QUAD CHANNEL T1/E1/J1 LONG HAUL/
SHORT HAUL LINE INTERFACE UNIT
IDT82V2084
FEATURES:
•
•
•
•
•
•
•
Four channel T1/E1/J1 long haul/short haul line interfaces
Supports HPS (Hitless Protection Switching) for 1+1 protection
without external relays
Receiver sensitivity exceeds -36 dB@772KHz and -43 dB@1024
KHz
Programmable T1/E1/J1 switchability allowing one bill of material for any line condition
Single 3.3 V power supply with 5 V tolerance on digital interfaces
Meets or exceeds specifications in
- ANSI T1.102, T1.403 and T1.408
- ITU I.431, G.703,G.736, G.775 and G.823
- ETSI 300-166, 300-233 and TBR 12/13
- AT&T Pub 62411
Per channel software selectable on:
- Wave-shaping templates for short haul and long haul LBO (Line Build
Out)
- Line terminating impedance (T1:100 Ω, J1:110 Ω, E1:75 Ω/120 Ω)
- Adjustment of arbitrary pulse shape
- JA (Jitter Attenuator) position (receive path or transmit path)
- Single rail/dual rail system interfaces
- B8ZS/HDB3/AMI line encoding/decoding
- Active edge of transmit clock (TCLK) and receive clock (RCLK)
Active level of transmit data (TDATA) and receive data (RDATA)
Receiver or transmitter power down
High impedance setting for line drivers
PRBS (Pseudo Random Bit Sequence) generation and detection
with 215-1 PRBS polynomials for E1
- QRSS (Quasi Random Sequence Signals) generation and detection
with 220-1 QRSS polynomials for T1/J1
- 16-bit BPV (Bipolar Pulse Violation)/Excess Zero/PRBS or QRSS
error counter
- Analog loopback, Digital loopback, Remote loopback and Inband
loopback
Per channel cable attenuation indication
Adaptive receive sensitivity
Non-intrusive monitoring per ITU G.772 specification
Short circuit protection for line drivers
LOS (Loss Of Signal) & AIS (Alarm Indication Signal) detection
JTAG interface
Supports serial control interface, Motorola and Intel Non-Multiplexed interfaces
Package:
IDT82V2084: 128-pin TQFP
-
•
•
•
•
•
•
•
•
DESCRIPTION:
The IDT82V2084 can be configured as a quad T1, quad E1 or quad J1
Line Interface Unit. In receive path, an Adaptive Equalizer is integrated to
remove the distortion introduced by the cable attenuation. The IDT82V2084
also performs clock/data recovery, AMI/B8ZS/HDB3 line decoding and
detects and reports the LOS conditions. In transmit path, there is an AMI/
B8ZS/HDB3 encoder, Waveform Shaper and LBOs. There is one Jitter
Attenuator for each channel, which can be placed in either the receive path
or the transmit path. The Jitter Attenuator can also be disabled. The
IDT82V2084 supports both Single Rail and Dual Rail system interfaces and
both serial and parallel control interfaces. To facilitate the network maintenance, a PRBS/QRSS generation/detection circuit is integrated in each
channel, and different types of loopbacks can be set on a per channel basis.
Four different kinds of line terminating impedance, 75Ω, 100 Ω, 110 Ω and
120 Ω are selectable on a per channel basis. The chip also provides driver
short-circuit protection and supports JTAG boundary scanning.
The IDT82V2084 can be used in SDH/SONET, LAN, WAN, Routers,
Wireless Base Stations, IADs, IMAs, IMAPs, Gateways, Frame Relay
Access Devices, CSU/DSU equipment, etc.
The IDT logo is a registered trademark of Integrated Device Technology, Inc.
