted. (See section describing
the LD pin for further details.)
During a Master Reset, the output register is initialized to all zeroes. A Master
Reset is required after power up, before a write operation can take place. MRS
is asynchronous.
See Figure 5, Master Reset Timing, for the relevant timing diagram.
PARTIAL RESET (PRS)
A Partial Reset is accomplished whenever the PRS input is taken to a LOW
state. As in the case of the Master Reset, the internal read and write pointers
are set to the first location of the RAM array, PAE goes LOW, PAF goes HIGH,
and HF goes HIGH.
Whichever mode is active at the time of Partial Reset, IDT Standard mode or
First Word Fall Through, that mode will remain selected. If the IDT Standard
mode is active, then FF will go HIGH and EF will go LOW. If the First Word Fall
Through mode is active, then OR will go HIGH, and IR will go LOW.
Following Partial Reset, all values held in the offset registers remain
unchanged. The programming method (parallel or serial) currently active at the
time of Partial Reset is also retained. The output register is initialized to all zeroes.
PRS is asynchronous.
A Partial Reset is useful for resetting the device during the course of operation,
when reprogramming partial flag offset settings may not be convenient.
See Figure 6, Partial Reset Timing, for the relevant timing diagram.
RETRANSMIT (RT)
The Retransmit operation allows data that has already been read to be
accessed again. There are two stages: first, a setup procedure that resets the
read pointer to the first location of memory, then the actual retransmit, which
consists of reading out the memory contents, starting at the beginning of the
memory.
Retransmit setup is initiated by holding RT LOW during a rising RCLK edge.
REN and WEN must be HIGH before bringing RT LOW.
If IDT Standard mode is selected, the FIFO will mark the beginning of the
Retransmit setup by setting EF LOW. The change in level will only be noticeable
if EF was HIGH before setup. During this period, the internal read pointer is
initialized to the first location of the RAM array.
When EF goes HIGH, Retransmit setup is complete and read operations may
begin starting with the first location in memory. Since IDT Standard mode is
selected, every word read including the first word following Retransmit setup
requires a LOW on REN to enable the rising edge of RCLK. See Figure 11,
Retransmit Timing (IDT Standard Mode), for the relevant timing diagram.
If FWFT mode is selected, the FIFO will mark the beginning of the Retransmit
setup by setting OR HIGH. During this period, the internal read pointer is set
to the first location of the RAM array.
When OR goes LOW, Retransmit setup is complete; at the same time, the
contents of the first location appear on the outputs. Since FWFT mode is selected,
the first word appears on the outputs, no LOW on REN is necessary. Reading
all subsequent words requires a LOW on REN to enable the rising edge of
RCLK. See Figure 12, Retransmit Timing (FWFT Mode), for the relevant timing
diagram.
FIRST WORD FALL THROUGH/SERIAL IN (FWFT/SI)
This is a dual purpose pin. During Master Reset, the state of the FWFT/SI
input determines whether the device will operate in IDT Standard mode or First
Word Fall Through (FWFT) mode.
If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard mode will
be selected. This mode uses the Empty Flag (EF) to indicate whether or not there
are any words present in the FIFO memory. It also uses the Full Flag function
(FF) to indicate whether or not the FIFO memory has any free space for writing.
In IDT Standard mode, every word read from the FIFO, including the first, must
be requested using the Read Enable (REN) and RCLK.
If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will be
selected. This mode uses Output Ready (OR) to indicate whether or not there
is valid data at the data outputs (Qn). It also uses Input Ready (IR) to indicate
whether or not the FIFO memory has any free space for writing. In the FWFT
mode, the first word written to an empty FIFO goes directly to Qn after three RCLK
rising edges, REN = LOW is not necessary. Subsequent words must be
accessed using the Read Enable (REN) and RCLK.
After Master Reset, FWFT/SI acts as a serial input for loading PAE and PAF
offsets into the programmable registers. The serial input function can only be
used when the serial loading method has been selected during Master Reset.
Serial programming using the FWFT/SI pin functions the same way in both IDT
Standard and FWFT modes.
