0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
72V3680L7-5PF

72V3680L7-5PF

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    TQFP128_20X14MM

  • 描述:

    IC FIFO SS 16384X36 7-5N 128TQFP

  • 详情介绍
  • 数据手册
  • 价格&库存
72V3680L7-5PF 数据手册
3.3V HIGH-DENSITY SUPERSYNC™ II 36-BIT FIFO 1,024 x 36, 2,048 x 36 4,096 x 36, 8,192 x 36 16,384 x 36, 32,768 x 36 IDT72V3640, IDT72V3650 IDT72V3660, IDT72V3670 IDT72V3680, IDT72V3690 LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018 FEATURES: • • • • • • • • Choose among the following memory organizations:Commercial IDT72V3640 ⎯ 1,024 x 36 IDT72V3650 ⎯ 2,048 x 36 IDT72V3660 ⎯ 4,096 x 36 IDT72V3670 ⎯ 8,192 x 36 IDT72V3680 ⎯ 16,384 x 36 IDT72V3690 ⎯ 32,768 x 36 Up to 166 MHz Operation of the Clocks User selectable Asynchronous read and/or write ports (PBGA Only) User selectable input and output port bus-sizing - x36 in to x36 out - x36 in to x18 out - x36 in to x9 out - x18 in to x36 out - x9 in to x36 out Pin to Pin compatible to the higher density of IDT72V36100 and IDT72V36110 Big-Endian/Little-Endian user selectable byte representation 5V input tolerant Fixed, low first word latency • • • • • • • • • • • • • • • • • Zero latency retransmit Auto power down minimizes standby power consumption Master Reset clears entire FIFO Partial Reset clears data, but retains programmable settings Empty, Full and Half-Full flags signal FIFO status Programmable Almost-Empty and Almost-Full flags, each flag can default to one of eight preselected offsets Selectable synchronous/asynchronous timing modes for AlmostEmpty and Almost-Full flags Program programmable flags by either serial or parallel means Select IDT Standard timing (using EF and FF flags) or First Word Fall Through timing (using OR and IR flags) Output enable puts data outputs into high impedance state Easily expandable in depth and width JTAG port, provided for Boundary Scan function (PBGA Only) Independent Read and Write Clocks (permit reading and writing simultaneously) Available in a 128-pin Thin Quad Flat Pack (TQFP) or a 144-pin Plastic Ball Grid Array (PBGA) (with additional features) High-performance submicron CMOS technology Industrial temperature range (–40°°C to +85°°C) is available Green parts available, see ordering information FUNCTIONAL BLOCK DIAGRAM *Available on the PBGA package only. WEN D0 -Dn (x36, x18 or x9) * WCLK/WR INPUT REGISTER *ASYW IP BM IW OW MRS PRS TCK *TRST * TMS * TDI **TDO OFFSET REGISTER RAM ARRAY 1,024 x 36, 2,048 x 36 4,096 x 36, 8,192 x 36 16,384 x 36, 32,768 x 36 CONTROL LOGIC OUTPUT REGISTER BUS CONFIGURATION READ POINTER READ CONTROL LOGIC RESET LOGIC JTAG CONTROL (BOUNDARY SCAN) FF/IR PAF EF/OR PAE HF FWFT/SI PFM FSEL0 FSEL1 FLAG LOGIC WRITE CONTROL LOGIC WRITE POINTER BE LD SEN RT RM ASYR * * RCLK/RD REN * OE Q0 -Qn (x36, x18 or x9) IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc. The SuperSync II FIFO is a trademark of Integrated Device Technology, Inc. COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES 1 4667 drw01 AUGUST 2018 DSC-4667/19 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 DESCRIPTION: COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES Bus-Matching Sync FIFOs are particularly appropriate for network, video, telecommunications, data communications and other applications that need to buffer large amounts of data and match busses of unequal sizes. Each FIFO has a data input port (Dn) and a data output port (Qn), both of which can assume either a 36-bit, 18-bit or a 9-bit width as determined by the state of external control pins Input Width (IW), Output Width (OW), and BusMatching (BM) pin during the Master Reset cycle. The input port can be selected as either a Synchronous (clocked) interface, or Asynchronous interface. During Synchronous operation the input port is controlled by a Write Clock (WCLK) input and a Write Enable (WEN) input. Data present on the Dn data inputs is written into the FIFO on every rising edge of The IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 are exceptionally deep, high speed, CMOS First-In-First-Out (FIFO) memories with clocked read and write controls and a flexible Bus-Matching x36/x18/x9 data flow. These FIFOs offer several key user benefits: • Flexible x36/x18/x9 Bus-Matching on both read and write ports • The period required by the retransmit operation is fixed and short. • The first word data latency period, from the time the first word is written to an empty FIFO to the time it can be read, is fixed and short. • Asynchronous/Synchronous translation on the read or write ports • High density offerings up to 1 Mbit WCLK PRS MRS LD FWFT/SI FF/IR VCC PAF GND OW FS0 HF GND FS1 BE IP BM VCC PAE PFM EF/OR RM GND RCLK REN RT PIN CONFIGURATIONS D10 D9 D8 D7 D6 GND D5 D4 D3 VCC D2 D1 D0 GND Q0 Q1 Q2 Q3 Q4 Q5 GND Q6 VCC Q7 Q8 Q9 DNC(1) IW D35 D34 D33 D32 VCC D31 D30 GND D29 D28 D27 D26 D25 D24 D23 GND D22 VCC D21 D20 D19 D18 GND D17 D16 D15 D14 D13 VCC D12 GND D11 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 DNC(1) VCC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 WEN SEN 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 INDEX NOTE: 1. DNC = Do Not Connect. TQFP (PK128, order code: PF) TOP VIEW 2 OE VCC VCC Q35 Q34 Q33 Q32 GND GND Q31 Q30 Q29 Q28 Q27 Q26 VCC Q25 Q24 GND GND Q23 Q22 Q21 Q20 Q19 Q18 GND Q17 Q16 VCC VCC Q15 Q14 Q13 Q12 GND Q11 Q10 4667 drw02a IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 WCLK when WEN is asserted. During Asynchronous operation only the WR input is used to write data into the FIFO. Data is written on a rising edge of WR, the WEN input should be tied to its active state, (LOW). The output port can be selected as either a Synchronous (clocked) interface, or Asynchronous interface. During Synchronous operation the output port is controlled by a Read Clock (RCLK) input and Read Enable (REN) input. Data is read from the FIFO on every rising edge of RCLK when REN is asserted. During Asynchronous operation only the RD input is used to read data from the FIFO. Data is read on a rising edge of RD, the REN input should be tied to its active state, LOW. When Asynchronous operation is selected on the output port the FIFO must be configured for Standard IDT mode, and the OE input used to provide three-state control of the outputs, Qn. COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES The frequencies of both the RCLK and the WCLK signals may vary from 0 to fMAX with complete independence. There are no restrictions on the frequency of the one clock input with respect to the other. There are two possible timing modes of operation with these devices: IDT Standard mode and First Word Fall Through (FWFT) mode. In IDT Standard mode, the first word written to an empty FIFO will not appear on the data output lines unless a specific read operation is performed. A read operation, which consists of activating REN and enabling a rising RCLK edge, will shift the word from internal memory to the data output lines. In FWFT mode, the first word written to an empty FIFO is clocked directly to the data output lines after three transitions of the RCLK signal. A REN does not have to be asserted for accessing the first word. However, subsequent PIN CONFIGURATIONS (CONTINUED) A1 BALL PAD CORNER A ASYW WEN WCLK PAF FF/IR HF BM EF RCLK REN OE Q35 SEN IW PRS LD MRS FS0 FS1 ASYR IP PFM RT Q34 D35 D34 D33 FWFT/SI OW VCC VCC BE PAE RM Q32 Q3 3 D32 D31 D30 VCC VCC GND GND VCC VCC Q29 Q30 Q31 D29 D28 D27 VCC GND GND GND GND VCC Q26 Q27 Q28 D26 D25 D24 VCC GND GND GND GND VCC Q23 Q24 Q25 D21 D22 D23 VCC GND GND GND GND VCC Q22 Q21 Q20 D18 D19 D20 VCC GND GND GND GND VCC Q19 Q18 Q17 D15 D16 D17 VCC VCC GND GND VCC VCC Q16 Q15 Q14 D12 D13 D14 D3 D0 VCC VCC TDO Q2 Q13 Q12 Q11 D10 D11 D6 D4 D1 TMS TCK Q0 Q3 Q5 Q10 Q9 D9 D8 D7 D5 D2 TRST TDI Q1 Q4 Q6 Q7 Q8 1 2 3 4 5 6 7 8 9 10 11 B C D E F G H J K L M 12 4667 drw02b PBGA: 1mm pitch, 13mm x 13mm (BB144, order code: BB) TOP VIEW 3 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 For serial programming, SEN together with LD on each rising edge of WCLK, are used to load the offset registers via the Serial Input (SI). For parallel programming, WEN together with LD on each rising edge of WCLK, are used to load the offset registers via Dn. REN together with LD on each rising edge of RCLK can be used to read the offsets in parallel from Qn regardless of whether serial or parallel offset loading has been selected. During Master Reset (MRS) the following events occur: the read and write pointers are set to the first location of the FIFO. The FWFT pin selects IDT Standard mode or FWFT mode. The Partial Reset (PRS) also sets the read and write pointers to the first location of the memory. However, the timing mode, programmable flag programming method, and default or programmed offset settings existing before Partial Reset remain unchanged. The flags are updated according to the timing mode and offsets in effect. PRS is useful for resetting a device in mid-operation, when reprogramming programmable flags would be undesirable. It is also possible to select the timing mode of the PAE (Programmable AlmostEmpty flag) and PAF (Programmable Almost-Full flag) outputs. The timing modes can be set to be either asynchronous or synchronous for the PAE and PAF flags. words written to the FIFO do require a LOW on REN for access. The state of the FWFT/SI input during Master Reset determines the timing mode in use. For applications requiring more data storage capacity than a single FIFO can provide, the FWFT timing mode permits depth expansion by chaining FIFOs in series (i.e. the data outputs of one FIFO are connected to the corresponding data inputs of the next). No external logic is required. These FIFOs have five flag pins, EF/OR (Empty Flag or Output Ready), FF/IR (Full Flag or Input Ready), HF (Half-full Flag), PAE (Programmable Almost-Empty flag) and PAF (Programmable Almost-Full flag). The EF and FF functions are selected in IDT Standard mode. The IR and OR functions are selected in FWFT mode. HF, PAE and PAF are always available for use, irrespective of timing mode. PAE and PAF can be programmed independently to switch at any point in memory. Programmable offsets determine the flag switching threshold and can be loaded by two methods: parallel or serial. Eight default offset settings are also provided, so that PAE can be set to switch at a predefined number of locations from the empty boundary and the PAF threshold can also be set at similar predefined values from the full boundary. The default offset values are set during Master Reset by the state of the FSEL0, FSEL1, and LD pins. PARTIAL RESET (PRS) COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES MASTER RESET (MRS) WRITE CLOCK (WCLK/WR*) READ CLOCK (RCLK/RD*) WRITE ENABLE (WEN) READ ENABLE (REN) LOAD (LD) IDT 72V3640 72V3650 72V3660 72V3670 72V3680 72V3690 (x36, x18, x9) DATA IN (D0 - Dn) SERIAL ENABLE(SEN) OUTPUT ENABLE (OE) (x36, x18, x9) DATA OUT (Q0 - Qn) RETRANSMIT (RT) EMPTY FLAG/OUTPUT READY (EF/OR) PROGRAMMABLE ALMOST-EMPTY (PAE) FIRST WORD FALL THROUGH/ SERIAL INPUT (FWFT/SI) HALF-FULL FLAG (HF) BIG-ENDIAN/LITTLE-ENDIAN (BE) INTERSPERSED/ NON-INTERSPERSED PARITY (IP) FULL FLAG/INPUT READY (FF/IR) PROGRAMMABLE ALMOST-FULL (PAF) 4667 drw03 OUTPUT WIDTH (OW) BUSMATCHING (BM) INPUT WIDTH (IW) Figure 1. Single Device Configuration Signal Flow Diagram 4 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES out of the FIFO in small word (x18/x9) format. If Big-Endian mode is selected, then the most significant byte (word) of the long word written into the FIFO will be read out of the FIFO first, followed by the least significant byte. If Little-Endian format is selected, then the least significant byte of the long word written into the FIFO will be read out first, followed by the most significant byte. The mode desired is configured during master reset by the state of the Big-Endian (BE) pin. See Figure 4 for Bus-Matching Byte Arrangement. The Interspersed/Non-Interspersed Parity (IP) bit function allows the user to select the parity bit in the word loaded into the parallel port (D0-Dn) when programming the flag offsets. If Interspersed Parity mode is selected, then the FIFO will assume that the parity bit is located in bit positions D8, D17, D26 and D35 during the parallel programming of the flag offsets. If Non-Interspersed Parity mode is selected, then D8, D17 and D26 are assumed to be valid bits and D32, D33, D34 and D35 are ignored. IP mode is selected during Master Reset by the state of the IP input pin. Interspersed Parity control only has an effect during parallel programming of the offset registers. It does not effect the data written to and read from the FIFO. A JTAG test port is provided, here the FIFO has fully functional Boundary Scan feature, compliant with IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture. If, at any time, the FIFO is not actively performing an operation, the chip will automatically power down. Once in the power down state, the standby supply current consumption is minimized. Initiating any operation (by activating control inputs) will immediately take the device out of the power down state. The IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 are fabricated using IDT’s high speed submicron CMOS technology. If asynchronous PAE/PAF configuration is selected, the PAE is asserted LOW on the LOW-to-HIGH transition of RCLK. PAE is reset to HIGH on the LOWto-HIGH transition of WCLK. Similarly, the PAF is asserted LOW on the LOWto-HIGH transition of WCLK and PAF is reset to HIGH on the LOW-to-HIGH transition of RCLK. If synchronous PAE/PAF configuration is selected , the PAE is asserted and updated on the rising edge of RCLK only and not WCLK. Similarly, PAF is asserted and updated on the rising edge of WCLK only and not RCLK. The mode desired is configured during MasterReset by the state of the Programmable Flag Mode (PFM) pin. The Retransmit function allows data to be reread from the FIFO more than once. A LOW on the RT input during a rising RCLK edge initiates a retransmit operation by setting the read pointer to the first location of the memory array. A zero-latency retransmit timing mode can be selected using the Retransmit timing Mode pin (RM). During Master Reset, a LOW on RM will select zero latency retransmit. A HIGH on RM during Master Reset will select normal latency. If zero latency retransmit operation is selected, the first data word to be retransmitted will be placed on the output register with respect to the same RCLK edge that initiated the retransmit based on RT being LOW. Refer to Figure 11 and 12 for Retransmit Timing with normal latency. Refer to Figure 13 and 14 for Zero Latency Retransmit Timing. The device can be configured with different input and output bus widths as shown in Table 1. A Big-Endian/Little-Endian data word format is provided. This function is useful when data is written into the FIFO in long word format (x36/x18) and read TABLE 1 — BUS-MATCHING CONFIGURATION MODES BM IW OW Write Port Width Read Port Width L L L x36 x36 H L L x36 x18 H L H x36 x9 H H L x18 x36 H H H x9 x36 NOTE: 1. Pin status during Master Reset. 