0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
82V2042EPFG8

82V2042EPFG8

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    LQFP80

  • 描述:

    IC TELECOM INTERFACE 80TQFP

  • 数据手册
  • 价格&库存
82V2042EPFG8 数据手册
DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT IDT82V2042E FEATURES: • • • • • • Dual channel T1/E1/J1 short haul line interfaces Supports HPS (Hitless Protection Switching) for 1+1 protection without external relays Programmable T1/E1/J1 switchability allowing one bill of material for any line condition Single 3.3 V power supply with 5 V tolerance on digital interfaces Meets or exceeds specifications in - ANSI T1.102, T1.403 and T1.408 - ITU I.431, G.703, G.736, G.775 and G.823 - ETSI 300-166, 300-233 and TBR12/13 - AT&T Pub 62411 Software programmable or hardware selectable on: - Wave-shaping templates - Line terminating impedance (T1:100 Ω, J1:110 Ω, E1: 75 Ω/120 Ω) - Adjustment of arbitrary pulse shape - JA (Jitter Attenuator) position (receive path or transmit path) - Single rail/dual rail system interfaces - B8ZS/HDB3/AMI line encoding/decoding - Active edge of transmit clock (TCLK) and receive clock (RCLK) - Active level of transmit data (TDATA) and receive data (RDATA) - Receiver or transmitter power down - High impedance setting for line drivers • • • • • • • • • - PRBS (Pseudo Random Bit Sequence) generation and detection with 215-1 PRBS polynomials for E1 - QRSS (Quasi Random Sequence Signals) generation and detection with 220-1 QRSS polynomials for T1/J1 - 16-bit BPV (Bipolar Pulse Violation) / Excess Zero/ PRBS or QRSS error counter - Analog loopback, Digital loopback, Remote loopback and Inband loopback Adaptive receive sensitivity up to -20 dB (Host Mode only) Non-intrusive monitoring per ITU G.772 specification Short circuit protection and internal protection diode for line drivers LOS (Loss Of Signal) detection with programmable LOS levels (Host Mode only) AIS (Alarm Indication Signal) detection JTAG interface Supports serial control interface, Motorola and Intel Non-Multiplexed interfaces and hardware control mode Pin compatible to 82V2082 T1/E1/J1 Long Haul/Short Haul LIU and 82V2052E E1 Short Haul LIU Available in 80-pin TQFP Green package options available DESCRIPTION: The IDT82V2042E can be configured as a dual channel T1, E1 or J1 Line Interface Unit. The IDT82V2042E performs clock/data recovery, AMI/ B8ZS/HDB3 line decoding and detects and reports the LOS conditions. An integrated Adaptive Equalizer is available to increase the receive sensitivity and enable programming of LOS levels. In transmit path, there is an AMI/ B8ZS/HDB3 encoder and Waveform Shaper. There is one Jitter Attenuator, which can be placed in either the receive path or the transmit path. The Jitter Attenuator can also be disabled. The IDT82V2042E supports both Single Rail and Dual Rail system interfaces. To facilitate the network maintenance, a PRBS/QRSS generation/detection circuit is integrated in the chip, and dif- ferent types of loopbacks can be set according to the applications. Four different kinds of line terminating impedance, 75 Ω,100 Ω, 110 Ω and 120 Ω are selectable on a per channel basis. The chip also provides driver shortcircuit protection and internal protection diode and supports JTAG boundary scanning. The chip can be controlled by either software or hardware. The IDT82V2042E can be used in LAN, WAN, Routers, Wireless Base Stations, IADs, IMAs, IMAPs, Gateways, Frame Relay Access Devices, CSU/DSU equipment, etc. .IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. 1 December 12, 2005 DSC-6774/1 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT FUNCTIONAL BLOCK DIAGRAM LOSn One of the Two Identical Channels LOS/AIS Detector RCLKn RDn/RDPn CVn/RDNn B8ZS/ HDB3/AMI Decoder PRBS Detector IBLC Detector TCLKn TDn/TDPn TDNn Jitter Attenuator Remote Loopback B8ZS/ HDB3/AMI Decoder Data and Clock Recovery Adaptive Equalizer Data Slicer Receiver Internal Termination RRINGn Analog Loopback Digital Loopback Jitter Attenuator RTIPn Waveform Shaper TTIPn Transmitter Internal Termination Line Driver TRINGn PRBS Generator IBLC Generator TAOS JTAG TAP TDI TDO Pin Control TRST TCK TMS Register Files MODE[1:0] TERMn RXTXM[1:0] PULSn[3:0] PATTn[1:0] JA[1:0] MONTn LPn[1:0] THZ RCLKE RPDn RST Software Control Interface INT CS SDO SCLK R/W/WR/SDI RD/DS/SCLKE A[5:0] D[7:0] MCLK Clock Generator VDDIO VDDD VDDA VDDT VDDR G.772 Monitor Figure-1 Block Diagram FUNCTIONAL BLOCK DIAGRAM 2 December 12, 2005 Table of Contents 1 IDT82V2042E PIN CONFIGURATIONS ....................................................................................... 9 2 PIN DESCRIPTION ..................................................................................................................... 10 3 FUNCTIONAL DESCRIPTION .................................................................................................... 18 3.1 CONTROL MODE SELECTION ....................................................................................... 18 3.2 T1/E1/J1 MODE SELECTION .......................................................................................... 18 3.3 TRANSMIT PATH ............................................................................................................. 18 3.3.1 TRANSMIT PATH SYSTEM INTERFACE.............................................................. 18 3.3.2 ENCODER .............................................................................................................. 18 3.3.3 PULSE SHAPER .................................................................................................... 18 3.3.3.1 Preset Pulse Templates .......................................................................... 18 3.3.3.2 User-Programmable Arbitrary Waveform ................................................ 20 3.3.4 TRANSMIT PATH LINE INTERFACE..................................................................... 23 3.3.5 TRANSMIT PATH POWER DOWN ........................................................................ 23 3.4 RECEIVE PATH ............................................................................................................... 24 3.4.1 RECEIVE INTERNAL TERMINATION.................................................................... 24 3.4.2 LINE MONITOR ...................................................................................................... 25 3.4.3 ADAPTIVE EQUALIZER......................................................................................... 26 3.4.4 RECEIVE SENSITIVITY ......................................................................................... 26 3.4.5 DATA SLICER ........................................................................................................ 26 3.4.6 CDR (Clock & Data Recovery)................................................................................ 26 3.4.7 DECODER .............................................................................................................. 26 3.4.8 RECEIVE PATH SYSTEM INTERFACE ................................................................ 26 3.4.9 RECEIVE PATH POWER DOWN........................................................................... 26 3.4.10 G.772 NON-INTRUSIVE MONITORING ................................................................ 27 3.5 JITTER ATTENUATOR .................................................................................................... 28 3.5.1 JITTER ATTENUATION FUNCTION DESCRIPTION ............................................ 28 3.5.2 JITTER ATTENUATOR PERFORMANCE ............................................................. 28 3.6 LOS AND AIS DETECTION ............................................................................................. 29 3.6.1 LOS DETECTION ................................................................................................... 29 3.6.2 AIS DETECTION .................................................................................................... 31 3.7 TRANSMIT AND DETECT INTERNAL PATTERNS ........................................................ 32 3.7.1 TRANSMIT ALL ONES ........................................................................................... 32 3.7.2 TRANSMIT ALL ZEROS......................................................................................... 32 3.7.3 PRBS/QRSS GENERATION AND DETECTION.................................................... 32 3.8 LOOPBACK ...................................................................................................................... 32 3.8.1 ANALOG LOOPBACK ............................................................................................ 32 3.8.2 DIGITAL LOOPBACK ............................................................................................. 32 Table of Contents 3 December 12, 2005 IDT82V2042E 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT 3.8.3 REMOTE LOOPBACK............................................................................................ 33 3.8.4 INBAND LOOPBACK.............................................................................................. 34 3.8.4.1 Transmit Activate/Deactivate Loopback Code......................................... 34 3.8.4.2 Receive Activate/Deactivate Loopback Code.......................................... 34 3.8.4.3 Automatic Remote Loopback .................................................................. 35 ERROR DETECTION/COUNTING AND INSERTION ...................................................... 36 3.9.1 DEFINITION OF LINE CODING ERROR ............................................................... 36 3.9.2 ERROR DETECTION AND COUNTING ................................................................ 36 3.9.3 BIPOLAR VIOLATION AND PRBS ERROR INSERTION ...................................... 37 LINE DRIVER FAILURE MONITORING ........................................................................... 37 MCLK AND TCLK ............................................................................................................. 38 3.11.1 MASTER CLOCK (MCLK) ...................................................................................... 38 3.11.2 TRANSMIT CLOCK (TCLK).................................................................................... 