WRITE CLOCK (WCLK)
A write cycle is initiated on the rising edge of the WCLK input. Data setup and
hold times must be met with respect to the LOW-to-HIGH transition of the WCLK.
It is permissible to stop the WCLK. Note that while WCLK is idle, the FF/IR, PAF
and HF flags will not be updated. (Note that WCLK is only capable of updating
HF flag to LOW.) The Write and Read Clocks can either be independent or
coincident.
WRITE ENABLE (WEN)
When the WEN input is LOW, data may be loaded into the FIFO RAM array
on the rising edge of every WCLK cycle if the device is not full. Data is stored
in the RAM array sequentially and independently of any ongoing read
operation.
When WEN is HIGH, no new data is written in the RAM array on each WCLK
cycle.
11
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
selected can be used to write to the registers. Offset registers can be read only
in parallel. A LOW on LD during Master Reset selects a default PAE offset value
of 07FH (a threshold 127 words from the empty boundary), a default PAF offset
value of 07FH (a threshold 127 words from the full boundary), and parallel
loading of other offset values. A HIGH on LD during Master Reset selects a
default PAE offset value of 3FFH (a threshold 1,023 words from the empty
boundary), a default PAF offset value of 3FFH (a threshold 1,023 words from
the full boundary), and serial loading of other offset values.
After Master Reset, the LD pin is used to activate the programming process
of the flag offset values PAE and PAF. Pulling LD LOW will begin a serial loading
or parallel load or read of these offset values. See Figure 4, Programmable Flag
Offset Programming Sequence.
To prevent data overflow in the IDT Standard mode, FF will go LOW,
inhibiting further write operations. Upon the completion of a valid read cycle, FF
will go HIGH allowing a write to occur. The FF is updated by two WCLK cycles
+ tSKEW after the RCLK cycle.
To prevent data overflow in the FWFT mode, IR will go HIGH, inhibiting
further write operations. Upon the completion of a valid read cycle, IR will go
LOW allowing a write to occur. The IR flag is updated by two WCLK cycles +
tSKEW after the valid RCLK cycle.
WEN is ignored when the FIFO is full in either FWFT or IDT Standard mode.
READ CLOCK (RCLK)
A read cycle is initiated on the rising edge of the RCLK input. Data can be
read on the outputs, on the rising edge of the RCLK input. It is permissible to
stop the RCLK. Note that while RCLK is idle, the EF/OR, PAE and HF flags will
not be updated. (Note that RCLK is only capable of updating the HF flag to
HIGH.) The Write and Read Clocks can be independent or coincident.
OUTPUTS:
FULL FLAG (FF/IR)
This is a dual purpose pin. In IDT Standard mode, the Full Flag (FF) function
is selected. When the FIFO is full, FF will go LOW, inhibiting further write
operations. When FF is HIGH, the FIFO is not full. If no reads are performed
after a reset (either MRS or PRS), FF will go LOW after D writes to the FIFO
(D = 32,768 for the IDT72275 and 65,536 for the IDT72285). See Figure 7,
Write Cycle and Full Flag Timing (IDT Standard Mode), for the relevant timing
information.
In FWFT mode, the Input Ready (IR) function is selected. IR goes LOW when
memory space is available for writing in data. When there is no longer any free
space left, IR goes HIGH, inhibiting further write operations. If no reads are
performed after a reset (either MRS or PRS), IR will go HIGH after D writes to
the FIFO (D = 32,769 for the IDT72275 and 65,537 for the IDT72285) See
Figure 9, Write Timing (FWFT Mode), for the relevant timing information.
The IR status not only measures the contents of the FIFO memory, but also
counts the presence of a word in the output register. Thus, in FWFT mode, the
total number of writes necessary to deassert IR is one greater than needed to
assert FF in IDT Standard mode.
FF/IR is synchronous and updated on the rising edge of WCLK. FF/IR are
double register-buffered outputs.
READ ENABLE (REN)
When Read Enable is LOW, data is loaded from the RAM array into the output
register on the rising edge of every RCLK cycle if the device is not empty.
When the REN input is HIGH, the output register holds the previous data and
no new data is loaded into the output register. The data outputs Q0-Qn maintain
the previous data value.