INDUSTRIAL TEMPERATURE RANGES
February 11, 2009
1
2003 Integrated Device Technology, Inc. All rights reserved.
DSC-6221/5
TCLKn
TDn/TDPn
TDNn
RCLKn
RDn/RDPn
CVn/RDNn
LOSn
Figure-1 Block Diagram
2
Clock
Generator
PRBS Generator
IBLC Generator
TAOS
PRBS Detector
IBLC Detector
Waveform
Shaper/LBO
Data
Slicer
Line
Driver
Adaptive
Equalizer
Transmitter
Internal
Termination
Receiver
Internal
Termination
JTAG TAP
Digital
Loopback
Clock and
Data
Recovery
Basic
Control
Jitter
Attenuator
Jitter
Attenuator
VDDD
VDDIO
VDDA
VDDT
VDDR
Analog
Loopback
One of the Four Identical Channels
TDO
TDI
TMS
TCK
TRST
RST
REF
THZ
Microprocessor
Interface
B8ZS/
HDB3/AMI
Encoder
Remote
Loopback
B8ZS/
HDB3/AMI
Decoder
LOS/AIS
Detector
G.772
Monitor
TRINGn
TTIPn
RRINGn
RTIPn
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
INDUSTRIAL
TEMPERATURE RANGES
FUNCTIONAL BLOCK DIAGRAM
SCLKE
INT/MOT
P/S
A[7:0]
D[7:0]
INT
SDO
SDI/R/W/WR
DS/RD
SCLK
CS
MCLKS
MCLK
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
INDUSTRIAL
TEMPERATURE RANGES
TABLE OF CONTENTS
1
IDT82V2084 PIN CONFIGURATIONS .......................................................................................... 8
2
PIN DESCRIPTION ....................................................................................................................... 9
3
FUNCTIONAL DESCRIPTION .................................................................................................... 14
3.1
T1/E1/J1 MODE SELECTION .......................................................................................... 14
3.2
TRANSMIT PATH ............................................................................................................. 14
3.2.1 TRANSMIT PATH SYSTEM INTERFACE.............................................................. 14
3.2.2 ENCODER .............................................................................................................. 14
3.2.3 PULSE SHAPER .................................................................................................... 14
3.2.3.1 Preset Pulse Templates .......................................................................... 14
3.2.3.2 LBO (Line Build Out) ............................................................................... 15
3.2.3.3 User-Programmable Arbitrary Waveform ................................................ 15
3.2.4 TRANSMIT PATH LINE INTERFACE..................................................................... 19
3.2.5 TRANSMIT PATH POWER DOWN ........................................................................ 19
3.3
RECEIVE PATH ............................................................................................................... 20
3.3.1 RECEIVE INTERNAL TERMINATION.................................................................... 20
3.3.2 LINE MONITOR ...................................................................................................... 21
3.3.3 ADAPTIVE EQUALIZER......................................................................................... 21
3.3.4 RECEIVE SENSITIVITY ......................................................................................... 21
3.3.5 DATA SLICER ........................................................................................................ 21
3.3.6 CDR (Clock & Data Recovery)................................................................................ 21
3.3.7 DECODER .............................................................................................................. 21
3.3.8 RECEIVE PATH SYSTEM INTERFACE ................................................................ 21
3.3.9 RECEIVE PATH POWER DOWN........................................................................... 21
3.3.10 G.772 NON-INTRUSIVE MONITORING ................................................................ 22
3.4
JITTER ATTENUATOR .................................................................................................... 23
3.4.1 JITTER ATTENUATION FUNCTION DESCRIPTION ............................................ 23
3.4.2 JITTER ATTENUATOR PERFORMANCE ............................................................. 23
3.5
LOS AND AIS DETECTION ............................................................................................. 24
3.5.1 LOS DETECTION ................................................................................................... 24
3.5.2 AIS DETECTION .................................................................................................... 25
3.6
TRANSMIT AND DETECT INTERNAL PATTERNS ........................................................ 26
3.6.1 TRANSMIT ALL ONES ........................................................................................... 26
3.6.2 TRANSMIT ALL ZEROS......................................................................................... 26
3.6.3 PRBS/QRSS GENERATION AND DETECTION.................................................... 26
3.7
LOOPBACK ...................................................................................................................... 26
3.7.1 ANALOG LOOPBACK ............................................................................................ 26
3.7.2 DIGITAL LOOPBACK ............................................................................................. 26