38 MICROCONTROLLER INTERFACES ............................................................................. 39 3.12.1 PARALLEL MICROCONTROLLER INTERFACE................................................... 39 3.12.2 SERIAL MICROCONTROLLER INTERFACE ........................................................ 39 INTERRUPT HANDLING .................................................................................................. 40 5V TOLERANT I/O PINS .................................................................................................. 41 RESET OPERATION ........................................................................................................ 41 POWER SUPPLY ............................................................................................................. 41 4 PROGRAMMING INFORMATION .............................................................................................. 42 4.1 REGISTER LIST AND MAP ............................................................................................. 42 4.2 Reserved Registers .......................................................................................................... 42 4.3 REGISTER DESCRIPTION .............................................................................................. 44 4.3.1 GLOBAL REGISTERS............................................................................................ 44 4.3.2 TRANSMIT AND RECEIVE TERMINATION REGISTER ....................................... 45 4.3.3 JITTER ATTENUATION CONTROL REGISTER ................................................... 45 4.3.4 TRANSMIT PATH CONTROL REGISTERS........................................................... 46 4.3.5 RECEIVE PATH CONTROL REGISTERS ............................................................. 48 4.3.6 NETWORK DIAGNOSTICS CONTROL REGISTERS ........................................... 49 4.3.7 INTERRUPT CONTROL REGISTERS ................................................................... 52 4.3.8 LINE STATUS REGISTERS ................................................................................... 55 4.3.9 INTERRUPT STATUS REGISTERS ...................................................................... 57 4.3.10 COUNTER REGISTERS ........................................................................................ 58 5 HARDWARE CONTROL PIN SUMMARY .................................................................................. 59 6 IEEE STD 1149.1 JTAG TEST ACCESS PORT ........................................................................ 61 6.1 JTAG INSTRUCTIONS AND INSTRUCTION REGISTER ............................................... 62 6.2 JTAG DATA REGISTER ................................................................................................... 62 6.2.1 DEVICE IDENTIFICATION REGISTER (IDR) ........................................................ 62 6.2.2 BYPASS REGISTER (BR)...................................................................................... 62 6.2.3 BOUNDARY SCAN REGISTER (BSR) .................................................................. 62 Table of Contents 4 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT 6.2.4 TEST ACCESS PORT CONTROLLER .................................................................. 62 7 TEST SPECIFICATIONS ............................................................................................................ 65 8 MICROCONTROLLER INTERFACE TIMING CHARACTERISTICS ......................................... 78 8.1 SERIAL INTERFACE TIMING .......................................................................................... 78 8.2 PARALLEL INTERFACE TIMING ..................................................................................... 79 Table of Contents 5 December 12, 2005 List of Tables Table-1 Table-2 Table-3 Table-4 Table-5 Table-6 Table-7 Table-8 Table-9 Table-10 Table-11 Table-12 Table-13 Table-14 Table-15 Table-16 Table-17 Table-18 Table-19 Table-20 Table-21 Table-22 Table-23 Table-24 Table-25 Table-26 Table-27 Table-28 Table-29 Table-30 Table-31 Table-32 Table-33 Table-34 Table-35 Table-36 Table-37 Table-38 Table-39 Table-40 Table-41 List of Tables Pin Description .............................................................................................................. Transmit Waveform Value For E1 75 Ohm ................................................................... Transmit Waveform Value For E1 120 Ohm ................................................................. Transmit Waveform Value For T1 0~133 ft................................................................... Transmit Waveform Value For T1 133~266 ft............................................................... Transmit Waveform Value For T1 266~399 ft............................................................... Transmit Waveform Value For T1 399~533 ft............................................................... Transmit Waveform Value For T1 533~655 ft............................................................... Transmit Waveform Value For J1 0~655 ft ................................................................... Impedance Matching for Transmitter ............................................................................ Impedance Matching for Receiver ................................................................................ Criteria of Starting Speed Adjustment........................................................................... LOS Declare and Clear Criteria, Adaptive Equalizer Disabled ..................................... LOS Declare and Clear Criteria, Adaptive Equalizer Enabled ...................................... AIS Condition ................................................................................................................ Criteria for Setting/Clearing the PRBS_S Bit ................................................................ EXZ Definition ............................................................................................................... Interrupt Event............................................................................................................... Global Register List and Map........................................................................................ Per Channel Register List and Map .............................................................................. ID: Device Revision Register ........................................................................................ RST: Reset Register ..................................................................................................... GCF: Global Configuration Register ............................................................................. INTCH: Interrupt Channel Indication Register............................................................... TERM: Transmit and Receive Termination Configuration Register .............................. JACF: Jitter Attenuation Configuration Register ........................................................... TCF0: Transmitter Configuration Register 0 ................................................................. TCF1: Transmitter Configuration Register 1 ................................................................. TCF2: Transmitter Configuration Register 2 ................................................................. TCF3: Transmitter Configuration Register 3 ................................................................. TCF4: Transmitter Configuration Register 4 ................................................................. RCF0: Receiver Configuration Register 0..................................................................... RCF1: Receiver Configuration Register 1..................................................................... RCF2: Receiver Configuration Register 2..................................................................... MAINT0: Maintenance Function Control Register 0...................................................... MAINT1: Maintenance Function Control Register 1...................................................... MAINT2: Maintenance Function Control Register 2...................................................... MAINT3: Maintenance Function Control Register 3...................................................... MAINT4: Maintenance Function Control Register 4...................................................... MAINT5: Maintenance Function Control Register 5...................................................... MAINT6: Maintenance Function Control Register 6...................................................... 6 10 21 21 21 22 22 22 22 23 23 24 28 30 30 31 32 36 40 42 43 44 44 44 44 45 45 46 46 47 47 47 48 48 49 49 50 50 50 51 51 51 December 12, 2005 IDT82V2042E Table-42 Table-43 Table-44 Table-45 Table-46 Table-47 Table-48 Table-49 Table-50 Table-51 Table-52 Table-53 Table-54 Table-55 Table-56 Table-57 Table-58 Table-59 Table-60 Table-61 Table-62 Table-63 Table-64 Table-65 Table-66 Table-67 Table-68 Table-69 Table-70 Table-71 List of Tables DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT INTM0: Interrupt Mask Register 0 ................................................................................. INTM1: Interrupt Masked Register 1 ............................................................................. INTES: Interrupt Trigger Edge Select Register ............................................................. STAT0: Line Status Register 0 (real time status monitor)............................................. STAT1: Line Status Register 1 (real time status monitor)............................................. INTS0: Interrupt Status Register 0 ................................................................................ INTS1: Interrupt Status Register 1 ................................................................................ CNT0: Error Counter L-byte Register 0......................................................................... CNT1: Error Counter H-byte Register 1 ........................................................................ Hardware Control Pin Summary ................................................................................... Instruction Register Description .................................................................................... Device Identification Register Description..................................................................... TAP Controller State Description .................................................................................. Absolute Maximum Rating ............................................................................................ Recommended Operation Conditions ........................................................................... Power Consumption...................................................................................................... DC Characteristics ........................................................................................................ E1 Receiver Electrical Characteristics .......................................................................... T1/J1 Receiver Electrical Characteristics...................................................................... E1 Transmitter Electrical Characteristics ...................................................................... T1/J1 Transmitter Electrical Characteristics.................................................................. Transmitter and Receiver Timing Characteristics ......................................................... Jitter Tolerance ............................................................................................................. Jitter Attenuator Characteristics .................................................................................... JTAG Timing Characteristics ........................................................................................ Serial Interface Timing Characteristics ......................................................................... Non-Multiplexed Motorola Read Timing Characteristics ............................................... Non-Multiplexed Motorola Write Timing Characteristics ............................................... Non-Multiplexed Intel Read Timing Characteristics ...................................................... Non-Multiplexed Intel Write Timing Characteristics ...................................................... 7 52 53 54 55 56 57 58 58 58 59 62 62 63 65 66 66 66 67 68 69 70 71 72 74 76 78 79 80 81 82 December 12, 2005 List of Figures Figure-1 Figure-2 Figure-3 Figure-4 Figure-5 Figure-6 Figure-7 Figure-8 Figure-9 Figure-10 Figure-11 Figure-12 Figure-13 Figure-14 Figure-15 Figure-16 Figure-17 Figure-18 Figure-19 Figure-20 Figure-21 Figure-22 Figure-23 Figure-24 Figure-25 Figure-26 Figure-27 Figure-28 Figure-29 Figure-30 Figure-31 Figure-32 Figure-33 Figure-34 Figure-35 Figure-36 List of Figures Block Diagram ................................................................................................................. 2 IDT82V2042E TQFP80 Package Pin Assignment .......................................................... 9 E1 Waveform Template Diagram .................................................................................. 19 E1 Pulse Template Test Circuit ..................................................................................... 19 DSX-1 Waveform Template .......................................................................................... 19 T1 Pulse Template Test Circuit ..................................................................................... 19 Receive Path Function Block Diagram .......................................................................... 24 Transmit/Receive Line Circuit ....................................................................................... 24 Monitoring Receive Line in Another Chip ...................................................................... 25 Monitor Transmit Line in Another Chip .......................................................................... 25 G.772 Monitoring Diagram ............................................................................................ 27 Jitter Attenuator ............................................................................................................. 28 LOS Declare and Clear ................................................................................................. 29 Analog Loopback .......................................................................................................... 33 Digital Loopback ............................................................................................................ 33 Remote Loopback ......................................................................................................... 34 Auto Report Mode ......................................................................................................... 36 Manual Report Mode ..................................................................................................... 37 TCLK Operation Flowchart ............................................................................................ 38 Serial Microcontroller Interface Function Timing ........................................................... 39 JTAG Architecture ......................................................................................................... 61 JTAG State Diagram ..................................................................................................... 64 Transmit System Interface Timing ................................................................................ 72 Receive System Interface Timing ................................................................................. 72 E1 Jitter Tolerance Performance .................................................................................. 73 T1/J1 Jitter Tolerance Performance .............................................................................. 74 E1 Jitter Transfer Performance ..................................................................................... 75 T1/J1 Jitter Transfer Performance ................................................................................ 76 JTAG Interface Timing .................................................................................................. 77 Serial Interface Write Timing ......................................................................................... 78 Serial Interface Read Timing with SCLKE=1 ................................................................ 78 Serial Interface Read Timing with SCLKE=0 ................................................................ 78 Non-Multiplexed Motorola Read Timing ........................................................................ 79 Non-Multiplexed Motorola Write Timing ........................................................................ 80 Non-Multiplexed Intel Read Timing ............................................................................... 81 Non-Multiplexed Intel Write Timing ............................................................................... 82 8 December 12, 2005 IDT82V2042E A5 A4 / RPD2 A3 A2 / RPD1 A1 / PATT21 A0 / PATT20 D7 / PULS13 D6 / PULS12 D5 / PULS11 D4 / PULS10 D3 / PULS23 D2 / PULS22 D1 / PULS21 D0 / PULS20 SCLK / PATT11 DS / RD / SCLKE / PATT10 R/W / WR / SDI / LP21 SDO / LP20 CS / LP11 INT / LP10 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 IDT82V2042E PIN CONFIGURATIONS VDDT1 61 40 VDDIO TRING1 62 39 GNDIO TTIP1 63 38 TCLK1 GNDT1 64 37 TDP1 / TD1 GNDR1 65 36 TDN1 RRING1 66 35 RCLK1 RTIP1 67 34 RDP1 / RD1 VDDR1 68 33 RDN1 / CV1 VDDA 69 32 LOS1 IC 70 31 VDDD REF 71 30 MCLK GNDA 72 29 GNDD VDDR2 73 28 LOS2 RTIP2 74 27 RDN2 / CV2 RRING2 75 26 RDP2 / RD2 GNDR2 76 25 RCLK2 GNDT2 77 24 TDN2 TTIP2 78 23 TDP2 / TD2 TRING2 79 22 TCLK2 VDDT2 80 21 RST 13 14 15 16 17 18 19 20 TERM2 TERM1 RXTXM1 RXTXM0 JA1 JA0 MONT2 MONT1 THZ GNDIO 12 8 VDDIO 11 7 IC RCLKE 6 TDI 9 5 TDO 10 4 TCK MODE0 3 MODE1 2 TRST TMS IDT82V2042E 1 1 DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT Figure-2 IDT82V2042E TQFP80 Package Pin Assignment IDT82V2042E PIN CONFIGURATIONS 9 December 12, 2005 IDT82V2042E 2 DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT PIN DESCRIPTION Table-1 Pin Description Name Type Pin No. Description TTIP1 TTIP2 Analog Output 63 78 TTIPn1/TRINGn: Transmit Bipolar Tip/Ring for Channel 1~2 These pins are the differential line driver outputs and can be set to high impedance state globally or individually. A logic high on THZ pin turns all these pins into high impedance state. When THZ bit (TCF1, 03H...)2 is set to ‘1’, the TTIPn/TRINGn in the corresponding channel is set to high impedance state. In summary, these pins will become high impedance in the following conditions: • THZ pin is high: all TTIPn/TRINGn enter high impedance; • THZn bit is set to 1: the corresponding TTIPn/TRINGn become high impedance; • Loss of MCLK: all TTIPn/TRINGn pins become high impedance;· • Loss of TCLKn: the corresponding TTIPn/TRINGn become HZ (exceptions: Remote Loopback; Transmit internal pattern by MCLK); • Transmitter path power down: the corresponding TTIPn/TRINGn become high impedance; • After software reset; pin reset and power on: all TTIPn/TRINGn enter high impedance. TRING1 TRING2 RTIP1 RTIP2 62 79 Analog Input RRING1 RRING2 TD1/TDP1 TD2/TDP2 67 74 RTIPn/RRINGn: Receive Bipolar Tip/Ring for Channel 1~2 These signals are the differential receiver inputs. 66 75 I 37 23 36 24 TDN1 TDN2 TDn: Transmit Data for Channel 1~2 When the device is in single rail mode, the NRZ data to be transmitted is input on this pin. Data on TDn pin is sampled into the device on the active edge of TCLKn and is encoded by AMI, HDB3 or B8ZS line code rules before being transmitted. In this mode, TDNn should be connected to ground. TDPn/TDNn: Positive/Negative Transmit Data When the device is in dual rail mode, the NRZ data to be transmitted for positive/negative pulse is input on these pins. Data on TDPn/TDNn pin is sampled into the device on the active edge of TCLKn. The active polarity is also selectable. Refer to 3.3.1 TRANSMIT PATH SYSTEM INTERFACE for details. The line code in dual rail mode is as follows: TCLK1 TCLK2 I 38 22 TDPn TDNn Output Pulse 0 0 Space 0 1 Positive Pulse 1 0 Negative Pulse 1 1 Space TCLKn: Transmit Clock for Channel 1~2 This pin inputs 1.544 MHz for T1/J1 mode or 2.048 MHz for E1 mode transmit clock. The transmit data at TDn/TDPn or TDNn is sampled into the device on the active edge of TCLKn. If TCLKn is missing3 and the TCLKn missing interrupt is not masked, an interrupt will be generated. Notes: 1. The footprint ‘n’ (n = 1~2) represents one of the two channels. 