5 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES PIN DESCRIPTION (TQFP AND PBGA PACKAGES) Symbol BM(1) BE(1) D0–D35 EF/OR FF/IR FSEL0(1) FSEL1(1) FWFT/SI HF IP(1) IW(1) LD OE OW(1) MRS PAE PAF PFM(1) PRS Q0–Q35 RCLK/ RD REN RM(1) RT Name Bus-Matching Big-Endian/ Little-Endian Data Inputs Empty Flag/ Output Ready Full Flag/ Input Ready I/O Description I BM works with IW and OW to select the bus sizes for both write and read ports. See Table 1 for bus size configuration. I During Master Reset, a LOW on BE will select Big-Endian operation. A HIGH on BE during Master Reset will select Little-Endian format. I Data inputs for a 36-, 18- or 9-bit bus. When in 18- or 9-bit mode, the unused input pins are in a don’t care state. O In the IDT Standard mode, the EF function is selected. EF indicates whether or not the FIFO memory is empty. In FWFT mode, the OR function is selected. OR indicates whether or not there is valid data available at the outputs. O In the IDT Standard mode, the FF function is selected. FF indicates whether or not the FIFO memory is full. In the FWFT mode, the IR function is selected. IR indicates whether or not there is space available for writing to the FIFO memory. Flag Select Bit 0 I During Master Reset, this input along with FSEL1 and the LD pin, will select the default offset values for the programmable flags PAE and PAF. There are up to eight possible settings available. Flag Select Bit 1 I During Master Reset, this input along with FSEL0 and the LD pin will select the default offset values for the programmable flags PAE and PAF. There are up to eight possible settings available. First Word Fall I During Master Reset, selects First Word Fall Through or IDT Standard mode. After Master Reset, this pin functions Through/Serial In as a serial input for loading offset registers. Half-Full Flag O HF indicates whether the FIFO memory is more or less than half-full. Interspersed Parity I During Master Reset, a LOW on IP will select Non-Interspersed Parity mode. A HIGH will select Interspersed Parity mode. Interspersed Parity control only has an effect during parallel programming of the offset registers. It does not effect the data written to and read from the FIFO. Input Width I This pin, along with OW and MB, selects the bus width of the write port. See Table 1 for bus size configuration. Load I This is a dual purpose pin. During Master Reset, the state of the LD input along with FSEL0 and FSEL1, determines one of eight default offset values for the PAE and PAF flags, along with the method by which these offset registers can be programmed, parallel or serial (see Table 2). After Master Reset, this pin enables writing to and reading from the offset registers. Output Enable I OE controls the output impedance of Qn. Output Width I This pin, along with IW and BM, selects the bus width of the read port. See Table 1 for bus size configuration. Master Reset I MRS initializes the read and write pointers to zero and sets the output register to all zeroes. During Master Reset, the FIFO is configured for either FWFT or IDT Standard mode, Bus-Matching configurations, one of eight progammable flag default settings, serial or parallel programming of the offset settings, Big-Endian/Little-Endian format, zero latency timing mode, interspersed parity, and synchronous versus asynchronous programmable flag timing modes. Programmable O PAE goes LOW if the number of words in the FIFO memory is less than offset n, which is stored in the Empty Offset Almost-Empty Flag register. PAE goes HIGH if the number of words in the FIFO memory is greater than or equal to offset n. Programmable O PAF goes HIGH if the number of free locations in the FIFO memory is more than offset m, which is stored in the Almost-Full Flag Full Offset register. PAF goes LOW if the number of free locations in the FIFO memory is less than or equal to m. Programmable I During Master Reset, a LOW on PFM will select Asynchronous Programmable flag timing mode. A HIGH on PFM Flag Mode will select Synchronous Programmable flag timing mode. Partial Reset I PRS initializes the read and write pointers to zero and sets the output register to all zeroes. During Partial Reset, the existing mode (IDT or FWFT), programming method (serial or parallel), and programmable flag settings are all retained. Data Outputs O Data outputs for an 36-, 18- or 9-bit bus. When in 18- or 9-bit mode, the unused output pins are in a don’t care state. Outputs are not 5V tolerant regardless of the state of OE. Read Clock/ I If Synchronous operation of the read port has been selected, when enabled by REN, the rising edge of RCLK Read Strobe reads data from the FIFO memory and offsets from the programmable registers. If LD is LOW, the values loaded into the offset registers is output on a rising edge of RCLK.If Asynchronous operation of the read port has been selected, a rising edge on RD reads data from the FIFO in an Asynchronous manner. REN should be tied LOW. Asynchronous operation of the RCLK/RD input is only available in the PBGA package. Read Enable I REN enables RCLK for reading data from the FIFO memory and offset registers. Retransmit Timing I During Master Reset, a LOW on RM will select zero latency Retransmit timing Mode. A HIGH on RM will select Mode normal latency mode. Retransmit I RT asserted on the rising edge of RCLK initializes the READ pointer to zero, sets the EF flag to LOW (OR to HIGH in FWFT mode) and does not disturb the write pointer, programming method, existing timing mode or programmable flag settings. RT is useful to reread data from the first physical location of the FIFO. NOTE: 1. Inputs should not change state after Master Reset. 6 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES PIN DESCRIPTION-CONTINUED (TQFP & PBGA PACKAGES) Symbol Name I/O SEN WCLK/ WR Serial Enable Write Clock/ Write Strobe I I WEN V CC Write Enable +3.3V Supply I I Description SEN enables serial loading of programmable flag offsets. If Synchronous operation of the write port has been selected, when enabled by WEN, the rising edge of WCLK writes data into the FIFO. If Asynchronous operation of the write port has been selected, WR writes data into the FIFO on a rising edge in an Asynchronous manner, (WEN should be tied to its active state). Asynchronous operation of the WCLK/WR input is only available in the PBGA package. WEN enables WCLK for writing data into the FIFO memory and offset registers. These are VCC supply inputs and must be connected to the 3.3V supply rail. NOTE: 1. Inputs should not change state after Master Reset. PIN DESCRIPTION (PBGA PACKAGE ONLY) Symbol ASYR(1) ASYW(1) Name Asynchronous Read Port Asynchronous Write Port I/O Description I A HIGH on this input during Master Reset will select Synchronous read operation for the output port. A LOW will select Asynchronous operation. If Asynchronous is selected the FIFO must operate in IDT Standard mode. I A HIGH on this input during Master Reset will select Synchronous write operation for the input port. A LOW will select Asynchronous operation. TCK(2) JTAG Clock I Clock input for JTAG function. One of four terminals required by IEEE Standard 1149.1-1990. Test operations of the device are synchronous to TCK. Data from TMS and TDI are sampled on the rising edge of TCK and outputs change on the falling edge of TCK. If the JTAG function is not used this signal needs to be tied to GND. TDI(2) JTAG Test Data Input I One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded via the TDI on the rising edge of TCK to either the Instruction Register, ID Register and Bypass Register. An internal pull-up resistor forces TDI HIGH if left unconnected. TDO(2) JTAG Test Data Output O One of four terminals required by IEEE Standard 1149.1-1990. During the JTAG boundary scan operation, test data serially loaded output via the TDO on the falling edge of TCK from either the Instruction Register, ID Register and Bypass Register. This output is high impedance except when shifting, while in SHIFT-DR and SHIFT-IR controller states. TMS(2) JTAG Mode Select I TMS is a serial input pin. One of four terminals required by IEEE Standard 1149.1-1990. TMS directs the device through its TAP controller states. An internal pull-up resistor forces TMS HIGH if left unconnected. TRST(2) JTAG Reset I TRST is an asynchronous reset pin for the JTAG controller. The JTAG TAP controller does not automatically reset upon power-up, thus it must be reset by either this signal or by setting TMS= HIGH for five TCK cycles. If the TAP controller is not properly reset then the FIFO outputs will always be in high-impedance. If the JTAG function is used but the user does not want to use TRST, then TRST can be tied with MRS to ensure proper FIFO operation. If the JTAG function is not used then this signal needs to be tied to GND. NOTE: 1. Inputs should not change state after Master Reset. 2. These pins are for the JTAG port. Please refer to pages 42-45 and Figures 31-33. 7 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 ABSOLUTE MAXIMUM RATINGS Symbol VTERM(2) Rating Terminal Voltage with respect to GND TSTG Storage Temperature IOUT Com’l & Ind’l –0.5 to +4.5 Unit V –55 to +125 °C DC Output Current –50 to +50 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES RECOMMENDED DC OPERATING CONDITIONS Symbol mA NOTES: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. VCC terminal only. Parameter Min. Typ. Max. Unit VCC(1) Supply Voltage Com’l/Ind’l 3.15 3.3 3.45 V GND Supply Voltage Com’l/Ind’l 0 0 0 V (2) VIH Input High Voltage Com’l/Ind’l 2.0 — 5.5 V VIL(3) Input Low Voltage Com’l/Ind’l — — 0.8 V TA Operating Temperature Commercial 0 — 70 °C TA Operating Temperature Industrial -40 — 85 °C NOTES: 1. VCC = 3.3V ± 0.15V, JEDEC JESD8-A compliant. 2. Outputs are not 5V tolerant. 3. 1.5V undershoots are allowed for 10ns once per cycle. DC ELECTRICAL CHARACTERISTICS (Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant) IDT72V3640L IDT72V3650L IDT72V3660L IDT72V3670L IDT72V3680L IDT72V3690L Commercial and Industrial(1) tCLK = 6, 7-5, 10, 15 ns Symbol ILI ILO(3) VOH VOL ICC1(4,5,6) ICC2(4,7) NOTES: (2) Parameter Input Leakage Current Output Leakage Current Output Logic “1” Voltage, IOH = –2 mA Output Logic “0” Voltage, IOL = 8 mA Active Power Supply Current Standby Current 1. 2. 3. 4. 5. 6. Min. Max. Unit –1 –10 2.4 — — — 1 10 — 0.4 40 15 µA µA V V mA mA Industrial temperature range product for the 7-5ns and 15ns speed grades are available as a standard device. All other speed grades are available by special order. Measurements with 0.4 ≤ VIN ≤ VCC. OE ≥ VIH, 0.4 ≤ VOUT ≤ VCC. Tested with outputs open (IOUT = 0). RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz. Typical ICC1 = 4.2 + 1.4*fS + 0.002*CL*fS (in mA) with VCC = 3.3V, tA = 25°C, fS = WCLK frequency = RCLK frequency (in MHz, using TTL levels), data switching at fS/2, CL = capacitive load (in pF). 7. All Inputs = VCC - 0.2V or GND + 0.2V, except RCLK and WCLK, which toggle at 20 MHz. CAPACITANCE (TA = +25°C, f = 1.0MHz) Symbol Parameter(1) Conditions Max. Unit CIN(2) Input Capacitance VIN = 0V 10 pF COUT(1,2) Output Capacitance VOUT = 0V 10 pF NOTES: 1. With output deselected, (OE ≥ VIH). 2. Characterized values, not currently tested. 8 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES AC ELECTRICAL CHARACTERISTICS(1) — SYNCHRONOUS TIMING (Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant) Symbol fS tA tCLK tCLKH tCLKL tDS tDH tENS tENH tLDS tLDH tRS tRSS tRSR tRSF tRTS tOLZ tOE tOHZ tWFF tREF tPAFA tPAFS tPAEA tPAES tHF tSKEW1 tSKEW2 Commercial PBGA & TQFP IDT72V3640L6 IDT72V3650L6 IDT72V3660L6 IDT72V3670L6 IDT72V3680L6 IDT72V3690L6 Parameter Min. Max. Clock Cycle Frequency — 166 (5) Data Access Time 1 4 Clock Cycle Time 6 — Clock High Time 2.7 — Clock Low Time 2.7 — Data Setup Time 2 — Data Hold Time 0.5 — Enable Setup Time 2 — Enable Hold Time 0.5 — Load Setup Time 3 — Load Hold Time 0.5 — Reset Pulse Width(3) 10 — Reset Setup Time 15 — Reset Recovery Time 10 — Reset to Flag and Output Time — 15 Retransmit Setup Time 3 — Output Enable to Output in Low Z(4) 0 — Output Enable to Output Valid(5) 1 4 (4, 5) Output Enable to Output in High-Z 1 4 Write Clock to FF or IR — 4 Read Clock to EF or OR — 4 Clock to Asynchronous Programmable Almost-Full Flag — 10 Write Clock to Synchronous Programmable Almost-Full Flag — 4 Clock to Asynchronous Programmable Almost-Empty Flag — 10 Read Clock to Synchronous Programmable Almost-Empty Flag — 4 Clock to HF — 10 Skew time between RCLK and WCLK for EF/OR and FF/IR 4 — Skew time between RCLK and WCLK for PAE and PAF 5 — Com’l & Ind’l(2) PBGA & TQFP IDT72V3640L7-5 IDT72V3650L7-5 IDT72V3660L7-5 IDT72V3670L7-5 IDT72V3680L7-5 IDT72V3690L7-5 Min. Max. — 133.3 1(5) 5 7.5 — 3.5 — 3.5 — 2.5 — 0.5 — 2.5 — 0.5 — 3.5 — 0.5 — 10 — 15 — 10 — — 15 3.5 — 0 — 1(5) 6 (5) 1 6 — 5 — 5 — 12.5 — 5 — 12.5 — 5 — 12.5 5 — 7 — Commercial TQFP Only IDT72V3640L10 IDT72V3650L10 IDT72V3660L10 IDT72V3670L10 IDT72V3680L10 IDT72V3690L10 Min. Max. — 100 (5) 1 6.5 10 — 4.5 — 4.5 — 3.5 — 0.5 — 3.5 — 0.5 — 3.5 — 0.5 — 10 — 15 — 10 — — 15 3.5 — 0 — 1(5) 6 (5) 1 6 — 6.5 — 6.5 — 16 — 6.5 — 16 — 6.5 — 16 7 — 10 — Com’l & Ind’l(2) TQFP Only IDT72V3640L15 IDT72V3650L15 IDT72V3660L15 IDT72V3670L15 IDT72V3680L15 IDT72V3690L15 Min. Max. — 66.7 1(5) 10 15 — 6 — 6 — 4 — 1 — 4 — 1 — 4 — 1 — 15 — 15 — 15 — — 15 4 — 0 — 1(5) 8 (5) 1 8 — 10 — 10 — 20 — 10 — 20 — 10 — 20 9 — 14 — NOTES: 1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode. 2. Industrial temperature range product for 7-5ns and 15ns speed grades are available as standard device. All other speed grades are available by special order. 