In the IDT Standard mode, every word accessed at Qn, including the first
word written to an empty FIFO, must be requested using REN. When the last
word has been read from the FIFO, the Empty Flag (EF) will go LOW, inhibiting
further read operations. REN is ignored when the FIFO is empty. Once a write
is performed, EF will go HIGH allowing a read to occur. The EF flag is updated
by two RCLK cycles + tSKEW after the valid WCLK cycle.
In the FWFT mode, the first word written to an empty FIFO automatically goes
to the outputs Qn, on the third valid LOW to HIGH transition of RCLK + tSKEW
after the first write. REN does not need to be asserted LOW. In order to access
all other words, a read must be executed using REN. The RCLK LOW to HIGH
transition after the last word has been read from the FIFO, Output Ready (OR)
will go HIGH with a true read (RCLK with REN = LOW), inhibiting further read
operations. REN is ignored when the FIFO is empty.
EMPTY FLAG (EF/OR)
This is a dual purpose pin. In the IDT Standard mode, the Empty Flag (EF)
function is selected. When the FIFO is empty, EF will go LOW, inhibiting further
read operations. When EF is HIGH, the FIFO is not empty. See Figure 8, Read
Cycle, Empty Flag and First Word Latency Timing (IDT Standard Mode), for
the relevant timing information.
In FWFT mode, the Output Ready (OR) function is selected. OR goes LOW
at the same time that the first word written to an empty FIFO appears valid on
the outputs. OR stays LOW after the RCLK LOW to HIGH transition that shifts the
last word from the FIFO memory to the outputs. OR goes HIGH only with a true
read (RCLK with REN = LOW). The previous data stays at the outputs, indicating
the last word was read. Further data reads are inhibited until OR goes LOW
again. See Figure 10, Read Timing (FWFT Mode), for the relevant timing
information.
EF/OR is synchronous and updated on the rising edge of RCLK.
In IDT Standard mode, EF is a double register-buffered output. In FWFT
mode, OR is a triple register-buffered output.
SERIAL ENABLE (SEN)
The SEN input is an enable used only for serial programming of the offset
registers. The serial programming method must be selected during Master
Reset. SEN is always used in conjunction with LD. When these lines are both
LOW, data at the SI input can be loaded into the program register one bit for each
LOW-to-HIGH transition of WCLK. (See Figure 4.)
When SEN is HIGH, the programmable registers retains the previous settings
and no offsets are loaded. SEN functions the same way in both IDT Standard
and FWFT modes.
OUTPUT ENABLE (OE)
When Output Enable is enabled (LOW), the parallel output buffers receive
data from the output register. When OE is HIGH, the output data bus (Qn) goes
into a high impedance state.
LOAD (LD)
This is a dual purpose pin. During Master Reset, the state of the LD input
determines one of two default offset values (127 or 1,023) for the PAE and PAF
flags, along with the method by which these offset registers can be programmed,
parallel or serial. After Master Reset, LD enables write operations to and read
operations from the offset registers. Only the offset loading method currently
PROGRAMMABLE ALMOST-FULL FLAG (PAF)
The Programmable Almost-Full flag (PAF) will go LOW when the FIFO
reaches the almost-full condition. In IDT Standard mode, if no reads are
performed after reset (MRS), PAF will go LOW after (D - m) words are written
to the FIFO. The PAF will go LOW after (32,768-m) writes for the IDT72275 and
12
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
(65,536-m) writes for the IDT72285. The offset “m” is the full offset value. The
default setting for this value is stated in the footnote of Table 1.
In FWFT mode, the PAF will go LOW after (32,769-m) writes for the IDT72275
and (65,537-m) writes for the IDT72285, where m is the full offset value. The
default setting for this value is stated in the footnote of Table 2.
See Figure 16, Programmable Almost-Full Flag Timing (IDT Standard and
FWFT Mode), for the relevant timing information.
PAF is synchronous and updated on the rising edge of WCLK.
PROGRAMMABLE ALMOST-EMPTY FLAG (PAE)
The Programmable Almost-Empty flag (PAE) will go LOW when the FIFO
reaches the almost-empty condition. In IDT Standard mode, PAE will go LOW
when there are n words or less in the FIFO. The offset “n” is the empty offset
value. The default setting for this value is stated in the footnote of Table 1.