2. The name and address of the registers that contain the preceding bit. Only the address of channel 1 register is listed, the rest addresses are represented by ‘...’. Users can find these omitted addresses in the Register Description section. 3. TCLKn missing: the state of TCLKn continues to be high level or low level over 70 MCLK cycles. PIN DESCRIPTION 10 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT Table-1 Pin Description (Continued) Name Type Pin No. RD1/RDP1 RD2/RDP2 O 34 26 RDn: Receive Data output for Channel 1~2 In single rail mode, this pin outputs NRZ data. The data is decoded according to AMI, HDB3 or B8ZS line code rules. 33 27 CVn: Code Violation indication In single rail mode, the BPV/CV errors in received data stream will be reported by driving the CVn pin to high level for a full clock cycle. B8ZS/HDB3 line code violation can be indicated if the B8ZS/HDB3 decoder is enabled. When AMI decoder is selected, bipolar violation will be indicated. In hardware control mode, the EXZ, BPV/CV errors in received data stream are always monitored by the CVn pin if single rail mode is chosen. CV1/RDN1 CV2/RDN2 Description RDPn/RDNn: Positive/Negative Receive Data output for Channel 1~2 In dual rail mode, these pins output the re-timed NRZ data when CDR is enabled, or directly outputs the raw RZ slicer data if CDR is bypassed. Active edge and level select: Data on RDPn/RDNn or RDn is clocked with either the rising or the falling edge of RCLKn. The active polarity is also selectable. Refer to 3.4.8 RECEIVE PATH SYSTEM INTERFACE for details. RCLK1 RCLK2 O 35 25 RCLKn: Receive Clock output for Channel 1~2 This pin outputs 1.544 MHz for T1/J1 mode or 2.048 MHz for E1 mode receive clock. Under LOS conditions with AIS enabled (bit AISE=1), RCLKn is derived from MCLK. In clock recovery mode, this signal provides the clock recovered from the RTIPn/RRINGn signal. The receive data (RDn in single rail mode or RDPn and RDNn in dual rail mode) is clocked out of the device on the active edge of RCLKn. If clock recovery is bypassed, RCLKn is the exclusive OR (XOR) output of the dual rail slicer data RDPn and RDNn. This signal can be used in applications with external clock recovery circuitry. MCLK I 30 MCLK: Master Clock input A built-in clock system that accepts selectable 2.048 MHz reference for E1 operating mode and 1.544 MHz reference for T1/ J1 operating mode. This reference clock is used to generate several internal reference signals: • Timing reference for the integrated clock recovery unit. • Timing reference for the integrated digital jitter attenuator. • Timing reference for microcontroller interface. • Generation of RCLKn signal during a loss of signal condition. • Reference clock to transmit All Ones, all zeros, PRBS/QRSS pattern as well as activate or deactivate Inband Loopback code if MCLK is selected as the reference clock. Note that for ATAO and AIS, MCLK is always used as the reference clock. • Reference clock during Transmit All Ones (TAO) condition or sending PRBS/QRSS in hardware control mode. The loss of MCLK will turn TTIP/TRING into high impedance status. LOS1 LOS2 O 32 28 LOSn: Loss of Signal Output for Channel 1~2 These pins are used to indicate the loss of received signals. When LOSn pin becomes high, it indicates the loss of received signal in channel n. The LOS pin will become low automatically when valid received signal is detected again. The criteria of loss of signal are described in 3.6 LOS AND AIS DETECTION. REF I 71 REF: reference resister An external resistor (3kΩ, 1%) is used to connect this pin to ground to provide a standard reference current for internal circuit. PIN DESCRIPTION 11 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT Table-1 Pin Description (Continued) Name Type Pin No. MODE1 MODE0 I 9 10 Description MODE[1:0]: operation mode of control interface select The level on this pin determines which control mode is used to control the device as follows: MODE[1:0] • • • Control Interface mode 00 Hardware interface 01 Serial Microcontroller Interface 10 Motorola non-multiplexed 11 Intel non-multiplexed The serial microcontroller interface consists of CS, SCLK, SCLKE, SDI, SDO and INT pins. SCLKE is used for the selection of the active edge of SCLK. The parallel non-multiplexed microcontroller interface consists of CS, A[5:0], D[7:0], DS/RD, R/W/WR and INT pins. (Refer to 3.12 MICROCONTROLLER INTERFACES for details) Hardware interface consists of PULSn[3:0], THZ, RCLKE, LPn[1:0], PATTn[1:0], JA[1:0], MONTn, TERMn, RPDn, MODE[1:0] and RXTXM[1:0] (n=1, 2). RCLKE I 11 RCLKE: the active edge of RCLKn select In hardware control mode, this pin selects the active edge of RCLKn • L= update RDPn/RDNn on the rising edge of RCLKn • H= update RDPn/RDNn on the falling edge of RCLKn In software control mode, this pin should be connected to GNDIO. RXTXM1 RXTXM0 I 14 15 RXTXM[1:0]: Receive and transmit path operation mode select In hardware control mode, these pins are used to select the single rail or dual rail operation modes as well as AMI or HDB3/ B8ZS line coding: • 00= single rail with HDB3/B8ZS coding • 01= single rail with AMI coding • 10= dual rail interface with CDR enabled • 11= slicer mode (dual rail interface with CDR disabled) In software control mode, these pins should be connected to ground. CS I 42 CS: Chip Select In serial or parallel microcontroller interface mode, this is the active low enable signal. A low level on this pin enables serial or parallel microcontroller interface. LP11/LP10: Loopback mode select for channel 1 When the chip is configured by hardware, this pin is used to select loopback operation modes for channel 1 (Inband Loopback is not provided in hardware control mode). • 00 = no loopback • 01 = analog loopback • 10 = digital loopback • 11 = remote loopback LP11 INT O 41 INT: Interrupt Request In software control mode, this pin outputs the general interrupt request for all interrupt sources. If INTM_GLB bit (GCF, 20H) is set to ‘1’, all the interrupt sources will be masked. These interrupt sources can be masked individually via registers (INTM0, 13H...) and (INTM1, 14H...). The interrupt status is reported via the registers (INTCH, 21H), (INTS0, 18H...) and (INTS1, 19H...). Output characteristics of this pin can be defined to be push-pull (active high or active low) or open-drain (active low) by setting bits INT_PIN[1:0] (GCF, 20H) LP10 I PIN DESCRIPTION LP11/LP10: Loopback mode select for channel 1 See above LP11. 12 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT Table-1 Pin Description (Continued) Name Type Pin No. Description SCLK I 46 SCLK: Shift Clock In serial microcontroller interface mode, this signal is the shift clock for the serial interface. Configuration data on SDI pin is sampled on the rising edge of SCLK. Configuration and status data on SDO pin is clocked out of the device on the rising edge of SCLK if SCLKE pin is low, or on the falling edge of SCLK if SCLKE pin is high. In parallel non-multiplexed interface mode, this pin should be connected to ground. PATT11 SCLKE PATT11/PATT10: Transmit pattern select for channel 1 In hardware control mode, this pin selects the transmit pattern • 00 = normal • 01= All Ones • 10= PRBS • 11= transmitter power down I 45 SCLKE: Serial Clock Edge Select In serial microcontroller interface mode, this signal selects the active edge of SCLK for outputting SDO. The output data is valid after some delay from the active clock edge. It can be sampled on the opposite edge of the clock. The active clock edge which clocks the data out of the device is selected as shown below: SCLKE SCLK Low Rising edge is the active edge. High Falling edge is the active edge. DS DS: Data Strobe In Motorola parallel non-multiplexed interface mode, this signal is the data strobe of the parallel interface. In a write operation (R/W = 0), the data on D[7:0] is sampled into the device. In a read operation (R/W = 1), the data is driven to D[7:0] by the device. RD RD: Read Strobe In Intel parallel non-Multiplexed interface mode, the data is driven to D[7:0] by the device during low level of RD in a read operation. PATT11/PATT10: Transmit pattern select for channel 1 See above PATT11. PATT10 SDI I 44 SDI: Serial Data Input In serial microcontroller interface mode, this signal is the input data to the serial interface. Configuration data at SDI pin is sampled by the device on the rising edge of SCLK. R/W R/W: Read/Write Select In Motorola parallel non-multiplexed interface mode, this pin is low for write operation and high for read operation. WR WR: Write Strobe In Intel parallel non-multiplexed interface mode, this pin is asserted low by the microcontroller to initiate a write cycle. The data on D[7:0] is sampled into the device in a write operation. LP21 LP21/LP20: loopback mode select for channel 2 When the chip is configured by hardware, this pin is used to select loopback operation modes for channel 2 (Inband Loopback is not provided in hardware control mode). • 00 = no loopback • 01 = analog loopback • 10 = digital loopback • 11 = remote loopback PIN DESCRIPTION 13 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT Table-1 Pin Description (Continued) Name Type Pin No. Description SDO O 43 SDO: Serial Data Output In serial microcontroller interface mode, this signal is the output data of the serial interface. Configuration or Status data at SDO pin is clocked out of the device on the rising edge of SCLK if SCLKE pin is low, or on the falling edge of SCLK if SCLKE pin is high. In parallel non-multiplexed interface mode, this pin should be left open. LP20 I D7 I/O PULS13 I D6 I/O PULS12 I D5 I/O PULS11 I D4 I/O PULS10 I D3 I/O PULS23 I D2 I/O PULS22 I D1 I/O PULS21 I PIN DESCRIPTION LP21/LP20: loopback mode select for channel 2 See above LP21. 54 D7: Data Bus bit7 In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. PULS1[3:0]: these pins are used to select the following functions for channel 1 in hardware control mode: • T1/E1/J1 mode • Transmit pulse template • Internal termination impedance (75Ω/120Ω/100Ω/110Ω) Refer to 5 HARDWARE CONTROL PIN SUMMARY for details. Note that PULS13 to PULS10 determine the T1/E1/J1 mode of common block. 