3. Pulse widths less than minimum values are not allowed. 4. Values guaranteed by design, not currently tested. 5. TQFP package only: for speed grades 7.5ns, 10ns and 15ns, the minimum for tA, tOE, and tOHZ is 2ns. 9 Unit MHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES AC ELECTRICAL CHARACTERISTICS(1) — ASYNCHRONOUS TIMING (Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant) Symbol fA(4) tAA(4) tCYC(4) tCYH(4) tCYL(4) tRPE(4) tFFA(4) tEFA(4) tPAFA(4) tPAEA(4) Parameter Cycle Frequency (Asynchronous mode) Data Access Time Cycle Time Cycle HIGH Time Cycle LOW Time Read Pulse after EF HIGH Clock to Asynchronous FF Clock to Asynchronous EF Clock to Asynchronous Programmable Almost-Full Flag Clock to Asynchronous Programmable Almost-Empty Flag NOTES: 1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode. 2. Pulse widths less than minimum values are not allowed. 3. Values guaranteed by design, not currently tested. 4. Paramaeters apply to the PBGA package only. 10 Commercial Com’l & Ind’l IDT72V3640L6 IDT72V3650L6 IDT72V3660L6 IDT72V3670L6 IDT72V3680L6 IDT72V3690L6 Min. Max. — 100 0.6 8 10 — 4.5 — 4.5 — 8 — — 8 — 8 — 8 — 8 IDT72V3640L7-5 IDT72V3650L7-5 IDT72V3660L7-5 IDT72V3670L7-5 IDT72V3680L7-5 IDT72V3690L7-5 Min. Max. — 83 0.6 10 12 — 5 — 5 — 10 — — 10 — 10 — 10 — 10 Unit MHz ns ns ns ns ns ns ns ns ns IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 AC TEST CONDITIONS COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES AC TEST LOADS - 6ns, 7.5ns Speed Grades Input Pulse Levels Input Rise/Fall Times Input Timing Reference Levels Output Reference Levels Output Load for tCLK = 10ns, 15 ns Output Load for tCLK = 6ns, 7.5ns GND to 3.0V 3ns(1) 1.5V 1.5V See Figure 2a See Figure 2b & 2c 1.5V 50Ω I/O NOTE: 1. For 166MHz and 133MHz operation input rise/fall times are 1.5ns. Z0 = 50Ω 4667 drw04a Figure 2b. AC Test Load AC TEST LOADS - 10ns, 15ns Speed Grades 6 3.3V tCD (Typical, ns) 5 330Ω D.U.T. 30pF* 510Ω 4 3 2 1 4667 drw04 20 30 50 Figure 2a. Output Load * Includes jig and scope capacitances. 80 100 Capacitance (pF) Figure 2c. Lumped Capacitive Load, Typical Derating OUTPUT ENABLE & DISABLE TIMING Output Enable Output Disable VIH OE VIL tOE & tOLZ Output VCC Normally 2 LOW Output Normally VCC 2 HIGH 200 4667 drw04b tOHZ VCC 2 100mV 100mV VOL VOH 100mV 100mV VCC 2 4667 drw04c NOTE: 1. REN is HIGH. 11 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 FUNCTIONAL DESCRIPTION TIMING MODES: IDT STANDARD vs FIRST WORD FALL THROUGH (FWFT) MODE The IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 support two different timing modes of operation: IDT Standard mode or First Word Fall Through (FWFT) mode. The selection of which mode will operate is determined during Master Reset, by the state of the FWFT/SI input. If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard mode will be selected. This mode uses the Empty Flag (EF) to indicate whether or not there are any words present in the FIFO. It also uses the Full Flag function (FF) to indicate whether or not the FIFO has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using the Read Enable (REN) and RCLK. If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will be selected. This mode uses Output Ready (OR) to indicate whether or not there is valid data at the data outputs (Qn). It also uses Input Ready (IR) to indicate whether or not the FIFO has any free space for writing. In the FWFT mode, the first word written to an empty FIFO goes directly to Qn after three RCLK rising edges, REN = LOW is not necessary. Subsequent words must be accessed using the Read Enable (REN) and RCLK. Various signals, both input and output signals operate differently depending on which timing mode is in effect. IDT STANDARD MODE In this mode, the status flags, FF, PAF, HF, PAE, and EF operate in the manner outlined in Table 3. To write data into to the FIFO, Write Enable (WEN) must be LOW. Data presented to the DATA IN lines will be clocked into the FIFO on subsequent transitions of the Write Clock (WCLK). After the first write is performed, the Empty Flag (EF) will go HIGH. Subsequent writes will continue to fill up the FIFO. The Programmable Almost-Empty flag (PAE) will go HIGH after n + 1 words have been loaded into the FIFO, where n is the empty offset value. The default setting for these values are stated in the footnote of Table 2. This parameter is also user programmable. See section on Programmable Flag Offset Loading. If one continued to write data into the FIFO, and we assumed no read operations were taking place, the Half-Full flag (HF) would toggle to LOW once the 513rd word for IDT72V3640, 1,025th word for IDT72V3650, 2,049th word for IDT72V3660, 4,097th word for IDT72V3670, 8,193th word for the IDT72V3680 and 16,385th word for the IDT72V3690, respectively was written into the FIFO. Continuing to write data into the FIFO will cause the Programmable Almost-Full flag (PAF) to go LOW. Again, if no reads are performed, the PAF will go LOW after (1,024-m) writes for the IDT72V3640, (2,048-m) writes for the IDT72V3650, (4,096-m) writes for the IDT72V3660, (8,192-m) writes for the IDT72V3670, (16,384-m) writes for the IDT72V3680 and (32,768-m) writes for the IDT72V3690. The offset “m” is the full offset value. The default setting for these values are stated in the footnote of Table 2. This parameter is also user programmable. See section on Programmable Flag Offset Loading. When the FIFO is full, the Full Flag (FF) will go LOW, inhibiting further write operations. If no reads are performed after a reset, FF will go LOW after D writes to the FIFO. D = 1,024 writes for the IDT72V3640, 2,048 writes for the IDT72V3650, 4,096 writes for the IDT72V3660, 8,192 writes for the IDT72V3670, 16,384 writes for the IDT72V3680 and 32,768 writes for the IDT72V3690, respectively. COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES If the FIFO is full, the first read operation will cause FF to go HIGH. Subsequent read operations will cause PAF and HF to go HIGH at the conditions described in Table 3. If further read operations occur, without write operations, PAE will go LOW when there are n words in the FIFO, where n is the empty offset value. Continuing read operations will cause the FIFO to become empty. When the last word has been read from the FIFO, the EF will go LOW inhibiting further read operations. REN is ignored when the FIFO is empty. When configured in IDT Standard mode, the EF and FF outputs are double register-buffered outputs. Relevant timing diagrams for IDT Standard mode can be found in Figure 7,8,11 and 13. FIRST WORD FALL THROUGH MODE (FWFT) In this mode, the status flags, IR, PAF, HF, PAE, and OR operate in the manner outlined in Table 4. To write data into to the FIFO, WEN must be LOW. Data presented to the DATA IN lines will be clocked into the FIFO on subsequent transitions of WCLK. After the first write is performed, the Output Ready (OR) flag will go LOW. Subsequent writes will continue to fill up the FIFO. PAE will go HIGH after n + 2 words have been loaded into the FIFO, where n is the empty offset value. The default setting for these values are stated in the footnote of Table 2. This parameter is also user programmable. See section on Programmable Flag Offset Loading. If one continued to write data into the FIFO, and we assumed no read operations were taking place, the HF would toggle to LOW once the 514th word for the IDT72V3640, 1,026th word for the IDT72V3650, 2,050th word for the IDT72V3660, 4,098th word for the IDT72V3670, 8,194th word for the IDT72V3680, 16,386th word for the IDT72V3690, respectively was written into the FIFO. Continuing to write data into the FIFO will cause the PAF to go LOW. Again, if no reads are performed, the PAF will goLOW after (1,025-m) writes for the IDT72V3640, (2,049-m) writes for the IDT72V3650, (4,097-m) writes for the IDT72V3660 and (8,193-m) writes for the IDT72V3670, (16,385-m) writes for the IDT72V3680 and (32,769-m) writes for the IDT72V3690, where m is the full offset value. The default setting for these values are stated in the footnote of Table 2. When the FIFO is full, the Input Ready (IR) flag will go HIGH, inhibiting further write operations. If no reads are performed after a reset, IR will go HIGH after D writes to the FIFO. D = 1,025 writes for the IDT72V3640, 2,049 writes for the IDT72V3650, 4,097 writes for the IDT72V3660 and 8,193 writes for the IDT72V3670,16,385 writes for the IDT72V3680 and 32,769 writes for the IDT72V3690, respectively. Note that the additional word in FWFT mode is due to the capacity of the memory plus output register. If the FIFO is full, the first read operation will cause the IR flag to go LOW. Subsequent read operations will cause the PAF and HF to go HIGH at the conditions described in Table 4. If further read operations occur, without write operations, the PAE will go LOW when there are n + 1 words in the FIFO, where n is the empty offset value. Continuing read operations will cause the FIFO to become empty. When the last word has been read from the FIFO, OR will go HIGH inhibiting further read operations. REN is ignored when the FIFO is empty. When configured in FWFT mode, the OR flag output is triple registerbuffered, and the IR flag output is double register-buffered. Relevant timing diagrams for FWFT mode can be found in Figure 9, 10, 12, and 14. 12 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 TABLE 2 — DEFAULT PROGRAMMABLE FLAG OFFSETS PROGRAMMING FLAG OFFSETS Full and Empty Flag offset values are user programmable. The IDT72V3640/ 72V3650/72V3660/72V3670/72V3680/72V3690 have internal registers for these offsets. There are eight default offset values selectable during Master Reset. These offset values are shown in Table 2. Offset values can also be programmed into the FIFO in one of two ways; serial or parallel loading method. The selection of the loading method is done using the LD (Load) pin. During Master Reset, the state of the LD input determines whether serial or parallel flag offset programming is enabled. A HIGH on LD during Master Reset selects serial loading of offset values. A LOW on LD during Master Reset selects parallel loading of offset values. In addition to loading offset values into the FIFO, it is also possible to read the current offset values. Offset values can be read via the parallel output port Q0-Qn, regardless of the programming mode selected (serial or parallel). It is not possible to read the offset values in serial fashion. Figure 3, Programmable Flag Offset Programming Sequence, summaries the control pins and sequence for both serial and parallel programming modes. For a more detailed description, see discussion that follows. The offset registers may be programmed (and reprogrammed) any time after Master Reset, regardless of whether serial or parallel programming has been selected. Valid programming ranges are from 0 to D-1. IDT72V3640, 72V3650 LD L L L L H H H H FSEL1 H L L H L H L H FSEL0 L H L H L L H H Offsets n,m 511 255 127 63 31 15 7 3 LD H FSEL1 X FSEL0 X Program Mode Serial(3) L X X Parallel(4) IDT72V3660, 72V3670, 72V3680, 72V3690 LD H L L L L H H H FSEL1 L H L L H H L H FSEL0 L L H L H L H H Offsets n,m 1,023 511 255 127 63 31 15 7 LD H L FSEL1 X X FSEL0 X X Program Mode Serial(3) Parallel(4) COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES SYNCHRONOUS vs ASYNCHRONOUS PROGRAMMABLE FLAG TIMING SELECTION The IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 can be configured during the Master Reset cycle with either synchronous or asynchronous timing for PAF and PAE flags by use of the PFM pin. If synchronous PAF/PAE configuration is selected (PFM, HIGH during MRS), the PAF is asserted and updated on the rising edge of WCLK only and not RCLK. Similarly, PAE is asserted and updated on the rising edge of RCLK only and not WCLK. For detail timing diagrams, see Figure 17 for synchronous PAF timing and Figure 18 for synchronous PAE timing. If asynchronous PAF/PAE configuration is selected (PFM, LOW during MRS), the PAF is asserted LOW on the LOW-to-HIGH transition of WCLK and PAF is reset to HIGH on the LOW-to-HIGH transition of RCLK. Similarly, PAE is asserted LOW on the LOW-to-HIGH transition of RCLK. PAE is reset to HIGH on the LOW-to-HIGH transition of WCLK. For detail timing diagrams, see Figure 19 for asynchronous PAF timing and Figure 20 for asynchronous PAE timing. NOTES: 1. n = empty offset for PAE. 2. m = full offset for PAF. 3. As well as selecting serial programming mode, one of the default values will also be loaded depending on the state of FSEL0 & FSEL1. 4. As well as selecting parallel programming mode, one of the default values will also be loaded depending on the state of FSEL0 & FSEL1. 