In FWFT mode, the PAE will go LOW when there are n+1 words or less
in the FIFO. The default setting for this value is stated in the footnote of
Table 2.
See Figure 17, Programmable Almost-Empty Flag Timing (IDT Standard
and FWFT Mode), for the relevant timing information.
PAE is synchronous and updated on the rising edge of RCLK.
HALF-FULL FLAG (HF)
This output indicates a half-full FIFO. The rising WCLK edge that fills the FIFO
beyond half-full sets HF LOW. The flag remains LOW until the difference between
the write and read pointers becomes less than or equal to half of the total depth
of the device; the rising RCLK edge that accomplishes this condition sets HF
HIGH.
In IDT Standard mode, if no reads are performed after reset (MRS or PRS),
HF will go LOW after ((D/2) + 1) writes to the FIFO, where D = 32,768 for the
IDT72275 and 65,536 for the IDT72285.
In FWFT mode, if no reads are performed after reset (MRS or PRS), HF will
go LOW after ((D-1)/2 + 2) writes to the FIFO, where D = 32,769 for the
IDT72275 and 65,537 for the IDT72285.
See Figure 18, Half-Full Flag Timing (IDT Standard and FWFT Modes),
for the relevant timing information. Because HF is updated by both RCLK and
WCLK, it is considered asynchronous.
DATA OUTPUTS (Q0-Q17)
(Q0 - Q17) are data outputs for 18-bit wide data.
13
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
tRS
MRS
tRSS
tRSR
tRSS
tRSR
REN
WEN
tRSR
tFWFT
FWFT/SI
tRSS
tRSR
LD
tRSS
RT
tRSS
SEN
If FWFT = HIGH, OR = HIGH
tRSF
EF/OR
If FWFT = LOW, EF = LOW
tRSF
If FWFT = LOW, FF = HIGH
FF/IR
If FWFT = HIGH, IR = LOW
tRSF
PAE
tRSF
PAF, HF
tRSF
OE = HIGH
Q0 - Qn
OE = LOW
Figure 5. Master Reset Timing
14
4674 drw 08
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
PRS
tRS
tRSS
tRSR
tRSS
tRSR
REN
WEN
tRSS
RT
tRSS
SEN
If FWFT = HIGH, OR = HIGH
tRSF
EF/OR
If FWFT = LOW, EF = LOW
If FWFT = LOW, FF = HIGH
tRSF
FF/IR
If FWFT = HIGH, IR = LOW
tRSF
PAE
tRSF
PAF, HF
tRSF
OE = HIGH
Q 0 - Qn
OE = LOW
Figure 6. Partial Reset Timing
15
4674 drw09
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
tCLK
tCLKH
NO WRITE
WCLK
2
1
tSKEW1
NO WRITE
tCLKL
1
(1)
(1)
tDS
D0 - Dn
2
tSKEW1
tDH
tDS
tDH
DX
DX+1
tWFF
tWFF
tWFF
tWFF
FF
WEN
RCLK
tENS
tENS
tENH
tENH
REN
tA
Q0 - Qn
tA
DATA IN OUTPUT REGISTER
DATA READ
NEXT DATA READ
4674 drw10
NOTES:
1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that FF will go high (after one WCLK cycle plus tWFF). If the time
between the rising edge of the RCLK and the rising edge of the WCLK is less than tSKEW1, then the FF deassertion may be delayed one extra WCLK cycle.
2. LD = HIGH, OE = LOW, EF = HIGH
Figure 7. Write Cycle and Full Flag Timing (IDT Standard Mode)
tCLK
tCLKH
RCLK
1
tENS
tCLKL
2
tENS
tENH
REN
tENH
tENH
tENS
NO OPERATION
NO OPERATION
tREF
tREF
tREF
EF
tA
tA
Q0 - Qn
LAST WORD
tOLZ
OE
LAST WORD
tA
D0
D1
tOLZ
tOHZ
tOE
(1)
tSKEW3
WCLK
tENS
tENH
tENS
tENH
tDHS
tDS
tDH
WEN
tDS
D0 - Dn
D0
D1
4674 drw 11
NOTES:
1. tSKEW3 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that EF will go HIGH (after one RCLK cycle plus tREF). If the time between
the rising edge of WCLK and the rising edge of RCLK is less than tSKEW3, then EF deassertion may be delayed one extra RCLK cycle.