53 D6: Data Bus bit6 In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. 52 D5: Data Bus bit5 In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. See above. See above. 51 D4: Data Bus bit4 In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. 50 D3: Data Bus bit3 In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. See above. PULS2[3:0]: these pins are used to select the following functions for channel 2 in hardware control mode:· • T1/E1/J1 mode • Transmit pulse template • Internal termination impedance (75 Ω/120 Ω/100 Ω/110 Ω) Refer to 5 HARDWARE CONTROL PIN SUMMARY for details. 49 D2: Data Bus bit2 In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. 48 D1: Data Bus bit1 In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. See above. See above. 14 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT Table-1 Pin Description (Continued) Name Type Pin No. D0 I/O 47 D0: Data Bus bit0 In Intel/Motorola non-multiplexed interface mode, this signal is the bi-directional data bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground through a 10 kΩ resistor. Description PULS20 I A5 I 60 A5: Address Bus bit5 In Intel/Motorola non-multiplexed interface mode, this signal is the address bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground. See above. In Hardware mode, this pin has to be tied to GND. A4 I 59 RPD2 A4: Address Bus bit4 In Intel/Motorola non-multiplexed interface mode, this signal is the address bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground. RPD2: Power down control for receiver2 in hardware control mode 0= receiver 2 normal operation 1= receiver 2 power down A3 I 58 A3: Address Bus bit3 In Intel/Motorola non-multiplexed interface mode, this signal is the address bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground. A2 I 57 A2: Address Bus bit2 In Intel/Motorola non-multiplexed interface mode, this signal is the address bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground. In Hardware mode, this pin has to be tied to GND. RPD1 A1 RPD1: Power down control for receiver1 in hardware control mode 0= receiver 1 normal operation 1= receiver 1 power down I 56 PATT21 A0 PATT21/PATT20: Transmit pattern select for channel 2 In hardware control mode, this pin selects the transmit pattern 00 = normal 01= All Ones 10= PRBS 11= transmitter power down I 55 A0: Address Bus bit 0 In Intel/Motorola non-multiplexed interface mode, this signal is the address bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground. See above PATT20 TERM1 TERM2 A1: Address Bus bit1 In Intel/Motorola non-multiplexed interface mode, this signal is the address bus of the microcontroller interface. In serial microcontroller interface mode, this pin should be connected to ground. I PIN DESCRIPTION 13 12 TERMn: Selects internal or external impedance matching for channel 1 and channel 2 in hardware control mode 0 = ternary interface with internal impedance matching network 1 = ternary interface with external impedance matching network in E1 mode; ternary interface with external impedance matching network for receiver and ternary interface with internal impedance matching network for transmitter in T1/J1 mode. (This applies to ZB die revision only.) In software control mode, this pin should be connected to ground. 15 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT Table-1 Pin Description (Continued) Name Type Pin No. Description JA1 I 16 JA[1:0]: Jitter attenuation position, bandwidth and the depth of FIFO select for channel 1 and channel 2 (only used in hardware control mode) • 00 = JA is disabled • 01= JA in receiver, broad bandwidth, FIFO=64 bits • 10 = JA in receiver, narrow bandwidth, FIFO=128 bits • 11= JA in transmitter, narrow bandwidth, FIFO=128 bits In software control mode, this pin should be connected to ground. JA0 I 17 See above. MONT2 I 18 MONT2: Receive Monitor gain select for channel 2 In hardware control mode with ternary interface, this pin selects the receive monitor gain of receiver: 0= 0dB 1= 26dB In software control mode, this pin should be connected to ground. MONT1 I 19 MONT1: Receive Monitor gain select for channel 1 In hardware control mode with ternary interface, this pin selects the receive monitor gain of receiver: 0= 0dB 1= 26dB In software control mode, this pin should be connected to ground. RST I 21 RST: Hardware Reset The chip is forced to reset state if a low signal is input on this pin for more than 100ns. MCLK must be active during reset. THZ I 20 THZ: Transmitter Driver High Impedance Enable This signal enables or disables all transmitter drivers on a global basis. A low level on this pin enables the driver while a high level on this pin places all drivers in high impedance state. Note that the functionality of the internal circuits is not affected by this signal. JTAG Signals TRST I Pullup 1 TRST: JTAG Test Port Reset This is the active low asynchronous reset to the JTAG Test Port. This pin has an internal pull-up resistor. To ensure deterministic operation of the test logic, TMS should be held high while the signal applied to TRST changes from low to high. For normal signal processing, this pin should be connected to ground. If JTAG is not used, this pin must be connected to ground. TMS I Pullup 2 TMS: JTAG Test Mode Select This pin is used to control the test logic state machine and is sampled on the rising edge of TCK. TMS has an internal pullup resistor. If JTAG is not used, this pin may be left unconnected. TCK I 3 TCK: JTAG Test Clock This is the input clock for JTAG. The data on TDI and TMS are clocked into the device on the rising edge of TCK while the data on TDO is clocked out of the device on the falling edge of TCK. When TCK is idle at low state, all the stored-state devices contained in the test logic will retain their state indefinitely. If JTAG is not used, this pin may be left unconnected. TDO O 4 TDO: JTAG Test Data Output This output pin is high impedance normally and is used for reading all the serial configuration and test data from the test logic. The data on TDO is clocked out of the device on the falling edge of TCK. If JTAG is not used, this pin should be left unconnected. TDI I Pullup 5 TDI: JTAG Test Data Input This pin is used for loading instructions and data into the test logic and has an internal pull-up resistor. The data on TDI is clocked into the device on the rising edge of TCK. If JTAG is not used, this pin may be left unconnected. VDDIO - 7,40 3.3 V I/O power supply GNDIO - 8,39 I/O ground Power Supplies and Grounds PIN DESCRIPTION 16 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT Table-1 Pin Description (Continued) Name Type Pin No. VDDT1 VDDT2 - 61 80 3.3 V power supply for transmitter driver Description GNDT1 GNDT2 - 64 77 Analog ground for transmitter driver VDDR1 VDDR2 - 68 73 Power supply for receive analog circuit GNDR1 GNDR2 - 65 76 Analog ground for receive analog circuit VDDD - 31 3.3V digital core power supply GNDD - 29 Digital core ground VDDA - 69 Analog core circuit power supply GNDA - 72 Analog core circuit ground IC - 70 IC: Internal Connection Internal Use. This pin should be left open in normal operation. IC - 6 IC: Internal Connection Internal Use. This pin should be connected to ground in normal operation. Others PIN DESCRIPTION 17 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT 3 FUNCTIONAL DESCRIPTION 3.1 CONTROL MODE SELECTION and TDNn can be selected by the TD_INV bit (TCF0, 04H...). In hardware control mode, the falling edge of TCLKn and the active high of transmit data are always used. The transmit data from the system side can be provided in two different ways: Single Rail and Dual Rail. In Single Rail mode, only TDn pin is used for transmitting data and the T_MD[1] bit (TCF0, 04H...) should be set to ‘0’. In Dual Rail Mode, both TDPn pin and TDNn pin are used for transmitting data, the T_MD[1] bit (TCF0, 04H...) should be set to ‘1’. The IDT82V2042E can be configured by software or by hardware. The software control mode supports Serial Control Interface, Motorola non-Multiplexed Control Interface and Intel non-Multiplexed Control Interface. The Control mode is selected by MODE1 and MODE0 pins as follows: 3.3.2 Control Interface Mode • 00 Hardware interface 01 Serial Microcontroller Interface. 10 Parallel -non-Multiplexed -Motorola Interface 11 Parallel -non-Multiplexed -Intel Interface In Single Rail mode, when T1/J1 mode is selected, the Encoder can be selected to be a B8ZS encoder or an AMI encoder by setting T_MD[0] bit (TCF0, 04H...). In Single Rail mode, when E1 mode is selected, the Encoder can be configured to be a HDB3 encoder or an AMI encoder by setting T_MD[0] bit (TCF0, 04H...). The serial microcontroller Interface consists of CS, SCLK, SCLKE, SDI, SDO and INT pins. SCLKE is used for the selection of active edge of SCLK. The parallel non-Multiplexed microcontroller Interface consists of CS, A[5:0], D[7:0], DS/RD, R/W/WR and INT pins. Hardware interface consists of PULSn[3:0], THZ, RCLKE, LPn[1:0], PATTn[1:0], JA[1:0], MONTn, TERMn, RPDn, MODE[1:0] and RXTXM[1:0] (n=1, 2). Refer to 5 HARDWARE CONTROL PIN SUMMARY for details about hardware control. • • 3.2 In both T1/J1 mode and E1 mode, when Dual Rail mode is selected (bit T_MD[1] is ‘1’), the Encoder is by-passed. In Dual Rail mode, a logic ‘1’ on the TDPn pin and a logic ‘0’ on the TDNn pin results in a negative pulse on the TTIPn/TRINGn; a logic ‘0’ on TDPn pin and a logic ‘1’ on TDNn pin results in a positive pulse on the TTIPn/TRINGn. If both TDPn and TDNn are high or low, the TTIPn/TRINGn outputs a space (Refer to TDn/TDPn, TDNn Pin Description). In hardware control mode, the operation mode of receive and transmit path can be selected by setting RXTXM1 and RXTXM0 pins on a global basis. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details. T1/E1/J1 MODE SELECTION When the chip is configured by software, T1/E1/J1 mode is selected by the T1E1 bit (GCF, 20H). In E1 application, the T1E1 bit (GCF, 20H) should be set to ‘0’. In T1/J1 application, the T1E1 bit should be set to ‘1’. 3.3.3 In software control mode, the pulse shape can be selected by setting the related registers. TRANSMIT PATH In hardware control mode, the pulse shape can be selected by setting PULSn[3:0] pins on a per channel basis. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details. The transmit path of each channel of IDT82V2042E consists of an Encoder, an optional Jitter Attenuator, a Waveform Shaper, a Line Driver and a Programmable Transmit Termination. 3.3.1 3.3.3.1 Preset Pulse Templates TRANSMIT PATH SYSTEM INTERFACE For E1 applications, the pulse shape is shown in Figure-3 according to the G.703 and the measuring diagram is shown in Figure-4. In internal impedance matching mode, if the cable impedance is 75 Ω, the PULS[3:0] bits (TCF1, 05H...) should be set to ‘0000’; if the cable impedance is 120 Ω, the PULS[3:0] bits (TCF1, 05H...) should be set to ‘0001’. In external impedance matching mode, for both E1/75 Ω and E1/120 Ω cable impedance, PULS[3:0] should be set to ‘0001’. The transmit path system interface consists of TCLKn pin, TDn/TDPn pin and TDNn pin. In E1 mode, TCLKn is a 2.048 MHz clock. In T1/J1 mode, TCLKn is a 1.544 MHz clock. If TCLKn is missing for more than 70 MCLK cycles, an interrupt will be generated if it is not masked. Transmit data is sampled on the TDn/TDPn and TDNn pins by the active edge of TCLKn. The active edge of TCLKn can be selected by the TCLK_SEL bit (TCF0, 04H...). And the active level of the data on TDn/TDPn FUNCTIONAL DESCRIPTION PULSE SHAPER The IDT82V2042E provides two ways of manipulating the pulse shape before sending it. One is to use preset pulse templates; the other is to use user-programmable arbitrary waveform template. When the chip is configured by hardware, T1/E1/J1 mode is selected by PULSn[3:0] pins on a per channel basis. These pins also determine transmit pulse template and internal termination impedance. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details. 3.3 ENCODER 18 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT grades, and there are five pulse templates used for each of the cable length. The pulse template is selected by PULS[3:0] bits (TCF1, 05H...). 1 .2 0 1 .0 0 1.2 1 0 .6 0 0.8 Normalized Amplitude Normalized Amplitude 0 .8 0 0 .4 0 0 .2 0 0 .0 0 - 0 .2 0 -0 .6 - 0 .4 - 0 .2 0 0 .2 0 .4 0 .6 0.6 0.4 0.2 0 -0.2 T im e in U n it In te rv a ls -0.4 Figure-3 E1 Waveform Template Diagram -0.6 0 250 500 750 1000 1250 Time (ns) Figure-5 DSX-1 Waveform Template TTIPn IDT82V2042E RLOAD VOUT TTIPn TRINGn Cable IDT82V2042E Note: 1. For RLOAD = 75 Ω (nom), Vout (Peak)=2.37V (nom) 2. For RLOAD =120 Ω (nom), Vout (Peak)=3.00V (nom) TRINGn Figure-4 E1 Pulse Template Test Circuit Note: RLOAD = 100 Ω ± 5% Figure-6 T1 Pulse Template Test Circuit For T1 applications, the pulse shape is shown in Figure-5 according to the T1.102 and the measuring diagram is shown in Figure-6. This also meets the requirement of G.703, 2001. The cable length is divided into five FUNCTIONAL DESCRIPTION RLOAD VOUT For J1 applications, the PULS[3:0] (TCF1, 05H...) should be set to ‘0111’. Table-10 lists these values. 19 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT against the standard pulse amplitude if needed. For different pulse shapes, the value of SCAL[5:0] bits and the scaling percentage ratio are different. The following eight tables list these values. 3.3.3.2 User-Programmable Arbitrary Waveform When the PULS[3:0] bits are set to ‘11xx’, user-programmable arbitrary waveform generator mode can be used in the corresponding channel. This allows the transmitter performance to be tuned for a wide variety of line condition or special application. Do the followings step by step, the desired waveform can be programmed, based on the selected waveform template: (1).Select the UI by UI[1:0] bits (TCF3, 07H...) (2).Specify the sample address in the selected UI by SAMP [3:0] bits (TCF3, 07H...) (3).Write sample data to WDAT[6:0] bits (TCF4, 08H...). It contains the data to be stored in the RAM, addressed by the selected UI and the corresponding sample address. (4).Set the RW bit (TCF3, 07H...) to ‘0’ to implement writing data to RAM, or to ‘1’ to implement read data from RAM (5).Implement the Read from RAM/Write to RAM by setting the DONE bit (TCF3, 07H...) Each pulse shape can extend up to 4 UIs (Unit Interval), addressed by UI[1:0] bits (TCF3, 07H...) and each UI is divided into 16 sub-phases, addressed by the SAMP[3:0] bits (TCF3, 07H...). The pulse amplitude of each phase is represented by a binary byte, within the range from +63 to 63, stored in WDAT[6:0] bits (TCF4, 08H...) in signed magnitude form. The most positive number +63 (D) represents the maximum positive amplitude of the transmit pulse while the most negative number -63 (D) represents the maximum negative amplitude of the transmit pulse. Therefore, up to 64 bytes are used. For each channel, a 64 bytes RAM is available. There are eight standard templates which are stored in an on-chip ROM. User can select one of them as reference and make some changes to get the desired waveform. Repeat the above steps until all the sample data are written to or read from the internal RAM. (6).Write the scaling data to SCAL[5:0] bits (TCF2, 06H...) to scale the amplitude of the waveform based on the selected standard pulse amplitude User can change the wave shape and the amplitude to get the desired pulse shape. In order to do this, firstly, users can choose a set of waveform value from the following eight tables, which is the most similar to the desired pulse shape. Table-2, Table-3, Table-4, Table-5, Table-6, Table-7, Table-8 and Table-9 list the sample data and scaling data of each of the eight templates. Then modify the corresponding sample data to get the desired transmit pulse shape. When more than one UI is used to compose the pulse template, the overlap of two consecutive pulses could make the pulse amplitude overflow (exceed the maximum limitation) if the pulse amplitude is not set properly. This overflow is captured by DAC_OV_IS bit (INTS1, 19H...), and, if enabled by the DAC_OV_IM bit (INTM1, 14H...), an interrupt will be generated. Secondly, through the value of SCAL[5:0] bits increased or decreased by 1, the pulse amplitude can be scaled up or down at the percentage ratio FUNCTIONAL DESCRIPTION 20 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT The following tables give all the sample data based on the preset pulse templates in detail for reference. For preset pulse templates, scaling up/ down against the pulse amplitude is not supported. 1.Table-2 Transmit Waveform Value for E1 75 Ω 2.Table-3 Transmit Waveform Value for E1 120 Ω 3.Table-4 Transmit Waveform Value for T1 0~133 ft 4.Table-5 Transmit Waveform Value for T1 133~266 ft 5.Table-6 Transmit Waveform Value for T1 266~399 ft 6.Table-7 Transmit Waveform Value for T1 399~533 ft 7.Table-8 Transmit Waveform Value for T1 533~655 ft 8.Table-9 Transmit Waveform Value for J1 0~655 ft Table-3 Transmit Waveform Value For E1 120 Ohm Table-2 Transmit Waveform Value For E1 75 Ohm Sample UI 1 UI 2 UI 3 UI 4 1 0000000 0000000 0000000 0000000 2 0000000 0000000 0000000 0000000 3 0000000 0000000 0000000 0000000 4 0001111 0000000 0000000 0000000 5 0111100 0000000 0000000 0000000 6 0111100 0000000 0000000 0000000 7 0111100 0000000 0000000 0000000 8 0111100 0000000 0000000 0000000 9 0111100 0000000 0000000 0000000 10 0111100 0000000 0000000 0000000 Sample UI 1 UI 2 UI 3 UI 4 1 0000000 0000000 0000000 0000000 11 0111100 0000000 0000000 0000000 2 0000000 0000000 0000000 0000000 12 0111100 0000000 0000000 0000000 3 0000000 0000000 0000000 0000000 13 0000000 0000000 0000000 0000000 4 0001100 0000000 0000000 0000000 14 0000000 0000000 0000000 0000000 5 0110000 0000000 0000000 0000000 15 0000000 0000000 0000000 0000000 6 0110000 0000000 0000000 0000000 16 0000000 0000000 0000000 0000000 7 0110000 0000000 0000000 0000000 8 0110000 0000000 0000000 0000000 9 0110000 0000000 0000000 0000000 10 0110000 0000000 0000000 0000000 11 0110000 0000000 0000000 0000000 12 0110000 0000000 0000000 0000000 13 0000000 0000000 0000000 0000000 14 0000000 0000000 0000000 0000000 15 0000000 0000000 0000000 0000000 16 0000000 0000000 0000000 0000000 SCAL[5:0] = 100001 (default), One step change of this value of SCAL[5:0] results in 3% scaling up/down against the pulse amplitude. Table-4 Transmit Waveform Value For T1 0~133 ft SCAL[5:0] = 100001 (default), One step change of this value of SCAL[5:0] results in 3% scaling up/down against the pulse amplitude. Sample UI 1 UI 2 UI 3 UI 4 1 0010111 1000010 0000000 0000000 2 0100111 1000001 0000000 0000000 3 0100111 0000000 0000000 0000000 4 0100110 0000000 0000000 0000000 5 0100101 0000000 0000000 0000000 6 0100101 0000000 0000000 0000000 7 0100101 0000000 0000000 0000000 8 0100100 0000000 0000000 0000000 9 0100011 0000000 0000000 0000000 10 1001010 0000000 0000000 0000000 11 1001010 0000000 0000000 0000000 12 1001001 0000000 0000000 0000000 13 1000111 0000000 0000000 0000000 14 1000101 0000000 0000000 0000000 15 1000100 0000000 0000000 0000000 16 1000011 0000000 0000000 0000000 1 SCAL[5:0] = 110110 (default), One step change of this value of SCAL[5:0] results in 2% scaling up/down against the pulse amplitude. 