13 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES TABLE 3 ⎯ STATUS FLAGS FOR IDT STANDARD MODE Number of Words in FIFO IDT72V3640 IDT72V3650 IDT72V3660 0 0 0 (1) (1) H H H L L 1 to n 1 to n 1 to n H H H L H (n+1) to 512 (n+1) to 1,024 (n+1) to 2,048 H H H H H 1,025 to (2,048-(m+1)) 2,049 to (4,096-(m+1)) H H L H H (2,048-m) to 2,047 (4,096m) to 4,095 H L L H H 1,024 2,048 4,096 L L L H H IDT72V3670 IDT72V3680 IDT72V3690 0 0 0 513 to (1,024-(m+1)) (1,024-m) to 1,023 Number of Words in FIFO (1) FF PAF HF PAE EF (1) (1) (1) FF PAF HF PAE EF H H H L L 1 to n 1 to n H H H L H (n+1) to 4,096 (n+1) to 8,192 (n+1) to 16,384 H H H H H 4,097 to (8,192-(m+1)) 8,193 to (16,384-(m+1)) 16,385 to (32,768-(m+1)) H H L H H (16,384-m) to 16,383 (32,768-m) to 32,767 H L L H H 16,384 32,768 L L L H H (8,192-m) to 8,191 8,192 1 to n NOTE: 1. See table 2 for values for n, m. TABLE 4 ⎯ STATUS FLAGS FOR FWFT MODE Number of Words in FIFO IDT72V3640 IDT72V3650 0 0 1 to n+1 (n+2) to 513 0 1,026 to (2,049-(m+1)) (1,025-m) to 1,024 (2,049-m) to 2,048 IR H H L H L 1 to n+1 L H H L L H H H L 2,050 to (4,097-(m+1)) L H L H L L L L H L L L H L (4,097m) to 4,096 1,025 2,049 4,097 H IDT72V3670 IDT72V3680 IDT72V3690 IR 1 to n+1 PAF HF PAE OR L (n+2) to 2,049 1 to n+1 (n+2) to 1,025 514 to (1,025-(m+1)) 0 Number of Words in FIFO IDT72V3660 PAF HF PAE OR L H H L H 1 to n+1 1 to n+1 L H H L L 0 0 (n+2) to 4,097 (n+2) to 8,193 (n+2) to 16,385 L H H H L 4,098 to (8,193(m+1)) 8,194 to (16,385-(m+1)) 16,386 to (32,769-(m+1)) L H L H L (8,194-m) to 8,192 (16,385-m) to 16,384 (32,769-m) to 32,768 L L L H L H L L H L 8,193 16,385 32,769 NOTE: 1. See table 2 for values for n, m. 4667 drw05 14 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 LD WEN REN SEN 0 0 1 1 0 1 0 1 0 1 1 0 WCLK RCLK X COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES IDT72V3640 IDT72V3650 IDT72V3660 IDT72V3670 IDT72V3680 IDT72V3690 Parallel write to registers: Empty Offset (LSB) Empty Offset (MSB) Full Offset (LSB) Full Offset (MSB) Parallel read from registers: Empty Offset (LSB) Empty Offset (MSB) Full Offset (LSB) Full Offset (MSB) X Serial shift into registers: X 20 bits for the 72V3640 22 bits for the 72V3650 24 bits for the 72V3660 26 bits for the 72V3670 28 bits for the 72V3680 30 bits for the 72V3690 1 bit for each rising WCLK edge Starting with Empty Offset (LSB) Ending with Full Offset (MSB) X X 1 1 1 1 0 X X 1 X 0 X X 1 1 1 X X X No Operation X Write Memory Read Memory X No Operation 4667 drw06 NOTES: 1. The programming method can only be selected at Master Reset. 2. Parallel reading of the offset registers is always permitted regardless of which programming method has been selected. 3. The programming sequence applies to both IDT Standard and FWFT modes. Figure 3. Programmable Flag Offset Programming Sequence 15 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 D/Q35 1st Parallel Offset Write/Read Cycle D/Q19 D/Q17 D/Q8 17 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES D/Q0 EMPTY OFFSET REGISTER (PAE) 17 16 15 14 13 12 11 10 9 8 7 6 Non-Interspersed Parity 16 15 14 13 12 11 10 9 Interspersed Parity 5 4 3 2 1 8 7 6 5 4 3 2 1 # of Bits Used: 10 bits for the IDT72V3640 11 bits for the IDT72V3650 12 bits for the IDT72V3660 13 bits for the IDT72V3670 14 bits for the IDT72V3680 15 bits for the IDT72V3690 # of Bits Used 2nd Parallel Offset Write/Read Cycle D/Q35 D/Q19 17 D/Q17 D/Q0 D/Q8 FULL OFFSET REGISTER (PAF) 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 Non-Interspersed Parity Note: All unused bits of the LSB & MSB are don't care Interspersed Parity # of Bits Used IDT72V3640/50/60/70/80/90 ⎯ x36 Bus Width 1st Parallel Offset Write/Read Cycle D/Q17 Data Inputs/Outputs D/Q0 D/Q16 EMPTY OFFSET (LSB) REGISTER (PAE) 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 D/Q8 # of Bits Used 1st Parallel Offset Write/Read Cycle D/Q8 EMPTY OFFSET REGISTER (PAE) 8 6 5 4 3 2 1 Non-Interspersed Parity Interspersed Parity 2nd Parallel Offset Write/Read Cycle D/Q8 EMPTY OFFSET REGISTER (PAE) 16 2nd Parallel Offset Write/Read Cycle D/Q17 Data Inputs/Outputs D/Q16 7 D/Q0 15 14 13 12 11 D/Q0 10 3rd Parallel Offset Write/Read Cycle D/Q8 FULL OFFSET REGISTER (PAF) D/Q0 FULL OFFSET (LSB) REGISTER (PAF) 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 D/Q8 8 7 6 5 4 3 D/Q0 2 4th Parallel Offset Write/Read Cycle D/Q8 FULL OFFSET REGISTER (PAF) 15 14 13 12 11 9 1 D/Q0 10 9 IDT72V3640/50/60/70/80/90 ⎯ x9 Bus Width IDT72V3640/50/60/70/80/90 ⎯ x18 Bus Width 4667 drw07 Figure 3. Programmable Flag Offset Programming Sequence (Continued) 16 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 SERIAL PROGRAMMING MODE If Serial Programming mode has been selected, as described above, then programming of PAE and PAF values can be achieved by using a combination of the LD, SEN, WCLK and SI input pins. Programming PAE and PAF proceeds as follows: when LD and SEN are set LOW, data on the SI input are written, one bit for each WCLK rising edge, starting with the Empty Offset LSB and ending with the Full Offset MSB. A total of 20 bits for the IDT72V3640, 22 bits for the IDT72V3650, 24 bits for the IDT72V3660, 26 bits for the IDT72V3670, 28 bits for the IDT72V3680 and 30 bits for the IDT72V3690. See Figure 15, Serial Loading of Programmable Flag Registers, for the timing diagram for this mode. Using the serial method, individual registers cannot be programmed selectively. PAE and PAF can show a valid status only after the complete set of bits (for all offset registers) has been entered. The registers can be reprogrammed as long as the complete set of new offset bits is entered. When LD is LOW and SEN is HIGH, no serial write to the registers can occur. Write operations to the FIFO are allowed before and during the serial programming sequence. In this case, the programming of all offset bits does not have to occur at once. A select number of bits can be written to the SI input and then, by bringing LD and SEN HIGH, data can be written to FIFO memory via Dn by toggling WEN. When WEN is brought HIGH with LD and SEN restored to a LOW, the next offset bit in sequence is written to the registers via SI. If an interruption of serial programming is desired, it is sufficient either to set LD LOW and deactivate SEN or to set SEN LOW and deactivate LD. Once LD and SEN are both restored to a LOW level, serial offset programming continues. From the time serial programming has begun, neither programmable flag will be valid until the full set of bits required to fill all the offset registers has been written. Measuring from the rising WCLK edge that achieves the above criteria; PAF will be valid after two more rising WCLK edges plus tPAF, PAE will be valid after the next two rising RCLK edges plus tPAE plus tSKEW2. It is only possible to read the flag offset values via the parallel output port Qn. COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES Write operations to the FIFO are allowed before and during the parallel programming sequence. In this case, the programming of all offset registers does not have to occur at one time. One, two or more offset registers can be written and then by bringing LD HIGH, write operations can be redirected to the FIFO memory. When LD is set LOW again, and WEN is LOW, the next offset register in sequence is written to. As an alternative to holding WEN LOW and toggling LD, parallel programming can also be interrupted by setting LD LOW and toggling WEN. Note that the status of a programmable flag (PAE or PAF) output is invalid during the programming process. From the time parallel programming has begun, a programmable flag output will not be valid until the appropriate offset word has been written to the register(s) pertaining to that flag. Measuring from the rising WCLK edge that achieves the above criteria; PAF will be valid after two more rising WCLK edges plus tPAF, PAE will be valid after the next two rising RCLK edges plus tPAE plus tSKEW2. The act of reading the offset registers employs a dedicated read offset register pointer. The contents of the offset registers can be read on the Q0-Qn pins when LD is set LOW and REN is set LOW. For x36 output bus width, data are read via Qn from the Empty Offset Register on the first LOW-to-HIGH transition of RCLK. Upon the second LOW-to-HIGH transition of RCLK, data are read from the Full Offset Register. The third transition of RCLK reads, once again, from the Empty Offset Register. For x18 output bus width, a total of four read cycles are required to obtain the values of the offset registers. Starting with the Empty Offset Register LSB and finishing with the Full Offset Register MSB. For x9 output bus width, a total of six read cycles must be performed on the offset registers. See Figure 3, Programmable Flag Offset Programming Sequence. See Figure 17, Parallel Read of Programmable Flag Registers, for the timing diagram for this mode. It is permissible to interrupt the offset register read sequence with reads or writes to the FIFO. The interruption is accomplished by deasserting REN, LD, or both together. When REN and LD are restored to a LOW level, reading of the offset registers continues where it left off. It should be noted, and care should be taken from the fact that when a parallel read of the flag offsets is performed, the data word that was present on the output lines Qn will be overwritten. Parallel reading of the offset registers is always permitted regardless of which timing mode (IDT Standard or FWFT modes) has been selected. PARALLEL MODE If Parallel Programming mode has been selected, as described above, then programming of PAE and PAF values can be achieved by using a combination of the LD, WCLK , WEN and Dn input pins. Programming PAE and PAF proceeds as follows: LD and WEN must be set LOW. For x36 bit input bus width, data on the inputs Dn are written into the Empty Offset Register on the first LOWto-HIGH transition of WCLK. Upon the second LOW-to-HIGH transition of WCLK, data are written into the Full Offset Register. The third transition of WCLK writes, once again, to the Empty Offset Register. For x18 bit input bus width, data on the inputs Dn are written into the Empty Offset Register LSB on the first LOW-to-HIGH transition of WCLK. Upon the 2nd LOW-to-HIGH transition of WCLK data are written into the Empty Offset Register MSB. The third transition of WCLK writes to the Full Offset Register LSB, the fourth transition of WCLK then writes to the Full Offset Register MSB. The fifth transition of WCLK writes once again to the Empty Offset Register LSB. A total of four writes to the offset registers is required to load values using a x18 input bus width. For an input bus width of x9 bits, a total of six write cycles to the offset registers is required to load values. See Figure 3, Programmable Flag Offset Programming Sequence. See Figure 16, Parallel Loading of Programmable Flag Registers, for the timing diagram for this mode. The act of writing offsets in parallel employs a dedicated write offset register pointer. The act of reading offsets employs a dedicated read offset register pointer. The two pointers operate independently; however, a read and a write should not be performed simultaneously to the offset registers. A Master Reset initializes both pointers to the Empty Offset (LSB) register. A Partial Reset has no effect on the position of these pointers. RETRANSMIT OPERATION The Retransmit operation allows data that has already been read to be accessed again. There are 2 modes of Retransmit operation, normal latency and zero latency. There are two stages to Retransmit: first, a setup procedure that resets the read pointer to the first location of memory, then the actual retransmit, which consists of reading out the memory contents, starting at the beginning of memory. Retransmit setup is initiated by holding RT LOW during a rising RCLK edge. REN and WEN must be HIGH before bringing RT LOW. When zero latency is utilized, REN does not need to be HIGH before bringing RT LOW. At least two words, but no more than D - 2 words should have been written into the FIFO, and read from the FIFO, between Reset (Master or Partial) and the time of Retransmit setup. D = 1,024 for the IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660, 8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690. In FWFT mode, D = 1,025 for the IDT72V2640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690. If IDT Standard mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting EF LOW. The change in level will only be noticeable 17 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 if EF was HIGH before setup. During this period, the internal read pointer is initialized to the first location of the RAM array. When EF goes HIGH, Retransmit setup is complete and read operations may begin starting with the first location in memory. Since IDT Standard mode is selected, every word read including the first word following Retransmit setup requires a LOW on REN to enable the rising edge of RCLK. See Figure 11, Retransmit Timing (IDT Standard Mode), for the relevant timing diagram. If FWFT mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting OR HIGH. During this period, the internal read pointer is set to the first location of the RAM array. When OR goes LOW, Retransmit setup is complete; at the same time, the contents of the first location appear on the outputs. Since FWFT mode is selected, the first word appears on the outputs, no LOW on REN is necessary. Reading all subsequent words requires a LOW on REN to enable the rising edge of RCLK. See Figure 12, Retransmit Timing (FWFT Mode), for the relevant timing diagram. COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES For either IDT Standard mode or FWFT mode, updating of the PAE, HF and PAF flags begin with the rising edge of RCLK that RT is setup. PAE is synchronized to RCLK, thus on the second rising edge of RCLK after RT is setup, the PAE flag will be updated. HF is asynchronous, thus the rising edge of RCLK that RT is setup will update HF. PAF is synchronized to WCLK, thus the second rising edge of WCLK that occurs tSKEW after the rising edge of RCLK that RT is setup will update PAF. RT is synchronized to RCLK. The Retransmit function has the option of two modes of operation, either “normal latency” or “zero latency”. Figure 11 and Figure 12 mentioned previously, relate to “normal latency”. Figure 13 and Figure 14 show “zero latency” retransmit operation. Zero latency basically means that the first data word to be retransmitted, is placed onto the output register with respect to the RCLK pulse that initiated the retransmit. 