2. LD = HIGH
Figure 8. Read Cycle, Empty Flag and First Data Word Latency Timing (IDT Standard Mode)
16
17
tDS
W2
1
tSKEW3(1)
tDH
2
DATA IN OUTPUT REGISTER
W1
tENS
W3
3
tREF
tA
W4
tDS
W1
W[n +2]
W[n+3]
1
tPAE
tSKEW2(2)
2
W[n+4]
W[
tDS
]
D-1 +1
2
W[
]
D-1 +2
2
tHF
W[
]
D-1 +3
2
W[D-m-2]
tDS
W[D-m-1]
W[D-m]
1
tPAF
W[D-m+1]
W[D-m+2]
W[D-1]
WD
Figure 9. Write Timing (First Word Fall Through Mode)
tENH
4674 drw12
tWFF
NOTES:
1. tSKEW3 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that OR will go LOW after two RCLK cycles plus tREF. If the time between the rising edge of WCLK and the rising
edge of RCLK is less than tSKEW3, then OR assertion may be delayed one extra RCLK cycle.
2. tSKEW2 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that PAE will go HIGH after one RCLK cycle plus tPAE. If the time between the rising edge of WCLK and the rising
edge of RCLK is less than tSKEW2, then the PAE deassertion may be delayed one extra RCLK cycle.
3. LD = HIGH, OE = LOW
4. n = PAE offset, m = PAF offset and D = maximum FIFO depth.
5. D = 32,769 for IDT72275 and 65,537 for IDT72285.
IR
PAF
HF
PAE
OR
Q0 - Q17
REN
RCLK
D0 - D17
WEN
WCLK
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
18
tDS
tENS
W1
tOHZ
WD
tENS
tWFF
tDH
tENH
W1
tOE
tA
W2
1
(1)
tSKEW1
tA
2
tWFF
W3
(2)
Wm+2
tSKEW2
W[m+3]
tA
tPAF
W[m+4]
W[
D-1
]
tHF
W[
tA
D-1
]
W[D-n-1]
tA
W[D-n]
tPAE
W[D-n+1]
W[D-n+2]
W[D-1]
tA
tENS
WD
Figure 10. Read Timing (First Word Fall Through Mode)
4674 drw 13
tREF
NOTES:
1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that IR will go LOW after one WCLK cycle plus tWFF. If the time between the rising edge of RCLK and the rising
edge of WCLK is less than tSKEW1, then the IR assertion may be delayed one extra WCLK cycle.
2. tSKEW2 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that PAF will go HIGH after one WCLK cycle plus tPAF. If the time between the rising edge of RCLK and the rising
edge of WCLK is less than tSKEW2, then the PAF deassertion may be delayed one extra WCLK cycle.
3. LD = HIGH
4. n = PAE Offset, m = PAF offset and D = maximum FIFO depth.
5. D = 32,769 for IDT72275 and 65,537 for IDT72285.
IR
PAF
HF
PAE
OR
Q0 - Q17
OE
REN
RCLK
D0 - D17
WEN
WCLK
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
2
1
RCLK
tENS
tENH
tENS
tRTS
tENH
REN
tA
Q0 - Qn
tA
Wx
tA
Wx+1
W1
(3)
W2
(3)
tSKEW2
1
WCLK
2
tRTS
WEN
tENS
tENH
RT
tREF
tREF
(5)
EF
tPAE
PAE
tHF
HF
tPAF
PAF
4674 drw 14
NOTES:
1. Retransmit setup is complete after EF returns HIGH, only then can a read operation begin.
2. OE = LOW.
3. W1 = first word written to the FIFO after Master Reset, W2 = second word written to the FIFO after Master Reset.
4. No more than D - 2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, FF will be HIGH throughout the Retransmit
setup procedure. D = 32,768 for IDT72275 and 65,536 for IDT72285.