3.7.3 REMOTE LOOPBACK............................................................................................ 26
3.7.4 INBAND LOOPBACK.............................................................................................. 28
3.7.4.1 Transmit Activate/Deactivate Loopback Code......................................... 28
3.7.4.2 Receive Activate/Deactivate Loopback Code.......................................... 28
3.7.4.3 Automatic Remote Loopback .................................................................. 28
3
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
INDUSTRIAL
TEMPERATURE RANGES
ERROR DETECTION/COUNTING AND INSERTION ...................................................... 29
3.8.1 DEFINITION OF LINE CODING ERROR ............................................................... 29
3.8.2 ERROR DETECTION AND COUNTING ................................................................ 29
3.8.3 BIPOLAR VIOLATION AND PRBS ERROR INSERTION ...................................... 30
LINE DRIVER FAILURE MONITORING ........................................................................... 30
MCLK AND TCLK ............................................................................................................. 31
3.10.1 MASTER CLOCK (MCLK) ...................................................................................... 31
3.10.2 TRANSMIT CLOCK (TCLK).................................................................................... 31
MICROCONTROLLER INTERFACES ............................................................................. 32
3.11.1 PARALLEL MICROCONTROLLER INTERFACE................................................... 32
3.11.2 SERIAL MICROCONTROLLER INTERFACE ........................................................ 32
INTERRUPT HANDLING .................................................................................................. 33
5V TOLERANT I/O PINS .................................................................................................. 33
RESET OPERATION ........................................................................................................ 33
POWER SUPPLY ............................................................................................................. 33
4
PROGRAMMING INFORMATION .............................................................................................. 34
4.1
REGISTER LIST AND MAP ............................................................................................. 34
4.2
REGISTER DESCRIPTION .............................................................................................. 36
4.2.1 GLOBAL REGISTERS............................................................................................ 36
4.2.2 JITTER ATTENUATION CONTROL REGISTER ................................................... 37
4.2.3 TRANSMIT PATH CONTROL REGISTERS........................................................... 38
4.2.4 RECEIVE PATH CONTROL REGISTERS ............................................................. 40
4.2.5 NETWORK DIAGNOSTICS CONTROL REGISTERS ........................................... 42
4.2.6 INTERRUPT CONTROL REGISTERS ................................................................... 45
4.2.7 LINE STATUS REGISTERS ................................................................................... 48
4.2.8 INTERRUPT STATUS REGISTERS ...................................................................... 51
4.2.9 COUNTER REGISTERS ........................................................................................ 52
4.2.10 TRANSMIT AND RECEIVE TERMINATION REGISTER ....................................... 53
5
IEEE STD 1149.1 JTAG TEST ACCESS PORT ........................................................................ 54
5.1
JTAG INSTRUCTIONS AND INSTRUCTION REGISTER ............................................... 55
5.2
JTAG DATA REGISTER ................................................................................................... 55
5.2.1 DEVICE IDENTIFICATION REGISTER (IDR) ........................................................ 55
5.2.2 BYPASS REGISTER (BR)...................................................................................... 55
5.2.3 BOUNDARY SCAN REGISTER (BSR) .................................................................. 55
5.2.4 TEST ACCESS PORT CONTROLLER .................................................................. 56
6
TEST SPECIFICATIONS ............................................................................................................ 58
7
MICROCONTROLLER INTERFACE TIMING CHARACTERISTICS ......................................... 70
7.1
SERIAL INTERFACE TIMING .......................................................................................... 70
7.2
PARALLEL INTERFACE TIMING ..................................................................................... 71
4
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
INDUSTRIAL
TEMPERATURE RANGES
LIST OF TABLES
Table-1
Table-2
Table-3
Table-4
Table-5
Table-6
Table-7
Table-8
Table-9
Table-10
Table-11
Table-12
Table-13
Table-14
Table-15
Table-16
Table-17
Table-18
Table-19
Table-20
Table-21
Table-22
Table-23
Table-24
Table-25