18 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 SIGNAL DESCRIPTION COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES ASYNCHRONOUS READ (ASYR) The read port can be configured for either Synchronous or Asynchronous mode of operation. If during a Master Reset the ASYR input is LOW, then Asynchronous operation of the read port will be selected. During Asynchronous operation of the read port the RCLK input becomes RD input, this is the Asynchronous read strobe input. A rising edge on RD will read data from the FIFO via the output register and Qn port. (REN must be tied LOW during Asynchronous operation of the read port). The OE input provides three-state control of the Qn output bus, in an asynchronous manner. When the read port is configured for Asynchronous operation the device must be operating on IDT standard mode, FWFT mode is not permissible if the read port is Asynchronous. The Empty Flag (EF) operates in an Asynchronous manner, that is, the empty flag will be updated based on both a read operation and a write operation. Refer to figures 25, 26, 27 and 28 for relevant timing and operational waveforms. INPUTS: DATA IN (D0 - Dn) Data inputs for 36-bit wide data (D0 - D35), data inputs for 18-bit wide data (D0 - D17) or data inputs for 9-bit wide data (D0 - D8). CONTROLS: MASTER RESET ( MRS ) A Master Reset is accomplished whenever the MRS input is taken to a LOW state. This operation sets the internal read and write pointers to the first location of the RAM array. PAE will go LOW, PAF will go HIGH, and HF will go HIGH. If FWFT/SI is LOW during Master Reset then the IDT Standard mode, along with EF and FF are selected. EF will go LOW and FF will go HIGH. If FWFT/SI is HIGH, then the First Word Fall Through mode (FWFT), along with IR and OR, are selected. OR will go HIGH and IR will go LOW. All control settings such as OW, IW, BM, BE, RM, PFM and IP are defined during the Master Reset cycle. During a Master Reset, the output register is initialized to all zeroes. A Master Reset is required after power up, before a write operation can take place. MRS is asynchronous. See Figure 5, Master Reset Timing, for the relevant timing diagram. RETRANSMIT ( RT ) The Retransmit operation allows data that has already been read to be accessed again. There are 2 modes of Retransmit operation, normal latency and zero latency. There are two stages to Retransmit: first, a setup procedure that resets the read pointer to the first location of memory, then the actual retransmit, which consists of reading out the memory contents, starting at the beginning of the memory. Retransmit setup is initiated by holding RT LOW during a rising RCLK edge. REN and WEN must be HIGH before bringing RT LOW. When zero latency is utilized, REN does not need to be HIGH before bringing RT LOW. If IDT Standard mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting EF LOW. The change in level will only be noticeable if EF was HIGH before setup. During this period, the internal read pointer is initialized to the first location of the RAM array. When EF goes HIGH, Retransmit setup is complete and read operations may begin starting with the first location in memory. Since IDT Standard mode is selected, every word read including the first word following Retransmit setup requires a LOW on REN to enable the rising edge of RCLK. See Figure 11, Retransmit Timing (IDT Standard Mode), for the relevant timing diagram. If FWFT mode is selected, the FIFO will mark the beginning of the Retransmit setup by setting OR HIGH. During this period, the internal read pointer is set to the first location of the RAM array. When OR goes LOW, Retransmit setup is complete; at the same time, the contents of the first location appear on the outputs. Since FWFT mode is selected, the first word appears on the outputs, no LOW on REN is necessary. Reading all subsequent words requires a LOW on REN to enable the rising edge of RCLK. See Figure 12, Retransmit Timing (FWFT Mode), for the relevant timing diagram. In Retransmit operation, zero latency mode can be selected using the Retransmit Mode (RM) pin during a Master Reset. This can be applied to both IDT Standard mode and FWFT mode. PARTIAL RESET ( PRS ) A Partial Reset is accomplished whenever the PRS input is taken to a LOW state. As in the case of the Master Reset, the internal read and write pointers are set to the first location of the RAM array, PAE goes LOW, PAF goes HIGH, and HF goes HIGH. Whichever mode is active at the time of Partial Reset, IDT Standard mode or First Word Fall Through, that mode will remain selected. If the IDT Standard mode is active, then FF will go HIGH and EF will go LOW. If the First Word Fall Through mode is active, then OR will go HIGH, and IR will go LOW. Following Partial Reset, all values held in the offset registers remain unchanged. The programming method (parallel or serial) currently active at the time of Partial Reset is also retained. The output register is initialized to all zeroes. PRS is asynchronous. A Partial Reset is useful for resetting the device during the course of operation, when reprogramming programmable flag offset settings may not be convenient. See Figure 6, Partial Reset Timing, for the relevant timing diagram. ASYNCHRONOUS WRITE (ASYW) The write port can be configured for either Synchronous or Asynchronous mode of operation. If during Master Reset the ASYW input is LOW, then Asynchronous operation of the write port will be selected. During Asynchronous operation of the write port the WCLK input becomes WR input, this is the Asynchronous write strobe input. A rising edge on WR will write data present on the Dn inputs into the FIFO. (WEN must be tied LOW when using the write port in Asynchronous mode). When the write port is configured for Asynchronous operation the full flag (FF) operates in an asynchronous manner, that is, the full flag will be updated based in both a write operation and read operation. Note, if Asynchronous mode is selected, FWFT is not permissable. Refer to Figures 23, 24, 27 and 28 for relevant timing and operational waveforms. FIRST WORD FALL THROUGH/SERIAL IN (FWFT/SI) This is a dual purpose pin. During Master Reset, the state of the FWFT/SI input determines whether the device will operate in IDT Standard mode or First Word Fall Through (FWFT) mode. If, at the time of Master Reset, FWFT/SI is LOW, then IDT Standard mode will be selected. This mode uses the Empty Flag (EF) to indicate whether or 19 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 not there are any words present in the FIFO memory. It also uses the Full Flag function (FF) to indicate whether or not the FIFO memory has any free space for writing. In IDT Standard mode, every word read from the FIFO, including the first, must be requested using the Read Enable (REN) and RCLK. If, at the time of Master Reset, FWFT/SI is HIGH, then FWFT mode will be selected. This mode uses Output Ready (OR) to indicate whether or not there is valid data at the data outputs (Qn). It also uses Input Ready (IR) to indicate whether or not the FIFO memory has any free space for writing. In the FWFT mode, the first word written to an empty FIFO goes directly to Qn after three RCLK rising edges, REN = LOW is not necessary. Subsequent words must be accessed using the Read Enable (REN) and RCLK. After Master Reset, FWFT/SI acts as a serial input for loading PAE and PAF offsets into the programmable registers. The serial input function can only be used when the serial loading method has been selected during Master Reset. Serial programming using the FWFT/SI pin functions the same way in both IDT Standard and FWFT modes. WRITE STROBE & WRITE CLOCK (WR/WCLK) If Synchronous operation of the write port has been selected via ASYW, this input behaves as WCLK. A write cycle is initiated on the rising edge of the WCLK input. Data setup and hold times must be met with respect to the LOW-to-HIGH transition of the WCLK. It is permissible to stop the WCLK. Note that while WCLK is idle, the FF/ IR, PAF and HF flags will not be updated. (Note that WCLK is only capable of updating HF flag to LOW). The Write and Read Clocks can either be independent or coincident. If Asynchronous operation has been selected this input is WR (write strobe). Data is Asynchronously written into the FIFO via the Dn inputs whenever there is a rising edge on WR. In this mode the WEN input must be tied LOW. WRITE ENABLE ( WEN ) When the WEN input is LOW, data may be loaded into the FIFO RAM array on the rising edge of every WCLK cycle if the device is not full. Data is stored in the RAM array sequentially and independently of any ongoing read operation. When WEN is HIGH, no new data is written in the RAM array on each WCLK cycle. To prevent data overflow in the IDT Standard mode, FF will go LOW, inhibiting further write operations. Upon the completion of a valid read cycle, FF will go HIGH allowing a write to occur. The FF is updated by two WCLK cycles + tSKEW after the RCLK cycle. To prevent data overflow in the FWFT mode, IR will go HIGH, inhibiting further write operations. Upon the completion of a valid read cycle, IR will go LOW allowing a write to occur. The IR flag is updated by two WCLK cycles + tSKEW after the valid RCLK cycle. WEN is ignored when the FIFO is full in either FWFT or IDT Standard mode. If Asynchronous operation of the write port has been selected, then WEN must be held active, (tied LOW). READ STROBE & READ CLOCK (RD/RCLK) If Synchronous operation of the read port has been selected via ASYR, this input behaves as RCLK. A read cycle is initiated on the rising edge of the RCLK input. Data can be read on the outputs, on the rising edge of the RCLK input. It is permissible to stop the RCLK. Note that while RCLK is idle, the EF/OR, PAE and HF flags will not be updated. (Note that RCLK is only capable of updating the HF flag to HIGH). The Write and Read Clocks can be independent or coincident. If Asynchronous operation has been selected this input is RD (Read Strobe) . Data is Asynchronously read from the FIFO via the output register COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES whenever there is a rising edge on RD. In this mode the REN input must be tied LOW. The OE input is used to provide Asynchronous control of the threestate Qn outputs. READ ENABLE ( REN ) When Read Enable is LOW, data is loaded from the RAM array into the output register on the rising edge of every RCLK cycle if the device is not empty. When the REN input is HIGH, the output register holds the previous data and no new data is loaded into the output register. The data outputs Q0-Qn maintain the previous data value. In the IDT Standard mode, every word accessed at Qn, including the first word written to an empty FIFO, must be requested using REN. When the last word has been read from the FIFO, the Empty Flag (EF) will go LOW, inhibiting further read operations. REN is ignored when the FIFO is empty. Once a write is performed, EF will go HIGH allowing a read to occur. The EF flag is updated by two RCLK cycles + tSKEW after the valid WCLK cycle. In the FWFT mode, the first word written to an empty FIFO automatically goes to the outputs Qn, on the third valid LOW-to-HIGH transition of RCLK + tSKEW after the first write. REN does not need to be asserted LOW. In order to access all other words, a read must be executed using REN. The RCLK LOW-to-HIGH transition after the last word has been read from the FIFO, Output Ready (OR) will go HIGH with a true read (RCLK with REN = LOW), inhibiting further read operations. REN is ignored when the FIFO is empty. If Asynchronous operation of the Read port has been selected, then REN must be held active, (tied LOW). SERIAL ENABLE ( SEN ) The SEN input is an enable used only for serial programming of the offset registers. The serial programming method must be selected during Master Reset. SEN is always used in conjunction with LD. When these lines are both LOW, data at the SI input can be loaded into the program register one bit for each LOW-to-HIGH transition of WCLK. When SEN is HIGH, the programmable registers retains the previous settings and no offsets are loaded. SEN functions the same way in both IDT Standard and FWFT modes. OUTPUT ENABLE ( OE ) When Output Enable is enabled (LOW), the parallel output buffers receive data from the output register. When OE is HIGH, the output data bus (Qn) goes into a high impedance state. LOAD ( LD ) This is a dual purpose pin. During Master Reset, the state of the LD input, along with FSEL0 and FSEL1, determines one of eight default offset values for the PAE and PAF flags, along with the method by which these offset registers can be programmed, parallel or serial (see Table 2). After Master Reset, LD enables write operations to and read operations from the offset registers. Only the offset loading method currently selected can be used to write to the registers. Offset registers can be read only in parallel. After Master Reset, the LD pin is used to activate the programming process of the flag offset values PAE and PAF. Pulling LD LOW will begin a serial loading or parallel load or read of these offset values. BUS-MATCHING (BM, IW, OW) The pins BM, IW and OW are used to define the input and output bus widths. During Master Reset, the state of these pins is used to configure the device bus sizes. See Table 1 for control settings. All flags will operate on the word/byte size boundary as defined by the selection of bus width. See Figure 4 for BusMatching Byte Arrangement. 