5. EF goes HIGH at 60 ns + 1 RCLK cycle + t REF.
Figure 11. Retransmit Timing (IDT Standard Mode)
19
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
1
RCLK
tENH
tENS
3
2
4
tENH
tENH
tRTS
REN
tA
Q0 - Qn
Wx
Wx+1
tA
W1
(4)
W2
W3
tSKEW2
1
WCLK
2
tRTS
WEN
tENS
tENH
RT
tREF (5)
tREF
OR
tPAE
PAE
tHF
HF
tPAF
PAF
4674 drw 15
NOTES:
1. Retransmit setup is complete after OR returns LOW.
2. No more than D - 2 words may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, IR will be LOW throughout the Retransmit
setup procedure. D = 32,769 for the IDT72275 and 65,537 for the IDT72285.
3. OE = LOW
4. W1, W2, W3 = first, second and third words written to the FIFO after Master Reset.
5. OR goes LOW at 60 ns + 2 RCLK cycles + tREF.
Figure 12. Retransmit Timing (FWFT Mode)
WCLK
t ENS
tENH
tENH
SEN
tLDS
tLDH
tLDH
LD
tDH
tDS
SI
BIT 0
BIT X
(1)
EMPTY OFFSET
BIT 0
BIT X
FULL OFFSET
NOTE:
1. X = 14 for the IDT72275 and X = 15 for the IDT72285.
Figure 13. Serial Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)
20
(1)
4674 drw 16
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
t CLK
t CLKH
t CLKL
WCLK
t LDS
t LDH
t LDH
t ENS
t ENH
t ENH
LD
WEN
t DS
t DH
t DH
PAE
OFFSET
D0 - D15
PAF
OFFSET
4674 drw 17
Figure 14. Parallel Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)
tCLK
tCLKH
tCLKL
RCLK
tLDS
tLDH
tLDH
LD
tENS
tENH
tENH
REN
tA
tA
DATA IN OUTPUT
REGISTER
Q0 - Q15
PAE
OFFSET
PAF
OFFSET
4674 drw18
NOTE:
1. OE = LOW
Figure 15. Parallel Read of Programmable Flag Registers (IDT Standard and FWFT Modes)
t CLKH
t CLKL
WCLK
1
t ENS
1
2
2
t ENH
WEN
t PAF
PAF
t PAF
D - m words in FIFO(2)
D - (m+1) words in FIFO(2)
t SKEW2
(3)
D-(m+1) words
in FIFO(2)
RCLK
t ENS
t ENH
REN
4674 drw 19
NOTES:
1. m = PAF offset .
2. D = maximum FIFO depth.
In IDT Standard mode: D = 32,768 for the IDT72275 and 65,536 for the IDT72285.
In FWFT mode: D = 32,769 for the IDT72275 and 65,537 for the IDT72285.
3. tSKEW2 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that PAF will go HIGH (after one WCLK cycle plus tPAF). If the time
between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW2, then the PAF deassertion time may be delayed one extra WCLK cycle.
4. PAF is asserted and updated on the rising edge of WCLK only.
Figure 16. Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)
21
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
t CLKH
t CLKL
WCLK
t ENS
t ENH
WEN
PAE
n words in FIFO (2),
n+1 words in FIFO (3)
t SKEW2 (4)
RCLK
n+1 words in FIFO
n+2 words in FIFO
t PAE
1
n words in FIFO (2),
n+1 words in FIFO (3)
(2)
,
(3)
t PAE
2
1
t ENS
2
t ENH
REN
4674 drw 20
NOTES:
1. n = PAE offset.
2. For IDT Standard mode
3. For FWFT mode.
4. tSKEW2 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that PAE will go HIGH (after one RCLK cycle plus tPAE). If the time
between the rising edge of WCLK and the rising edge of RCLK is less than tSKEW2, then the PAE deassertion may be delayed one extra RCLK cycle.