1. In T1 mode, when arbitrary pulse for short haul application is configured, users should write ‘110110’ to SCAL[5:0] bits if no scaling is required. FUNCTIONAL DESCRIPTION 21 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT Table-5 Transmit Waveform Value For T1 133~266 ft Sample UI 1 UI 2 1 0011011 1000011 2 0101110 1000010 3 0101100 1000001 4 0101010 0000000 5 0101001 6 0101000 7 8 UI 3 Table-7 Transmit Waveform Value For T1 399~533 ft UI 4 Sample UI 1 UI 2 UI 3 UI 4 0000000 0000000 1 0100000 1000011 0000000 0000000 0000000 0000000 2 0111011 1000010 0000000 0000000 0000000 0000000 3 0110101 1000001 0000000 0000000 0000000 0000000 4 0101111 0000000 0000000 0000000 0000000 0000000 0000000 5 0101110 0000000 0000000 0000000 0000000 0000000 0000000 6 0101101 0000000 0000000 0000000 0100111 0000000 0000000 0000000 7 0101100 0000000 0000000 0000000 0100110 0000000 0000000 0000000 8 0101010 0000000 0000000 0000000 9 0100101 0000000 0000000 0000000 9 0101000 0000000 0000000 0000000 10 1010000 0000000 0000000 0000000 10 1011000 0000000 0000000 0000000 11 1001111 0000000 0000000 0000000 11 1011000 0000000 0000000 0000000 12 1001101 0000000 0000000 0000000 12 1010011 0000000 0000000 0000000 13 1001010 0000000 0000000 0000000 13 1001100 0000000 0000000 0000000 14 1001000 0000000 0000000 0000000 14 1001000 0000000 0000000 0000000 15 1000110 0000000 0000000 0000000 15 1000110 0000000 0000000 0000000 16 1000100 0000000 0000000 0000000 16 1000100 0000000 0000000 0000000 See Table-4 See Table-4 Table-6 Transmit Waveform Value For T1 266~399 ft Sample UI 1 UI 2 UI 3 Table-8 Transmit Waveform Value For T1 533~655 ft UI 4 Sample UI 1 UI 2 UI 3 UI 4 1 0011111 1000011 0000000 0000000 1 0100000 1000011 0000000 0000000 2 0110100 1000010 0000000 0000000 2 0111111 1000010 0000000 0000000 3 0101111 1000001 0000000 0000000 3 0111000 1000001 0000000 0000000 4 0101100 0000000 0000000 0000000 4 0110011 0000000 0000000 0000000 5 0101011 0000000 0000000 0000000 5 0101111 0000000 0000000 0000000 6 0101010 0000000 0000000 0000000 6 0101110 0000000 0000000 0000000 7 0101001 0000000 0000000 0000000 7 0101101 0000000 0000000 0000000 8 0101000 0000000 0000000 0000000 8 0101100 0000000 0000000 0000000 9 0100101 0000000 0000000 0000000 9 0101001 0000000 0000000 0000000 10 1010111 0000000 0000000 0000000 10 1011111 0000000 0000000 0000000 11 1010011 0000000 0000000 0000000 11 1011110 0000000 0000000 0000000 12 1010000 0000000 0000000 0000000 12 1010111 0000000 0000000 0000000 13 1001011 0000000 0000000 0000000 13 1001111 0000000 0000000 0000000 14 1001000 0000000 0000000 0000000 14 1001001 0000000 0000000 0000000 15 1000110 0000000 0000000 0000000 15 1000111 0000000 0000000 0000000 16 1000100 0000000 0000000 0000000 16 1000100 0000000 0000000 0000000 See Table-4 FUNCTIONAL DESCRIPTION See Table-4 22 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT to ‘1’, the internal impedance matching circuit will be disabled. In this case, the external impedance matching circuit will be used to realize the impedance matching. For T1/J1 mode, the external impedance matching circuit for the transmitter is not supported. Table-9 Transmit Waveform Value For J1 0~655 ft Sample UI 1 UI 2 UI 3 UI 4 1 0010111 1000010 0000000 0000000 2 0100111 1000001 0000000 0000000 3 0100111 0000000 0000000 0000000 4 0100110 0000000 0000000 0000000 5 0100101 0000000 0000000 0000000 6 0100101 0000000 0000000 0000000 7 0100101 0000000 0000000 0000000 8 0100100 0000000 0000000 0000000 9 0100011 0000000 0000000 0000000 10 1001010 0000000 0000000 0000000 11 1001010 0000000 0000000 0000000 12 1001001 0000000 0000000 0000000 13 1000111 0000000 0000000 0000000 14 1000101 0000000 0000000 0000000 15 1000100 0000000 0000000 0000000 16 1000011 0000000 0000000 0000000 Figure-8 shows the appropriate external components to connect with the cable for one channel. Table-10 is the list of the recommended impedance matching for transmitter. In hardware control mode, TERMn pin can be used to select impedance matching for both receiver and transmitter on a per channel basis. If TERMn pin is low, internal impedance network will be used. If TERMn pin is high, external impedance network will be used in E1 mode, or external impedance network for receiver and internal impedance network for transmitter will be used in T1/J1 mode. (This applies to ZB die revision only). When internal impedance network is used, PULSn[3:0] pins should be set to select the specific internal impedance in the corresponding channel. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details. The TTIPn/TRINGn can also be turned into high impedance globally by pulling THZ pin to high or individually by setting the THZ bit (TCF1, 05H...) to ‘1’. In this state, the internal transmit circuits are still active. In hardware control mode, TTIPn/TRINGn pins can be turned into high impedance globally by pulling THZ pin to high. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details. SCAL[5:0] = 110110 (default), One step change of this value of SCAL[5:0] results in 2% scaling up/down against the pulse amplitude. 3.3.4 Besides, in the following cases, TTIPn/TRINGn will also become high impedance: • Loss of MCLK; • Loss of TCLKn (exceptions: Remote Loopback; Transmit internal pattern by MCLK); • Transmit path power down; • After software reset; pin reset and power on. TRANSMIT PATH LINE INTERFACE The transmit line interface consists of TTIPn and TRINGn pins. The impedance matching can be realized by the internal impedance matching circuit or the external impedance matching circuit. If T_TERM[2] is set to ‘0’, the internal impedance matching circuit will be selected. In this case, the T_TERM[1:0] bits (TERM, 02H...) can be set to choose 75 Ω, 100 Ω, 110 Ω or 120 Ω internal impedance of TTIPn/TRINGn. If T_TERM[2] is set Table-10 Impedance Matching for Transmitter Cable Configuration Internal Termination T_TERM[2:0] PULS[3:0] RT T_TERM[2:0] PULS[3:0] RT 0Ω 1XX 0001 9.4 Ω E1/75 Ω 000 0000 E1/120 Ω 001 0001 T1/0~133 ft 010 0010 T1/133~266 ft 0011 T1/266~399 ft 0100 T1/399~533 ft 0101 T1/533~655 ft J1/0~655 ft External Termination 0001 - - - 0110 011 0111 Note: The precision of the resistors should be better than ± 1% 3.3.5 In hardware control mode, the transmit path can be powered down by setting PATTn[1:0] pins to ‘11’ on a per channel basis. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details. TRANSMIT PATH POWER DOWN The transmit path can be powered down individually by setting the T_OFF bit (TCF0, 04H...) to ‘1’. In this case, the TTIPn/TRINGn pins are turned into high impedance. FUNCTIONAL DESCRIPTION 23 December 12, 2005 IDT82V2042E 3.4 DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT RECEIVE PATH is set to ‘0’, the internal impedance matching circuit will be selected. In this case, the R_TERM[1:0] bits (TERM, 02H...) can be set to choose 75 Ω, 100 Ω, 110 Ω or 120 Ω internal impedance of RTIPn/RRINGn. If R_TERM[2] is set to ‘1’, the internal impedance matching circuit will be disabled. In this case, the external impedance matching circuit will be used to realize the impedance matching. The receive path consists of Receive Internal Termination, Monitor Gain, Amplitude/Wave Shape Detector, Digital Tuning Controller, Adaptive Equalizer, Data Slicer, CDR (Clock & Data Recovery), Optional Jitter Attenuator, Decoder and LOS/AIS Detector. Refer to Figure-7. 3.4.1 RECEIVE INTERNAL TERMINATION Figure-8 shows the appropriate external components to connect with the cable for one channel. Table-11 is the list of the recommended impedance matching for receiver. The impedance matching can be realized by the internal impedance matching circuit or the external impedance matching circuit. If R_TERM[2] LOS/AIS Detector RTIP RRING Receive Internal termination Monitor Gain/ Adaptive Equalizer Clock and Data Recovery Data Slicer LOS RCLK Jitter Attenuator Decoder RDP RDN Figure-7 Receive Path Function Block Diagram Table-11 Impedance Matching for Receiver Cable Configuration Internal Termination External Termination R_TERM[2:0] RR R_TERM[2:0] 120 Ω 1XX RR E1/75 Ω 000 E1/120 Ω 001 120 Ω T1 010 100 Ω J1 011 110 Ω • RX Line RR4 B 2:1 • • TX Line VDDRn One of the Two Identical Channels D8 ·• RTIPn VDDRn D7 VDDRn D6 • •· D5 VDDTn D4 RT4 •· D3 3.3 V 68µF1 0.1µF RRINGn TTIPn 2 IDT82V2042E A 1:1 • • 75 Ω • GNDRn 3.3 V VDDTn Cp 68µF 1 0.1µF VDDTn D2 RT4 3 D1 GNDTn •· • TRINGn Note: 1. Common decoupling capacitor. One per chip 2. Cp 0-560 (pF) 3. D1 - D8, Motorola - MBR0540T1; International Rectifier - 11DQ04 or 10BQ060 4. RT/ RR: refer toTable-10 and Table-11 respecivley for RT and RR values Figure-8 Transmit/Receive Line Circuit FUNCTIONAL DESCRIPTION 24 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT In hardware control mode, TERMn, PULSn[3:0] pins can be used to select impedance matching for both receiver and transmitter on a per channel basis. If TERMn pin is low, internal impedance network will be used. If TERMn pin is high, external impedance network will be used in E1 mode, or external impedance network for receiver and internal impedance network for transmitter will be used in T1/J1 mode. (This applies to ZB die revision only). When internal impedance network is used, PULSn[3:0] pins should be set to select specific internal impedance for the corresponding channel. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details. 3.4.2 DSX cross connect point RTIP monitor gain=0dB RRING R normal receive mode RTIP LINE MONITOR monitor gain =22/26/32dB In both T1/J1 and E1 short haul applications, the non-intrusive monitoring on channels located in other chips can be performed by tapping the monitored channel through a high impedance bridging circuit. Refer to Figure9 and Figure-10. RRING monitor mode Figure-9 Monitoring Receive Line in Another Chip After a high resistance bridging circuit, the signal arriving at the RTIPn/ RRINGn is dramatically attenuated. To compensate this attenuation, the Monitor Gain can be used to boost the signal by 22 dB, 26 dB and 32 dB, selected by MG[1:0] bits (RCF2, 0BH...). For normal operation, the Monitor Gain should be set to 0 dB. DSX cross connect point TTIP In hardware control mode, MONTn pin can be used to set the Monitor Gain on a per channel basis. When MONTn pin is low, the Monitor Gain for the specific channel is 0 dB. When MONTn pin is high, the Monitor Gain for the specific channel is 26 dB. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details. TRING R normal transmit mode RTIP monitor gain monitor gain =22/26/32dB RRING monitor mode Figure-10 Monitor Transmit Line in Another Chip FUNCTIONAL DESCRIPTION 25 December 12, 2005 IDT82V2042E 3.4.3 DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT 3.4.8 ADAPTIVE EQUALIZER The receive path system interface consists of RCLKn pin, RDn/RDPn pin and RDNn pin. In E1 mode, the RCLKn outputs a recovered 2.048 MHz clock. In T1/J1 mode, the RCLKn outputs a recovered 1.544 MHz clock. The received data is updated on the RDn/RDPn and RDNn pins on the active edge of RCLKn. The active edge of RCLKn can be selected by the RCLK_SEL bit (RCF0, 09H...). And the active level of the data on RDn/ RDPn and RDNn can be selected by the RD_INV bit (RCF0, 09H...). The Adaptive Equalizer can be enabled to increase the receive sensitivity and to allow programming of the LOS level up to -24 dB. See section 3.6 LOS AND AIS DETECTION. It can be enabled or disabled by setting EQ_ON bit to ‘1’ or ‘0’ (RCF1, 0AH...). 