20 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES The IR status not only measures the contents of the FIFO memory, but also counts the presence of a word in the output register. Thus, in FWFT mode, the total number of writes necessary to deassert IR is one greater than needed to assert FF in IDT Standard mode. FF/IR is synchronous and updated on the rising edge of WCLK. FF/IR are double register-buffered outputs. BIG-ENDIAN/LITTLE-ENDIAN ( BE ) During Master Reset, a LOW on BE will select Big-Endian operation. A HIGH on BE during Master Reset will select Little-Endian format. This function is useful when the following input to output bus widths are implemented: x36 to x18, x36 to x9, x18 to x36 and x9 to x36. If Big-Endian mode is selected, then the most significant byte (word) of the long word written into the FIFO will be read out of the FIFO first, followed by the least significant byte. If Little-Endian format is selected, then the least significant byte of the long word written into the FIFO will be read out first, followed by the most significant byte. The mode desired is configured during master reset by the state of the Big-Endian (BE) pin. See Figure 4 for Bus-Matching Byte Arrangement. EMPTY FLAG ( EF/OR ) This is a dual purpose pin. In the IDT Standard mode, the Empty Flag (EF) function is selected. When the FIFO is empty, EF will go LOW, inhibiting further read operations. When EF is HIGH, the FIFO is not empty. See Figure 8, Read Cycle, Empty Flag and First Word Latency Timing (IDT Standard Mode), for the relevant timing information. In FWFT mode, the Output Ready (OR) function is selected. OR goes LOW at the same time that the first word written to an empty FIFO appears valid on the outputs. OR stays LOW after the RCLK LOW to HIGH transition that shifts the last word from the FIFO memory to the outputs. OR goes HIGH only with a true read (RCLK with REN = LOW). The previous data stays at the outputs, indicating the last word was read. Further data reads are inhibited until OR goes LOW again. See Figure 10, Read Timing (FWFT Mode), for the relevant timing information. EF/OR is synchronous and updated on the rising edge of RCLK. In IDT Standard mode, EF is a double register-buffered output. In FWFT mode, OR is a triple register-buffered output. PROGRAMMABLE FLAG MODE (PFM) During Master Reset, a LOW on PFM will select Asynchronous Programmable flag timing mode. A HIGH on PFM will select Synchronous Programmable flag timing mode. If asynchronous PAF/PAE configuration is selected (PFM, LOW during MRS), the PAE is asserted LOW on the LOW-to-HIGH transition of RCLK. PAE is reset to HIGH on the LOW-to-HIGH transition of WCLK. Similarly, the PAF is asserted LOW on the LOW-to-HIGH transition of WCLK and PAF is reset to HIGH on the LOW-to-HIGH transition of RCLK. If synchronous PAE/PAF configuration is selected (PFM, HIGH during MRS) , the PAE is asserted and updated on the rising edge of RCLK only and not WCLK. Similarly, PAF is asserted and updated on the rising edge of WCLK only and not RCLK. The mode desired is configured during master reset by the state of the Programmable Flag Mode (PFM) pin. PROGRAMMABLE ALMOST-FULL FLAG ( PAF ) The Programmable Almost-Full flag (PAF) will go LOW when the FIFO reaches the almost-full condition. In IDT Standard mode, if no reads are performed after reset (MRS), PAF will go LOW after (D - m) words are written to the FIFO. The PAF will go LOW after (1,024-m) writes for the IDT72V3640, (2,048-m) writes for the IDT72V3650, (4,096-m) writes for the IDT72V3660, (8,192-m) writes for the IDT72V3670, (16,384-m) writes for the IDT72V3680 and (32,768-m) writes for the IDT72V3690. The offset “m” is the full offset value. The default setting for this value is stated in the footnote of Table 1. In FWFT mode, the PAF will go LOW after (1,025-m) writes for the IDT72V3640, (2,049-m) writes for the IDT72V3650, (4,097-m) writes for the IDT72V3660 and (8,193-m) writes for the IDT72V3670, (16,385-m) writes for the IDT72V3680 and (32,769-m) writes for the IDT72V3690, where m is the full offset value. The default setting for this value is stated in Table 2. See Figure 18, Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Mode), for the relevant timing information. If asynchronous PAF configuration is selected, the PAF is asserted LOW on the LOW-to-HIGH transition of the Write Clock (WCLK). PAF is reset to HIGH on the LOW-to-HIGH transition of the Read Clock (RCLK). If synchronous PAF configuration is selected, the PAF is updated on the rising edge of WCLK. See Figure 20, Asynchronous Almost-Full Flag Timing (IDT Standard and FWFT Mode). INTERSPERSED PARITY (IP) During Master Reset, a LOW on IP will select Non-Interspersed Parity mode. A HIGH will select Interspersed Parity mode. The IP bit function allows the user to select the parity bit in the word loaded into the parallel port (D0-Dn) when programming the flag offsets. If Interspersed Parity mode is selected, then the FIFO will assume that the parity bits are located in bit position D8, D17, D26 and D35 during the parallel programming of the flag offsets. If Non-Interspersed Parity mode is selected, then D8, D17 and D28 are is assumed to be valid bits and D32, D33, D34 and D35 are ignored. IP mode is selected during Master Reset by the state of the IP input pin. Interspersed Parity control only has an effect during parallel programming of the offset registers. It does not effect the data written to and read from the FIFO. OUTPUTS: FULL FLAG ( FF/IR ) This is a dual purpose pin. In IDT Standard mode, the Full Flag (FF) function is selected. When the FIFO is full, FF will go LOW, inhibiting further write operations. When FF is HIGH, the FIFO is not full. If no reads are performed after a reset (either MRS or PRS), FF will go LOW after D writes to the FIFO (D = 1,024 for the IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660, 8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690. See Figure 7, Write Cycle and Full Flag Timing (IDT Standard Mode), for the relevant timing information. In FWFT mode, the Input Ready (IR) function is selected. IR goes LOW when memory space is available for writing in data. When there is no longer any free space left, IR goes HIGH, inhibiting further write operations. If no reads are performed after a reset (either MRS or PRS), IR will go HIGH after D writes to the FIFO (D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690. See Figure 9, Write Timing (FWFT Mode), for the relevant timing information. PROGRAMMABLE ALMOST-EMPTY FLAG ( PAE ) The Programmable Almost-Empty flag (PAE) will go LOW when the FIFO reaches the almost-empty condition. In IDT Standard mode, PAE will go LOW when there are n words or less in the FIFO. The offset “n” is the empty offset value. The default setting for this value is stated in the footnote of Table 1. In FWFT mode, the PAE will go LOW when there are n+1 words or less in the FIFO. The default setting for this value is stated in Table 2. See Figure 19, Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Mode), for the relevant timing information. 21 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 If asynchronous PAE configuration is selected, the PAE is asserted LOW on the LOW-to-HIGH transition of the Read Clock (RCLK). PAE is reset to HIGH on the LOW-to-HIGH transition of the Write Clock (WCLK). If synchronous PAE configuration is selected, the PAE is updated on the rising edge of RCLK. See Figure 21, Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Mode). HALF-FULL FLAG ( HF ) This output indicates a half-full FIFO. The rising WCLK edge that fills the FIFO beyond half-full sets HF LOW. The flag remains LOW until the difference between the write and read pointers becomes less than or equal to half of the total depth of the device; the rising RCLK edge that accomplishes this condition sets HF HIGH. In IDT Standard mode, if no reads are performed after reset (MRS or PRS), HF will go LOW after (D/2 + 1) writes to the FIFO, where D = 1,024 for the COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660, 8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690. In FWFT mode, if no reads are performed after reset (MRS or PRS), HF will go LOW after (D-1/2 + 2) writes to the FIFO, where D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690. See Figure 22, Half-Full Flag Timing (IDT Standard and FWFT Modes), for the relevant timing information. Because HF is updated by both RCLK and WCLK, it is considered asynchronous. DATA OUTPUTS (Q0-Qn) (Q0-Q35) are data outputs for 36-bit wide data, (Q0 - Q17) are data outputs for 18-bit wide data or (Q0-Q8) are data outputs for 9-bit wide data. 22 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 BYTE ORDER ON INPUT PORT: D35-D27 B A BYTE ORDER ON OUTPUT PORT: BE BM IW OW X L L L D26-D18 Q35-Q27 A Q26-Q18 B COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES D17-D9 D8-D0 C D Q17-Q9 Q8-Q0 C D Write to FIFO Read from FIFO (a) x36 INPUT to x36 OUTPUT Q35-Q27 BE BM IW OW L H L L Q26-Q18 Q17-Q9 A Q35-Q27 Q26-Q18 Q8-Q0 B Q17-Q9 Q8-Q0 C D 1st: Read from FIFO 2nd: Read from FIFO (b) x36 INPUT to x18 OUTPUT - BIG-ENDIAN Q35-Q27 BE BM IW OW H H L L Q26-Q18 Q17-Q9 C Q35-Q27 Q26-Q18 Q17-Q9 A Q8-Q0 D 1st: Read from FIFO Q8-Q0 B 2nd: Read from FIFO (c) x36 INPUT to x18 OUTPUT - LITTLE-ENDIAN Q35-Q27 BE L BM IW OW H L H Q26-Q18 Q17-Q9 Q8-Q0 A Q35-Q27 Q26-Q18 Q17-Q9 Q8-Q0 B Q35-Q27 Q26-Q18 Q17-Q9 Q26-Q18 Q17-Q9 2nd: Read from FIFO Q8-Q0 C Q35-Q27 1st: Read from FIFO 3rd: Read from FIFO Q8-Q0 D 4th: Read from FIFO (d) x36 INPUT to x9 OUTPUT - BIG-ENDIAN Q35-Q27 BE BM IW OW H H L H Q26-Q18 Q17-Q9 Q8-Q0 D Q35-Q27 Q26-Q18 Q17-Q9 Q8-Q0 C Q35-Q27 Q26-Q18 Q17-Q9 Q26-Q18 Q17-Q9 Figure 4. Bus-Matching Byte Arrangement 23 3rd: Read from FIFO Q8-Q0 A (e) x36 INPUT to x9 OUTPUT - LITTLE-ENDIAN 2nd: Read from FIFO Q8-Q0 B Q35-Q27 1st: Read from FIFO 4th: Read from FIFO 4667 drw08 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 D35-D27 BYTE ORDER ON INPUT PORT: D26-D18 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES D17-D9 D8-D0 A D35-D27 BYTE ORDER ON OUTPUT PORT: BE BM IW OW L H H L Q35-Q27 A D26-D18 B D17-D9 D8-D0 C D Q26-Q18 Q17-Q9 Q8-Q0 B C D 1st: Write to FIFO 2nd: Write to FIFO Read from FIFO (a) x18 INPUT to x36 OUTPUT - BIG-ENDIAN Q35-Q27 BE BM IW OW H H H L C Q26-Q18 Q17-Q9 Q8-Q0 D A B Read from FIFO (b) x18 INPUT to x36 OUTPUT - LITTLE-ENDIAN D35-D27 BYTE ORDER ON INPUT PORT: D26-D18 D17-D9 D8-D0 A D35-D27 D26-D18 D17-D9 D8-D0 B D35-D27 D26-D18 D17-D9 D26-D18 D17-D9 BE BM L H IW OW H H 3rd: Write to FIFO D8-D0 D BYTE ORDER ON OUTPUT PORT: 2nd: Write to FIFO D8-D0 C D35-D27 1st: Write to FIFO Q35-Q27 Q26-Q18 Q17-Q9 Q8-Q0 A B C D 4th: Write to FIFO Read from FIFO (a) x9 INPUT to x36 OUTPUT - BIG-ENDIAN BE BM IW OW H H H H Q35-Q27 Q26-Q18 Q17-Q9 Q8-Q0 D C B A Read from FIFO (b) x9 INPUT to x36 OUTPUT - LITTLE-ENDIAN 4667 drw09 Figure 4. Bus-Matching Byte Arrangement (Continued) 24 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES tRS MRS tRSS tRSR tRSS tRSR tRSS tRSR tRSS tRSR REN WEN FWFT/SI LD tRSS ASYW, ASYR tRSS FSEL0, FSEL1 tRSS BM, OW, IW tRSS BE tRSS RM tRSS PFM tRSS IP tRSS RT tRSS SEN If FWFT = HIGH, OR = HIGH tRSF EF/OR If FWFT = LOW, EF = LOW tRSF If FWFT = LOW, FF = HIGH FF/IR If FWFT = HIGH, IR = LOW tRSF PAE tRSF PAF, HF tRSF OE = HIGH Q0 - Qn OE = LOW Figure 5. Master Reset Timing 25 4667 drw10 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES tRS PRS tRSS tRSR REN tRSS tRSR WEN tRSS RT tRSS SEN If FWFT = HIGH, OR = HIGH tRSF EF/OR If FWFT = LOW, EF = LOW If FWFT = LOW, FF = HIGH tRSF FF/IR If FWFT = HIGH, IR = LOW tRSF PAE tRSF PAF, HF tRSF OE = HIGH Q0 - Qn OE = LOW Figure 6. Partial Reset Timing 26 4667 drw11 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES t CLK t CLKH NO WRITE WCLK t SKEW1 NO WRITE tCLKL 2 1 1 (1) (1) t DS D0 - Dn 2 t SKEW1 t DH t DS t DH DX DX+1 t WFF t WFF t WFF t WFF FF WEN RCLK t ENS t ENS t ENH t ENH REN tA Q0 - Qn tA DATA READ DATA IN OUTPUT REGISTER NEXT DATA READ 4667 drw12 NOTES: 1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that FF will go HIGH (after one WCLK cycle pus tWFF). If the time between the rising edge of the RCLK and the rising edge of the WCLK is less than tSKEW1, then the FF deassertion may be delayed one extra WCLK cycle. 2. LD = HIGH, OE = LOW, EF = HIGH Figure 7. Write Cycle and Full Flag Timing (IDT Standard Mode) tCLK tCLKH 1 RCLK tENS tCLKL 2 tENH tENS REN tENH tENH tENS NO OPERATION NO OPERATION tREF tREF tREF EF tA tA LAST WORD Q0 - Qn tOLZ OE LAST WORD tA D0 D1 t OLZ tOHZ tOE (1) tSKEW1 WCLK tENS tENH tENS tDH tDS tENH WEN tDS D0 - Dn D0 tDH D1 4667 drw13 NOTES: 1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that EF will go HIGH (after one RCLK cycle plus tREF). If the time between the rising edge of WCLK and the rising edge of RCLK is less than tSKEW1, then EF deassertion may be delayed one extra RCLK cycle. 2. LD = HIGH. 3. First data word latency = tSKEW1 + 1*TRCLK + tREF. Figure 8. Read Cycle, Empty Flag and First Data Word Latency Timing (IDT Standard Mode) 27 28 tDS W2 1 tSKEW1(1) tDH 2 W3 DATA IN OUTPUT REGISTER W1 tENS 3 tREF tA W4 tDS W[n +2] W[n+3] 1 tPAES tSKEW2(2) 2 W[n+4] +1 ] W [ D-1 2 tDS 2 +2 ] W [ D-1 tHF W [ D-1 2 +3 ] W1 W[D-m-2] tDS W[D-m-1] W[D-m] 1 tPAFS W[D-m+1] W[D-m+2] W[D-1] WD 4667 drw14 tWFF tENH Figure 9. Write Timing (First Word Fall Through Mode) NOTES: 1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that OR will go LOW after two RCLK cycles plus tREF. If the time between the rising edge of WCLK and the rising edge of RCLK is less than tSKEW1, then OR assertion may be delayed one extra RCLK cycle. 2. tSKEW2 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that PAE will go HIGH after one RCLK cycle plus tPAES. If the time between the rising edge of WCLK and the rising edge of RCLK is less than tSKEW2, then the PAE deassertion may be delayed one extra RCLK cycle. 3. LD = HIGH, OE = LOW 4. n = PAE offset, m = PAF offset and D = maximum FIFO depth. 5. D = 1,025 for IDT72V3640, 2,049 for IDT72V3650, 4,097 for IDT72V3660, 8,193 for IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690. 6. First data word latency = tSKEW1 + 2*TRCLK + tREF. IR PAF HF PAE OR Q0 - Q17 REN RCLK D0 - D17 WEN WCLK IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES 29 tDS tENS W1 tOHZ WD tENS tWFF tDH tENH W1 tOE tA W2 1 (1) tSKEW1 tA 2 tWFF W3 (2) Wm+2 tSKEW2 W[m+3] tA tPAFS W[m+4] + 1] W[ D-1 2 tHF + 2] W[ D-1 2 tA W[D-n-1] tA W[D-n] 1 tPAES W[D-n+1] W[D-n+2] W[D-1] tA tENS WD 4667 drw15 tREF Figure 10. Read Timing (First Word Fall Through Mode) NOTES: 1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that IR will go LOW after one WCLK cycle plus tWFF. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW1, then the IR assertion may be delayed one extra WCLK cycle. 