5. PAE is asserted and updated on the rising edge of WCLK only.
Figure 17. Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)
tCLKH
tCLKL
WCLK
tENH
tENS
WEN
tHF
HF
D/2 + 1 words in FIFO(1),
D/2 words in FIFO(1),
[D-1
2
[D-1
2
]
+ 1 words in FIFO(2)
]
+ 2 words in FIFO(2)
D/2 words in FIFO(1),
[D-1
2
]
+ 1 words in FIFO(2)
tHF
RCLK
tENS
REN
4674 drw 21
NOTES:
1. For IDT Standard mode: D = maximum FIFO depth. D = 32,768 for the IDT72275 and 65,536 for the IDT72285.
2. For FWFT mode: D = maximum FIFO depth. D = 32,769 for the IDT72275 and 65,537 for the IDT72285.
Figure 18. Half-Full Flag Timing (IDT Standard and FWFT Modes)
22
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
OPTIONAL CONFIGURATIONS
problems can be avoided by creating composite flags, that is, ANDing EF of
every FIFO, and separately ANDing FF of every FIFO. In FWFT mode,
composite flags can be created by ORing OR of every FIFO, and separately
ORing IR of every FIFO.
Figure 19, Block Diagram of 32,768 x 36 and 65,536 x 36 Width Expansion
demonstrates a width expansion using two IDT72275/72285 devices. D0 - D17
from each device form a 36-bit wide input bus and Q0-Q17 from each device
form a 36-bit wide output bus. Any word width can be attained by adding
additional IDT72275/72285 devices.
WIDTH EXPANSION CONFIGURATION
Word width may be increased simply by connecting together the control
signals of multiple devices. Status flags can be detected from any one
device. The exceptions are the EF and FF functions in IDT Standard mode
and the IR and OR functions in FWFT mode. Because of variations in skew
between RCLK and WCLK, it is possible for EF/FF deassertion and IR/OR
assertion to vary by one cycle between FIFOs. In IDT Standard mode, such
PARTIAL RESET (PRS)
MASTER RESET (MRS)
FIRST WORD FALL THROUGH/
SERIAL INPUT (FWFT/SI)
RETRANSMIT (RT)
Dm+1 - Dn
m+n
DATA IN
D0 - Dm
m
n
READ CLOCK (RCLK)
WRITE CLOCK (WCLK)
READ ENABLE (REN)
WRITE ENABLE (WEN)
OUTPUT ENABLE (OE)
LOAD (LD)
FULL FLAG/INPUT READY (FF/IR) #1
IDT
72275
72285
IDT
72275
72285
EMPTY FLAG/OUTPUT READY (EF/OR) #1
(1)
GATE
(1)
FULL FLAG/INPUT READY (FF/IR) #2
EMPTY FLAG/OUTPUT READY (EF/OR) #2
PROGRAMMABLE (PAF)
HALF-FULL FLAG (HF)
PROGRAMMABLE (PAE)
FIFO
#1
FIFO
#2
m
n
Qm+1 - Qn
Q0 - Qm
NOTES:
1. Use an AND gate in IDT Standard mode, an OR gate in FWFT mode.
2. Do not connect any output control signals directly together.
3. FIFO #1 and FIFO #2 must be the same depth, but may be different word widths.
Figure 19. Block Diagram of 32,768 x 36 and 65,536 x 36 Width Expansion
23
GATE
m+n
DATA OUT
4674 drw 22
COMMERCIAL AND INDUSTRIAL
TEMPERATURE RANGES
IDT72275/72285
CMOS SuperSync FIFO™ 32,768 x 18 and 65,536 x 18
•
FWFT/SI
WRITE CLOCK
TRANSFER CLOCK
FWFT/SI
WCLK
WRITE ENABLE
WEN
INPUT READY
IR
RCLK
WCLK
OR
IDT
72275
72285
IR
Qn
n
READ CLOCK
RCLK
IDT
72275
72285
GND
n
Dn
FWFT/SI
WEN
REN
OE
DATA IN
•
REN
READ ENABLE
OR
OUTPUT READY
OE
OUTPUT ENABLE
n
DATA OUT
Qn
Dn
4674 drw 23
Figure 20. Block Diagram of 65,536 x 18 and 131,072 x 18 Depth Expansion
DEPTH EXPANSION CONFIGURATION (FWFT MODE ONLY)
The IDT72275 can easily be adapted to applications requiring depths greater
than 32,768 and 65,536 for the IDT72285 with an 18-bit bus width. In FWFT
mode, the FIFOs can be connected in series (the data outputs of one FIFO
connected to the data inputs of the next) with no external logic necessary. The
resulting configuration provides a total depth equivalent to the sum of the depths
associated with each single FIFO. Figure 20, Block Diagram of 65,536 x 18
and 131,072 x 18 Depth Expansion shows a depth expansion using two
IDT72275/72285 devices.