3.4.4 RECEIVE SENSITIVITY In Host mode, the Receive Sensitivity for both E1 and T1/J1 is -10 dB. With the Adaptive Equalizer enabled, the receive sensitivity will be -20 dB. In hardware control mode, only the active edge of RCLKn can be selected. If RCLKE is set to high, the falling edge will be chosen as the active edge of RCLKn. If RCLKE is set to low, the rising edge will be chosen as the active edge of RCLKn. The active level of the data on RDn/RDPn and RDNn is the same as that in software control mode. In Hardware mode, the Adaptive Equalizer can not be enabled and the receive sensitivity is fixed at -10 dB for both E1 and T1/J1. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details. 3.4.5 DATA SLICER The received data can be output to the system side in two different ways: Single Rail or Dual Rail, as selected by R_MD bit [1] (RCF0, 09H...). In Single Rail mode, only RDn pin is used to output data and the RDNn/CVn pin is used to report the received errors. In Dual Rail Mode, both RDPn pin and RDNn pin are used for outputting data. The Data Slicer is used to generate a standard amplitude mark or a space according to the amplitude of the input signals. The threshold can be 40%, 50%, 60% or 70%, as selected by the SLICE[1:0] bits (RCF2, 0BH...). The output of the Data Slicer is forwarded to the CDR (Clock & Data Recovery) unit or to the RDPn/RDNn pins directly if the CDR is disabled. 3.4.6 In the receive Dual Rail mode, the CDR unit can be by-passed by setting R_MD[1:0] to ‘11’ (binary). In this situation, the output data from the Data Slicer will be output to the RDPn/RDNn pins directly, and the RCLKn outputs the exclusive OR (XOR) of the RDPn and RDNn. This is called receiver slicer mode. In this case, the transmit path is still operating in Dual Rail mode. CDR (Clock & Data Recovery) The CDR is used to recover the clock and data from the received signal. The recovered clock tracks the jitter in the data output from the Data Slicer and keeps the phase relationship between data and clock during the absence of the incoming pulse. The CDR can also be by-passed in the Dual Rail mode. When CDR is by-passed, the data from the Data Slicer is output to the RDPn/RDNn pins directly. 3.4.7 3.4.9 RECEIVE PATH POWER DOWN The receive path can be powered down individually by setting R_OFF bit (RCF0, 09H...) to ‘1’. In this case, the RCLKn, RDn/RDPn, RDNn and LOSn will be logic low. DECODER In T1/J1 applications, the R_MD[1:0] bits (RCF0, 09H...) is used to select the AMI decoder or B8ZS decoder. In E1 applications, the R_MD[1:0] bits (RCF0, 09H...) are used to select the AMI decoder or HDB3 decoder. In hardware control mode, receiver power down can be selected by pulling RPDn pin to high on a per channel basis. Refer to 5 HARDWARE CONTROL PIN SUMMARY for more details. When the chip is configured by hardware, the operation mode of receive and transmit path can be selected by setting RXTXM[1:0] pins on a global basis. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details. FUNCTIONAL DESCRIPTION RECEIVE PATH SYSTEM INTERFACE 26 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT The monitored line signal (transmit or receive) goes through Channel 1’s Clock and Data Recovery. The signal can be observed digitally at the RCLK1, RD1/RDP1 and RDN1. If Channel 1 is configured to Remote Loopback while in the Monitoring mode, the monitored data will be output on TTIP1/TRING1. 3.4.10 G.772 NON-INTRUSIVE MONITORING In applications using only one channel, channel 1 can be configured to monitor the data received or transmitted in channel 2. The MONT[1:0] bits (GCF, 20H) determine which direction (transmit/receive) will be monitored. The monitoring is non-intrusive per ITU-T G.772. Figure-11 illustrates the concept. Channel 2 LOS2 LOS/AIS Detection RCLK2 RD2/RDP2 CV2/RDN2 B8ZS/ HDB3/AMI Decoder Jitter Attenuator TCLK2 TD2/TDP2 TDN2 B8ZS/ HDB3/AMI Encoder Jitter Attenuator Clock and Data Recovery Data Slicer Adaptive Equalizer Line Driver Waveform Shaper Receiver Internal Termination RTIP2 Transmitter Internal Termination TTIP2 Channel 1 LOS1 RCLK1 RD1/RDP1 CV1/RDN1 DLOS/AIS Detection B8ZS/ HDB3/AMI Decoder ALOS Detection Jitter Attenuator Clock and Data Recovery Data Slicer Adaptive Equalizer RRING2 TRING2 G.772 Monitor Receiver Internal Termination RTIP1 Transmitter Internal Termination TTIP1 RRING1 Remote Loopback TCLK1 TD1/TDP1 TDN1 B8ZS/ HDB3/AMI Encoder Jitter Attenuator Line Driver Waveform Shaper TRING1 Figure-11 G.772 Monitoring Diagram FUNCTIONAL DESCRIPTION 27 December 12, 2005 IDT82V2042E 3.5 DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT JITTER ATTENUATOR In E1 applications, the Corner Frequency of the DPLL can be 0.9 Hz or 6.8 Hz, as selected by the JABW bit (JACF, 03H...). In T1/J1 applications, the Corner Frequency of the DPLL can be 1.25 Hz or 5.00 Hz, as selected by the JABW bit (JACF, 03H...). The lower the Corner Frequency is, the longer time is needed to achieve synchronization. There is one Jitter Attenuator in each channel of the LIU. The Jitter Attenuator can be deployed in the transmit path or the receive path, and can also be disabled. This is selected by the JACF[1:0] bits (JACF, 03H...). In hardware control mode, Jitter Attenuator position, bandwidth and the depth of FIFO can be selected by JA[1:0] pins on a global basis. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details. 3.5.1 When the incoming data moves faster than the outgoing data, the FIFO will overflow. This overflow is captured by the JAOV_IS bit (INTS1, 19H...). If the incoming data moves slower than the outgoing data, the FIFO will underflow. This underflow is captured by the JAUD_IS bit (INTS1, 19H...). For some applications that are sensitive to data corruption, the JA limit mode can be enabled by setting JA_LIMIT bit (JACF, 03H...) to ‘1’. In the JA limit mode, the speed of the outgoing data will be adjusted automatically when the FIFO is close to its full or emptiness. The criteria of starting speed adjustment are shown in Table-12. The JA limit mode can reduce the possibility of FIFO overflow and underflow, but the quality of jitter attenuation is deteriorated. JITTER ATTENUATION FUNCTION DESCRIPTION The Jitter Attenuator is composed of a FIFO and a DPLL, as shown in Figure-12. The FIFO is used as a pool to buffer the jittered input data, then the data is clocked out of the FIFO by a de-jittered clock. The depth of the FIFO can be 32 bits, 64 bits or 128 bits, as selected by the JADP[1:0] bits (JACF, 03H...). In hardware control mode, the depth of FIFO can be selected by JA[1:0] pins on a global basis. Refer to 5 HARDWARE CONTROL PIN SUMMARY for details. Consequently, the constant delay of the Jitter Attenuator will be 16 bits, 32 bits or 64 bits. Deeper FIFO can tolerate larger jitter, but at the cost of increasing data latency time. Jittered Clock W Criteria for Adjusting Data Outgoing Speed 32 Bits 2 bits close to its full or emptiness 3 bits close to its full or emptiness 4 bits close to its full or emptiness De-jittered Data RDNn 3.5.2 JITTER ATTENUATOR PERFORMANCE The performance of the Jitter Attenuator in the IDT82V2042E meets the ITU-T I.431, G.703, G.736-739, G.823, G.824, ETSI 300011, ETSI TBR12/ 13, AT&T TR62411 specifications. Details of the Jitter Attenuator performance is shown in Table-64 Jitter Tolerance and Table-65 Jitter Attenuator Characteristics. R DPLL FIFO Depth RDn/RDPn FIFO 32/64/128 Jittered Data Table-12 Criteria of Starting Speed Adjustment De-jittered Clock RCLKn MCLK Figure-12 Jitter Attenuator FUNCTIONAL DESCRIPTION 28 December 12, 2005 IDT82V2042E DUAL CHANNEL T1/E1/J1 SHORT HAUL LINE INTERFACE UNIT 3.6 LOS AND AIS DETECTION 3.6.1 LOS DETECTION • LOS detect level threshold With the Adaptive Equalizer off, the amplitude threshold Q is fixed on 800 mVpp, while P=Q+200 mVpp (200 mVpp is the LOS level detect hysteresis). The Loss of Signal Detector monitors the amplitude of the incoming signal level and pulse density of the received signal on RTIPn and RRINGn. With the Adaptive Equalizer on, the value of Q can be selected by LOS[4:0] bit (RCF1, 0AH...), while P=Q+4 dB (4 dB is the LOS level detect hysteresis). Refer to Table 33, “RCF1: Receiver Configuration Register 1,” on page 48 for LOS[4:0] bit values available. • LOS declare (LOS=1) A LOS is detected when the incoming signal has “no transitions”, i.e., when the signal level is less than Q dB below nominal for N consecutive pulse intervals. Here N is defined by LAC bit (MAINT0, 0CH...). LOS will be declared by pulling LOSn pin to high (LOS=1) and LOS interrupt will be generated if it is not masked. When the chip is configured by hardware, the Adaptive Equalizer can not be enabled and Programmable LOS levels are not available (pin 58 & pin 60 have to be set to ‘0’). • LOS clear (LOS=0) The LOS is cleared when the incoming signal has “transitions”, i.e., when the signal level is greater than P dB below nominal and has an average pulse density of at least 12.5% for M consecutive pulse intervals, starting with the receipt of a pulse. Here M is defined by LAC bit (MAINT0, 0CH...). LOS status is cleared by pulling LOSn pin to low. • Criteria for declare and clear of a LOS detect The detection supports the ANSI T1.231 and I.431 for T1/J1 mode and G.775 and ETSI 300233/I.431 for E1 mode. The criteria can be selected by LAC bit (MAINT0, 0CH...) and T1E1 bit (GCF, 20H). Table-13 and Table-14 summarize LOS declare and clear criteria for both with and without the Adaptive Equalizer enabled. • All Ones output during LOS On the system side, the RDPn/RDNn will reflect the input pulse “transition” at the RTIPn/RRINGn side and output recovered clock (but the quality of the output clock can not be guaranteed when the input level is lower than the maximum receive sensitivity) when AISE bit (MAINT0, 0CH...) is 0; or output All Ones as AIS when AISE bit (MAINT0, 0CH...) is 1. In this case RCLKn output is replaced by MCLK. LOS=1 signal level>P density=OK signal level 1 Vpp M=128 bits 12.5% mark density 1 Vpp M=128 bits 12.5% mark density 1 Vpp M=32 bits 12.5% mark density 1 Vpp M=32 bits 12.5% mark density Q+ 4dB M=128 bits 12.5% mark density Q+ 4dB M=128 bits I.431 Level detect range is -18 to -30 dB. 12.5% mark density Q+ 4dB M=32 bits 12.5% mark density Q+ 4dB M=32 bits 12.5% mark density
82V2042EPFG8 价格&库存

很抱歉,暂时无法提供与“82V2042EPFG8”相匹配的价格&库存,您可以联系我们找货

免费人工找货