2. tSKEW2 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that PAF will go HIGH after one WCLK cycle plus tPAFS. If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW2, then the PAF deassertion may be delayed one extra WCLK cycle. 3. LD = HIGH 4. n = PAE Offset, m = PAF offset and D = maximum FIFO depth. 5. D = 1,025 for IDT72V3640, 2,049 for IDT72V3650, 4,097 for IDT72V3660, 8,193 for IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690. IR PAF HF PAE OR Q0 - Q17 OE REN RCLK D0 - D17 WEN WCLK IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES 2 1 RCLK tENS tENH tENS tRTS tENH REN tA Q0 - Qn tA Wx Wx+1 tA W1 (3) W2 (3) tSKEW2 1 WCLK 2 tRTS WEN tENS tENH RT tREF tREF EF tPAES PAE tHF HF tPAFS PAF 4667 drw16 NOTES: 1. Retransmit setup is complete after EF returns HIGH, only then can a read operation begin. 2. OE = LOW. 3. W1 = first word written to the FIFO after Master Reset, W2 = second word written to the FIFO after Master Reset. 4. No more than D - 2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, FF will be HIGH throughout the Retransmit setup procedure. D = 1,024 for IDT72V3640, 2,048 for IDT72V3650, 4,096 for IDT72V3660, 8,192 for IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690. 5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked. 6. RM is set HIGH during MRS. Figure 11. Retransmit Timing (IDT Standard Mode) 30 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 1 RCLK tENH tENS COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES 3 2 4 tENH tENS tRTS REN tA Q0 - Qn Wx tA tA Wx+1 W1 (4) W2 (4) tA W3 (4) W4 tSKEW2 1 WCLK 2 tRTS WEN tENS tENH RT tREF tREF OR tPAES PAE tHF HF tPAFS PAF 4667 drw17 NOTES: 1. Retransmit setup is complete after OR returns LOW. 2. No more than D - 2 words may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, IR will be LOW throughout the Retransmit setup procedure. D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690. 3. OE = LOW. 4. W1, W2, W3 = first, second and third words written to the FIFO after Master Reset. 5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked. 6. RM is set HIGH during MRS. Figure 12. Retransmit Timing (FWFT Mode) 31 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 1 RCLK COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES 2 3 tENS tENH REN Q0 - Qn tA tA tA Wx W1(3) Wx+1 tA tA W3(3) W2(3) W4 tSKEW2 1 WCLK 2 tRTS WEN tENS tENH RT EF tPAES PAE tHF HF tPAFS PAF 4667 drw18 NOTES: 1. If the part is empty at the point of Retransmit, the empty flag (EF) will be updated based on RCLK (Retransmit clock cycle), valid data will also appear on the output. 2. OE = LOW. 3. W1 = first word written to the FIFO after Master Reset, W2 = second word written to the FIFO after Master Reset. 4. No more than D - 2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, FF will be HIGH throughout the Retransmit setup procedure. D = 1,024 for IDT72V3640, 2,048 for IDT72V3650, 4,096 for IDT72V3660, 8,192 for IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690. 5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked. 6. RM is set LOW during MRS. Figure 13. Zero Latency Retransmit Timing (IDT Standard Mode) 32 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 1 RCLK 2 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES 4 3 5 tENH tENS REN tA Q0 - Qn Wx tA Wx+1 tA tA W1 W2 (4) W3 (4) tA W4 (4) W5 tSKEW2 1 WCLK 2 tRTS WEN tENS tENH RT OR tPAES PAE tHF HF tPAFS PAF 4667 drw19 NOTES: 1. If the part is empty at the point of Retransmit, the output ready flag (OR) will be updated based on RCLK (Retransmit clock cycle), valid data will also appear on the output. 2. No more than D - 2 words may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, IR will be LOW throughout the Retransmit setup procedure. D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690. 3. OE = LOW. 4. W1, W2, W3 = first, second and third words written to the FIFO after Master Reset. 5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked. 6. RM is set LOW during MRS. Figure 14. Zero Latency Retransmit Timing (FWFT Mode) WCLK t ENS tENH tENH SEN tLDS tLDH tLDH LD tDH tDS SI BIT 0 BIT X (1) EMPTY OFFSET BIT 0 BIT X FULL OFFSET (1) 4667 drw20 NOTE: 1. X = 9 for the IDT72V3640, X = 10 for the IDT72V3650, X = 11 for the IDT72V3660, X = 12 for the IDT72V3670, X = 13 for the IDT72V3680 and X = 14 for the IDT72V3690. Figure 15. Serial Loading of Programmable Flag Registers (IDT Standard and FWFT Modes) 33 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES t CLK t CLKH t CLKL WCLK t LDS t LDH t LDH t ENS t ENH t ENH LD WEN t DS t DH t DH PAF OFFSET PAE OFFSET D0 - Dn NOTE: 1. This timing diagram illustrates programming with an input bus width of 36 bits. 4667 drw21 Figure 16. Parallel Loading of Programmable Flag Registers (IDT Standard and FWFT Modes) t CLK t CLKH t CLKL RCLK t LDS t LDH t LDH LD t ENS t ENH t ENH REN tA tA PAE OFFSET DATA IN OUTPUT REGISTER Q0 - Qn PAF OFFSET NOTES: 1. OE = LOW. 2. The timing diagram illustrates reading of offset registers with an output bus width of 36 bits. 4667 drw22 Figure 17. Parallel Read of Programmable Flag Registers (IDT Standard and FWFT Modes) tCLKL tCLKL WCLK 1 tENS 1 2 2 tENH WEN tPAFS PAF tPAFS (2) (2) D - (m+1) words in FIFO D - m words in FIFO tSKEW2 (3) D-(m+1) words in FIFO(2) RCLK tENS tENH REN 4667 drw23 NOTES: 1. m = PAF offset. 2. D = maximum FIFO depth. In IDT Standard mode: D = 1,024 for the IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660 and 8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690. In FWFT mode: D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690. 3. tSKEW2 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that PAF will go HIGH (after one WCLK cycle plus tPAFS). If the time between the rising edge of RCLK and the rising edge of WCLK is less than tSKEW2, then the PAF deassertion time may be delayed one extra WCLK cycle. 4. PAF is asserted and updated on the rising edge of WCLK only. 5. Select this mode by setting PFM HIGH during Master Reset. Figure 18. Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes) 34 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 tCLKH COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES tCLKL WCLK tENS tENH WEN PAE n words in FIFO (2), n+1 words in FIFO (3) (4) tSKEW2 RCLK 1 n+1 words in FIFO n+2 words in FIFO tPAES 2 n words in FIFO (2), n+1 words in FIFO (3) (2) , (3) tPAES 1 tENS 2 tENH REN 4667 drw24 NOTES: 1. n = PAE offset. 2. For IDT Standard mode 3. For FWFT mode. 4. tSKEW2 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that PAE will go HIGH (after one RCLK cycle plus tPAES). If the time between the rising edge of WCLK and the rising edge of RCLK is less than tSKEW2, then the PAE deassertion may be delayed one extra RCLK cycle. 5. PAE is asserted and updated on the rising edge of WCLK only. 6. Select this mode by setting PFM HIGH during Master Reset. Figure 19. Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes) tCLKH tCLKL WCLK tENS tENH WEN tPAFA PAF D - m words in FIFO D - (m + 1) words in FIFO D - (m + 1) words in FIFO tPAFA RCLK tENS REN 4667 drw25 NOTES: 1. m = PAF offset. 2. D = maximum FIFO Depth. In IDT Standard Mode: D = 1,024 for the IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660, 8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690. In FWFT Mode: D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690. 3. PAF is asserted to LOW on WCLK transition and reset to HIGH on RCLK transition. 4. Select this mode by setting PFM LOW during Master Reset. Figure 20. Asynchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes) 35 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 tCLKH COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES tCLKL WCLK tENS tENH WEN tPAEA n words in FIFO(2), n + 1 words in FIFO(3) PAE n + 1 words in FIFO(2), n + 2 words in FIFO(3) n words in FIFO(2), n + 1 words in FIFO(3) tPAEA RCLK tENS REN 4667 drw26 NOTES: 1. n = PAE offset. 2. For IDT Standard Mode. 3. For FWFT Mode. 4. PAE is asserted LOW on RCLK transition and reset to HIGH on WCLK transition. 5. Select this mode by setting PFM LOW during Master Reset. Figure 21. Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes) tCLKH tCLKL WCLK tENH tENS WEN tHF HF [ D/2 words in FIFO(1), D-1 (2) 2 + 1 words in FIFO [ ] D/2 + 1 words in FIFO(1), D-1 (2) 2 + 2 words in FIFO ] [ D/2 words in FIFO(1), D-1 (2) 2 + 1 words in FIFO ] tHF RCLK tENS REN 4667 drw27 NOTES: 1. In IDT Standard mode: D = maximum FIFO depth. D = 1,024 for the IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660, 8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690. 2. In FWFT mode: D = maximum FIFO depth. D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690. Figure 22. Half-Full Flag Timing (IDT Standard and FWFT Modes) 36 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES RCLK tENS REN tENH tA Qn W0 W1 tFFA FF tFFA tFFA tCYC WR tDS Dn tCYH tDH WD WD+1 4667 drw28 NOTE: 1. OE = LOW and WEN = LOW. Figure 23. Asynchronous Write, Synchronous Read, Full Flag Operation (IDT Standard Mode) 1 RCLK 2 tENS REN tENH tA tA Qn Last Word W1 W0 tREF tREF EF tCYL tSKEW WR tCYH tCYC tDH tDS Dn W0 tDH tDS W1 4667 drw29 NOTE: 1. OE = LOW and WEN = LOW. Figure 24. Asynchronous Write, Synchronous Read, Empty Flag Operation (IDT Standard Mode) 37 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES No Write WCLK 1 2 WEN Dn DF tWFF DF+1 tWFF FF tCYC tSKEW tCYL tCYH RD tAA tAA Qn Last Word WX WX+1 4667 drw30 NOTE: 1. OE = LOW and REN = LOW. 2. Asynchronous Read is available in IDT Standard Mode only. Figure 25. Synchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode) WCLK tENS tENH WEN tDS Dn EF tDH W0 tEFA tRPE tEFA RD tCYH tAA Qn Last Word in Output Register W0 4667 drw31 NOTE: 1. OE = LOW and REN = LOW. 2. Asynchronous Read is available in IDT Standard Mode only. Figure 26. Synchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode) 38 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 tCYH tCYC COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES tCYL WR tDH Dn tDH tDS W0 W1 RD tAA tAA Qn W1 W0 Last Word in O/P Register tRPE tEFA tEFA EF 4667 drw32 NOTES: 1. OE = LOW, WEN = LOW, and REN = LOW. 2. Asynchronous Read is available in IDT Standard Mode only. Figure 27. Asynchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode) tCYC tCYH tCYL WR tDH tDS Dn tDH tDS Wy+1 Wy tCYC tCYH tCYL RD tAA Qn Wx tAA Wx+1 Wx+2 tFFA tFFA FF 4667 drw33 NOTES: 1. OE = LOW, WEN = LOW, and REN = LOW. 2. Asynchronous Read is available in IDT Standard Mode only. Figure 28. Asynchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode) 39 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 OPTIONAL CONFIGURATIONS COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES avoided by creating composite flags, that is, ANDing EF of every FIFO, and separately ANDing FF of every FIFO. In FWFT mode, composite flags can be created by ORing OR of every FIFO, and separately ORing IR of every FIFO. Figure 29 demonstrates a width expansion using two IDT72V3640/ 72V3650/72V3660/72V3670/72V3680/72V3690 devices. D0 - D35 from each device form a 72-bit wide input bus and Q0-Q35 from each device form a 72bit wide output bus. Any word width can be attained by adding additional IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 devices. WIDTH EXPANSION CONFIGURATION Word width may be increased simply by connecting together the control signals of multiple devices. Status flags can be detected from any one device. The exceptions are the EF and FF functions in IDT Standard mode and the IR and OR functions in FWFT mode. Because of variations in skew between RCLK and WCLK, it is possible for EF/FF deassertion and IR/OR assertion to vary by one cycle between FIFOs. In IDT Standard mode, such problems can be PARTIAL RESET (PRS) MASTER RESET (MRS) FIRST WORD FALL THROUGH/ SERIAL INPUT (FWFT/SI) RETRANSMIT (RT) Dm+1 - Dn m+n DATA IN D0 - Dm m n READ CLOCK (RCLK) WRITE CLOCK (WCLK) WRITE ENABLE (WEN) LOAD (LD) FULL FLAG/INPUT READY (FF/IR) #1 IDT 72V3640 72V3650 72V3660 72V3670 72V3680 72V3690 IDT 72V3640 72V3650 72V3660 72V3670 72V3680 72V3690 HALF-FULL FLAG (HF) PROGRAMMABLE (PAE) (1) FULL FLAG/INPUT READY (FF/IR) #2 PROGRAMMABLE (PAF) OUTPUT ENABLE (OE) EMPTY FLAG/OUTPUT READY (EF/OR) #1 (1) GATE READ ENABLE (REN) EMPTY FLAG/OUTPUT READY (EF/OR) #2 FIFO #1 FIFO #2 m Q0 - Qm n Qm+1 - Qn m+n DATA OUT 4667 drw34 NOTES: 1. Use an AND gate in IDT Standard mode, an OR gate in FWFT mode. 2. Do not connect any output control signals directly together. 