Care should be taken to select FWFT mode during Master Reset for all
FIFOs in the depth expansion configuration. The first word written to an
empty configuration will pass from one FIFO to the next ("ripple down") until
it finally appears at the outputs of the last FIFO in the chain–no read
operation is necessary but the RCLK of each FIFO must be free-running.
Each time the data word appears at the outputs of one FIFO, that device's OR
line goes LOW, enabling a write to the next FIFO in line.
For an empty expansion configuration, the amount of time it takes for OR of
the last FIFO in the chain to go LOW (i.e. valid data to appear on the last FIFO's
outputs) after a word has been written to the first FIFO is the sum of the delays
for each individual FIFO:
period. Note that extra cycles should be added for the possibility that the tSKEW3
specification is not met between WCLK and transfer clock, or RCLK and transfer
clock, for the OR flag.
The "ripple down" delay is only noticeable for the first word written to an empty
depth expansion configuration. There will be no delay evident for subsequent
words written to the configuration.
The first free location created by reading from a full depth expansion
configuration will "bubble up" from the last FIFO to the previous one until it finally
moves into the first FIFO of the chain. Each time a free location is created in one
FIFO of the chain, that FIFO's IR line goes LOW, enabling the preceding FIFO
to write a word to fill it.
For a full expansion configuration, the amount of time it takes for IR of the first
FIFO in the chain to go LOW after a word has been read from the last FIFO is
the sum of the delays for each individual FIFO:
(N – 1)*(3*transfer clock) + 2 TWCLK
where N is the number of FIFOs in the expansion and TWCLK is the WCLK
period. Note that extra cycles should be added for the possibility that the tSKEW1
specification is not met between RCLK and transfer clock, or WCLK and transfer
clock, for the IR flag.
The Transfer Clock line should be tied to either WCLK or RCLK, whichever
is faster. Both these actions result in data moving, as quickly as possible, to the
end of the chain and free locations to the beginning of the chain.
(N – 1)*(4*transfer clock) + 3*TRCLK
where N is the number of FIFOs in the expansion and TRCLK is the RCLK
24
ORDERING INFORMATION
XXXXX
Device Type
X
Power
XX
Speed
X
Package
X
X
X
Process /
Temperature
Range
BLANK
8
Tube or Tray
Tape and Reel
BLANK
I(1)
Commercial (0°C to +70°C)
Industrial (-40°C to +85°C)
G
Green
PF
TF
Thin Plastic Quad Flatpack (TQFP, PN64-1)
Slim Thin Quad Flatpack (STQFP, PP64-1)
10
15
20
Commercial Only
Com'l & Ind'l
Com'l & Ind'l
L
Low Power
72275
72285
32,768 x 18 SuperSyncFIFO
65,536 x 18 SuperSyncFIFO
Clock Cycle Time (tCLK)
Speed in Nanoseconds
4674 drw 24
NOTES:
1. Industrial temperature range product for 15ns and 20ns speed grade are available as a standard device.
2. Green parts are available, for specific speeds and packages contact your sales office.
DATASHEET DOCUMENT HISTORY
04/24/2001
02/18/2003
02/11/2009
08/08/2013
11/21/2014
07/23/2019
pgs. 1, 5, 6, and 25.
pg. 16.
pgs. 1 and 25.
pgs. 3, 13, 23-25.
PDN# CQ-14-08 issued. See IDT.com for PDN specifics.
Datasheet changed to Obsolete Status.
CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
25
for Tech Support:
408-360-1753
email: FIFOhelp@idt.com
IMPORTANT NOTICE AND DISCLAIMER
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)
Corporate Headquarters
Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:
www.renesas.com/contact/
Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.
© 2020 Renesas Electronics Corporation. All rights reserved.