3. FIFO #1 and FIFO #2 must be the same depth, but may be different word widths. Figure 29. Block Diagram of 1,024 x 72, 2,048 x 72, 4,096 x 72, 8,192 x 72, 16,384 x 72 and 32,768 x 72 Width Expansion 40 GATE IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES FWFT/SI TRANSFER CLOCK WRITE CLOCK FWFT/SI WCLK WRITE ENABLE WEN INPUT READY IR DATA IN IDT 72V3640 72V3650 72V3660 72V3670 72V3680 72V3690 FWFT/SI OR WEN REN OE n Dn WCLK RCLK Qn IR GND IDT 72V3640 72V3650 72V3660 72V3670 72V3680 72V3690 READ CLOCK RCLK REN READ ENABLE OR OUTPUT READY OE OUTPUT ENABLE n n Dn DATA OUT Qn 4667 drw 35 Figure 30. Block Diagram of 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36, 32,768 x 36 and 65,536 x 36 Depth Expansion specification is not met between WCLK and transfer clock, or RCLK and transfer clock, for the OR flag. The "ripple down" delay is only noticeable for the first word written to an empty depth expansion configuration. There will be no delay evident for subsequent words written to the configuration. The first free location created by reading from a full depth expansion configuration will "bubble up" from the last FIFO to the previous one until it finally moves into the first FIFO of the chain. Each time a free location is created in one FIFO of the chain, that FIFO's IR line goes LOW, enabling the preceding FIFO to write a word to fill it. For a full expansion configuration, the amount of time it takes for IR of the first FIFO in the chain to go LOW after a word has been read from the last FIFO is the sum of the delays for each individual FIFO: DEPTH EXPANSION CONFIGURATION (FWFT MODE ONLY) The IDT72V3640 can easily be adapted to applications requiring depths greater than 1,024, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660, 8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690 with an 36-bit bus width. In FWFT mode, the FIFOs can be connected in series (the data outputs of one FIFO connected to the data inputs of the next) with no external logic necessary. The resulting configuration provides a total depth equivalent to the sum of the depths associated with each single FIFO. Figure 30 shows a depth expansion using two IDT72V3640/ 72V3650/72V3660/72V3670/72V3680/72V3690 devices. Care should be taken to select FWFT mode during Master Reset for all FIFOs in the depth expansion configuration. The first word written to an empty configuration will pass from one FIFO to the next ("ripple down") until it finally appears at the outputs of the last FIFO in the chain – no read operation is necessary but the RCLK of each FIFO must be free-running. Each time the data word appears at the outputs of one FIFO, that device's OR line goes LOW, enabling a write to the next FIFO in line. For an empty expansion configuration, the amount of time it takes for OR of the last FIFO in the chain to go LOW (i.e. valid data to appear on the last FIFO's outputs) after a word has been written to the first FIFO is the sum of the delays for each individual FIFO: (N – 1)*(3*transfer clock) + 2 TWCLK where N is the number of FIFOs in the expansion and TWCLK is the WCLK period. Note that extra cycles should be added for the possibility that the tSKEW1 specification is not met between RCLK and transfer clock, or WCLK and transfer clock, for the IR flag. The Transfer Clock line should be tied to either WCLK or RCLK, whichever is faster. Both these actions result in data moving, as quickly as possible, to the end of the chain and free locations to the beginning of the chain. (N – 1)*(4*transfer clock) + 3*TRCLK where N is the number of FIFOs in the expansion and TRCLK is the RCLK period. Note that extra cycles should be added for the possibility that the tSKEW1 41 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES tTCK t3 t4 t1 t2 TCK TDI/ TMS tDS tDH TDO TDO t6 tDO TRST 4667 drw36 Notes to diagram: t1 = tTCKLOW t2 = tTCKHIGH t3 = tTCKFALL t4 = tTCKRise t5 = tRST (reset pulse width) t6 = tRSR (reset recovery) t5 Figure 31. Standard JTAG Timing JTAG AC ELECTRICAL CHARACTERISTICS (VCC = 3.3V ± 5%; Tcase = 0°C to +85°C) SYSTEM INTERFACE PARAMETERS Parameter IDT72V3640 IDT72V3650 IDT72V3660 IDT72V3670 IDT72V3680 IDT72V3690 Parameter Symbol Test Conditions Data Output tDO = Max - 20 ns Data Output Hold tDOH(1) 0 - ns Data Input tDS tDH 10 10 - ns trise=3ns tfall=3ns Min. Max. Units 42 Test Conditions Min. Max. Units JTAG Clock Input Period tTCK - 100 - ns JTAG Clock HIGH tTCKHIGH - 40 - ns JTAG Clock Low tTCKLOW - 40 - ns JTAG Clock Rise Time tTCKRise - - 5(1) ns JTAG Clock Fall Time tTCKFall - - (1) 5 ns JTAG Reset tRST - 50 - ns JTAG Reset Recovery tRSR - 50 - ns NOTE: 1. Guaranteed by design. NOTE: 1. 50pf loading on external output signals. Symbol IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 JTAG INTERFACE COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES The Standard JTAG interface consists of four basic elements: • Test Access Port (TAP) • TAP controller • Instruction Register (IR) • Data Register Port (DR) Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to support the JTAG boundary scan interface. The IDT72V3640/72V3650/ 72V3660/72V3670/72V3680/72V3690 incorporates the necessary tap controller and modified pad cells to implement the JTAG facility. Note that IDT provides appropriate Boundary Scan Description Language program files for these devices. The following sections provide a brief description of each element. For a complete description refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1-1990). The Figure below shows the standard Boundary-Scan Architecture DeviceID Reg. Mux Boundary Scan Reg. Bypass Reg. TDO TDI T A TMS TCLK TRST P TAP Controller clkDR, ShiftDR UpdateDR Instruction Decode clklR, ShiftlR UpdatelR Instruction Register Control Signals 4667 drw37 Figure 32. Boundary Scan Architecture THE TAP CONTROLLER The Tap controller is a synchronous finite state machine that responds to TMS and TCLK signals to generate clock and control signals to the Instruction and Data Registers for capture and update of data. TEST ACCESS PORT (TAP) The Tap interface is a general-purpose port that provides access to the internal of the processor. It consists of four input ports (TCLK, TMS, TDI, TRST) and one output port (TDO). 43 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 1 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES Test-Logic Reset 0 0 Run-Test/ Idle 1 SelectDR-Scan 1 SelectIR-Scan 1 0 1 0 Capture-IR 1 Capture-DR 0 0 0 Shift-DR 1 Input = TMS EXit1-DR Shift-IR 1 1 0 1 Exit2-IR 0 1 1 Update-DR 1 0 0 Pause-IR 1 Exit2-DR 1 Exit1-IR 0 0 Pause-DR 0 0 Update-IR 1 0 4667 drw38 NOTES: 1. Five consecutive TCK cycles with TMS = 1 will reset the TAP. 2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS). 3. TAP controller must be reset before normal FIFO operations can begin. Figure 33. TAP Controller State Diagram UPDATE-DR The shifting process has been completed. The data is latched into their parallel outputs in this state to be accessed through the internal bus. Refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1) for the full state diagram All state transitions within the TAP controller occur at the rising edge of the TCLK pulse. The TMS signal level (0 or 1) determines the state progression that occurs on each TCLK rising edge. The TAP controller takes precedence over the FIFO memory and must be reset after power up of the device. See TRST description for more details on TAP controller reset. EXIT1-DR / EXIT2-DR This is a temporary controller state. If TMS is held high, a rising edge applied to TCK while in this state causes the controller to enter the Update-DR state. This terminates the scanning process. All test data registers selected by the current instruction retain their previous state unchanged. CAPTURE-DR Data is loaded from the parallel input pins or core outputs into the Data Register. PAUSE-DR This controller state allows shifting of the test data register in the serial path between TDI and TDO to be temporarily halted. All test data registers selected by the current instruction retain their previous state unchanged. SHIFT-DR The previously captured data is shifted in serially, LSB first at the rising edge of TCLK in the TDI/TDO path and shifted out serially, LSB first at the falling edge of TCLK towards the output. Capture-IR, Shift-IR and Update-IR, Exit-IR and Pause-IR are similar to Data registers. These instructions operate on the instruction registers. 44 IDT72V3640/50/60/70/80/90 3.3V HIGH DENSITY SUPERSYNC IITM 36-BIT FIFO 1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36 THE INSTRUCTION REGISTER The Instruction register allows an instruction to be shifted in serially into the processor at the rising edge of TCLK. The Instruction is used to select the test to be performed, or the test data register to be accessed, or both. The instruction shifted into the register is latched at the completion of the shifting process when the TAP controller is at UpdateIR state. The instruction register must contain 4 bit instruction register-based cells which can hold instruction data. These mandatory cells are located nearest the serial outputs they are the least significant bits. TEST DATA REGISTER The Test Data register contains three test data registers: the Bypass, the Boundary Scan register and Device ID register. These registers are connected in parallel between a common serial input and a common serial data output. The following sections provide a brief description of each element. For a complete description, refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1-1990). TEST BYPASS REGISTER The register is used to allow test data to flow through the device from TDI to TDO. It contains a single stage shift register for a minimum length in serial path. When the bypass register is selected by an instruction, the shift register stage is set to a logic zero on the rising edge of TCLK when the TAP controller is in the Capture-DR state. The operation of the bypass register should not have any effect on the operation of the device in response to the BYPASS instruction. THE BOUNDARY-SCAN REGISTER The Boundary Scan Register allows serial data TDI be loaded in to or read out of the processor input/output ports. The Boundary Scan Register is a part of the IEEE 1149.1-1990 Standard JTAG Implementation. THE DEVICE IDENTIFICATION REGISTER The Device Identification Register is a Read Only 32-bit register used to specify the manufacturer, part number and version of the processor to be determined through the TAP in response to the IDCODE instruction. IDT JEDEC ID number is 0xB3. This translates to 0x33 when the parity is dropped in the 11-bit Manufacturer ID field. For the IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690, the Part Number field contains the following values: Device IDT72V3640 IDT72V3650 IDT72V3660 IDT72V3670 IDT72V3680 IDT72V3690 Part# Field 04E5 04E4 04E3 04E2 04E1 04E0 COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES 31(MSB) 28 27 12 11 1 0(LSB) Version (4 bits) Part Number (16-bit) Manufacturer ID (11-bit) 0X0 0X33 1 IDT72V3640/50/60/70/80/90 JTAG Device Identification Register JTAG INSTRUCTION REGISTER The Instruction register allows instruction to be serially input into the device when the TAP controller is in the Shift-IR state. The instruction is decoded to perform the following: • Select test data registers that may operate while the instruction is current. The other test data registers should not interfere with chip operation and the selected data register. • Define the serial test data register path that is used to shift data between TDI and TDO during data register scanning. The Instruction Register is a 4 bit field (i.e.IR3, IR2, IR1, IR0) to decode 16 different possible instructions. Instructions are decoded as follows. Hex Value 0x00 0x02 0x01 0x03 0x0F Instruction Function EXTEST IDCODE SAMPLE/PRELOAD HI-Z BYPASS Select Boundary Scan Register Select Chip Identification data register Select Boundary Scan Register JTAG Select Bypass Register Table 6. JTAG Instruction Register Decoding The following sections provide a brief description of each instruction. For a complete description refer to the IEEE Standard Test Access Port Specification (IEEE Std. 1149.1-1990). EXTEST The mandatory EXTEST instruction is provided for external circuity and board level interconnection check. IDCODE This instruction is provided to select Device Identification Register to read out manufacture’s identity, part number and version number. SAMPLE/PRELOAD The mandatory SAMPLE/PRELOAD instruction allows data values to be loaded onto the latched parallel outputs of the boundary-scan shift register prior to selection of the boundary-scan test instruction. The SAMPLE instruction allows a snapshot of data flowing from the system pins to the on-chip logic or vice versa. HIGH-Z This instruction places all the output pins on the device into a high impedance state. BYPASS The Bypass instruction contains a single shift-register stage and is set to provide a minimum-length serial path between the TDI and the TDO pins of the device when no test operation of the device is required. 45 ORDERING INFORMATION XXXXX X XX X Device Type Power Speed Package X X Process / Temperature Range X BLANK 8 Tube or Tray Tape and Reel BLANK I(1) Commercial (0°C to +70°C) Industrial (-40°C to +85°C) (2) G Green PF BB Thin Plastic Quad Flatpack (TQFP, PK128) Plastic Ball Grid Array (PBGA, BB144) 6 7-5 10 15 Commercial Only, PBGA & TQFP Com‘l & Ind’l, PBGA & TQFP Commercial, TQFP Only Com'l & Ind'l, TQFP Only L Low Power 72V3640 72V3650 72V3660 72V3670 72V3680 72V3690 1,024 x 36 2,048 x 36 4,096 x 36 8,192 x 36 16,384 x 36 32,768 x 36 ⎯ ⎯ ⎯ ⎯ ⎯ ⎯ Clock Cycle Time (tCLK) Speed in Nanoseconds 3.3V SuperSync™ II FIFO 3.3V SuperSync™ II FIFO 3.3V SuperSync™ II FIFO 3.3V SuperSync™ II FIFO 3.3V SuperSync™ II FIFO 3.3V SuperSync™ II FIFO 4667 drw 39 NOTES: 1. Industrial temperature range product for 7-5ns and 15ns are available as standard device. All other speed grades are available by special order. 2. Green parts are available. For specific speeds and packages contact your sales office. LEAD FINISH (SnPb) parts are in EOL process. Product Discontinuation Notice - PDN# SP-17-02 DATASHEET DOCUMENT HISTORY 05/25/2000 07/28/2000 12/14/2000 03/27/2001 04/06/2001 12/14/2001 12/20/2001 03/25/2002 04/19/2002 05/24/2002 01/20/2003 02/11/2003 07/15/2003 09/29/2003 11/02/2005 04/06/2006 10/22/2008 10/31/2014 03/19/2018 08/06/2018 pgs. 1, 6, 7, 8, 34, and 35. pgs. 13, 14, and 34. pgs. 6, 7, and 8. pg. 7. pgs. 4, 5, and 18. pgs. 1-46. pg. 9. pg. 42. pg. 3. pgs. 3, and 11. pgs. 1, 7, 9, 10, and 16. pgs. 7, and 44. pgs. 3, 19, and 37-39. pg. 8. pgs. 1, 8-10, and 46. pg. 4. pg. 46. pg. 1-3 and 46. Product Discontinuation Notice - PDN# SP-17-02 Last time buy expires June 15, 2018. pg. 3. 46 IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved.
72V3680L7-5PF
物料型号: - IDT72V3640 - IDT72V3650 - IDT72V3660 - IDT72V3670 - IDT72V3680 - IDT72V3690

器件简介: 这些是3.3V高密度SuperSYNC™ II 36位FIFO存储器,具有不同的存储容量,包括1,024 x 36、2,048 x 36、4,096 x 36、8,192 x 36、16,384 x 36和32,768 x 36。它们具有零延迟重传、自动断电降低待机功耗、主复位清除整个FIFO等功能。

引脚分配: 文档中提供了详细的引脚分配图,包括数据输入/输出、控制信号和时钟信号等。

参数特性: - 零延迟重传 - 自动断电 - 主复位 - 部分复位 - 可编程的几乎空和几乎满标志 - 可选择的同步/异步时序模式 - 可通过串行或并行方式编程标志 - 输出使能将数据输出置于高阻态

功能详解: FIFO具有灵活的x36/x18/x9总线匹配功能,可固定且短暂地进行重传操作,数据读写端口可异步或同步操作。支持高达166MHz的时钟频率,具有用户可选的异步读写端口和可编程的标志偏移量。

应用信息: 适用于网络、视频、电信、数据通信等需要大量数据缓冲和匹配不同总线大小的应用。

封装信息: 提供128引脚薄型四边扁平封装(TQFP)或144引脚塑料球栅阵列(PBGA),后者具有额外特性。工业温度范围(-40°C至+85°C)的产品也可用。
72V3680L7-5PF 价格&库存

很抱歉,暂时无法提供与“72V3680L7-5PF”相匹配的价格&库存,您可以联系我们找货

免费人工找货