Table-26
Table-27
Table-28
Table-29
Table-30
Table-31
Table-32
Table-33
Table-34
Table-35
Table-36
Table-37
Table-38
Table-39
Table-40
Pin Description ................................................................................................................ 9
Transmit Waveform Value For E1 75 Ω ........................................................................ 16
Transmit Waveform Value For E1 120 Ω ...................................................................... 16
Transmit Waveform Value For T1 0~133 ft................................................................... 16
Transmit Waveform Value For T1 133~266 ft............................................................... 16
Transmit Waveform Value For T1 266~399 ft............................................................... 17
Transmit Waveform Value For T1 399~533 ft............................................................... 17
Transmit Waveform Value For T1 533~655 ft............................................................... 17
Transmit Waveform Value For J1 0~655 ft ................................................................... 17
Transmit Waveform Value For DS1 0 dB LBO.............................................................. 18
Transmit Waveform Value For DS1 -7.5 dB LBO ......................................................... 18
Transmit Waveform Value For DS1 -15.0 dB LBO ....................................................... 18
Transmit Waveform Value For DS1 -22.5 dB LBO ....................................................... 18
Impedance Matching for Transmitter ............................................................................ 19
Impedance Matching for Receiver ................................................................................ 20
Criteria of Starting Speed Adjustment........................................................................... 23
LOS Declare and Clear Criteria for Short Haul Mode ................................................... 24
LOS Declare and Clear Criteria for Long Haul Mode.................................................... 25
AIS Condition ................................................................................................................ 25
Criteria for Setting/Clearing the PRBS_S Bit ................................................................ 26
EXZ Definition ............................................................................................................... 29
Interrupt Event............................................................................................................... 33
Global Register List and Map........................................................................................ 34
Per Channel Register List and Map .............................................................................. 35
ID: Chip Revision Register ............................................................................................ 36
RST: Reset Register ..................................................................................................... 36
GCF0: Global Configuration Register 0 ........................................................................ 36
GCF1: Global Configuration Register 1 ........................................................................ 37
INTCH: Interrupt Channel Indication Register............................................................... 37
JACF: Jitter Attenuator Configuration Register ............................................................. 37
TCF0: Transmitter Configuration Register 0 ................................................................. 38
TCF1: Transmitter Configuration Register 1 ................................................................. 38
TCF2: Transmitter Configuration Register 2 ................................................................. 39
TCF3: Transmitter Configuration Register 3 ................................................................. 39
TCF4: Transmitter Configuration Register 4 ................................................................. 39
RCF0: Receiver Configuration Register 0..................................................................... 40
RCF1: Receiver Configuration Register 1..................................................................... 41
RCF2: Receiver Configuration Register 2..................................................................... 42
MAINT0: Maintenance Function Control Register 0...................................................... 42
MAINT1: Maintenance Function Control Register 1...................................................... 43
5
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-41
Table-42
Table-43
Table-44
Table-45
Table-46
Table-47
Table-48
Table-49
Table-50
Table-51
Table-52
Table-53
Table-54
Table-55
Table-56
Table-57
Table-58
Table-59
Table-60
Table-61
Table-62
Table-63
Table-64
Table-65
Table-66
Table-67
Table-68
Table-69
Table-70
Table-71
Table-72
Table-73
Table-74
Table-75
INDUSTRIAL
TEMPERATURE RANGES
MAINT2: Maintenance Function Control Register 2......................................................
MAINT3: Maintenance Function Control Register 3......................................................
MAINT4: Maintenance Function Control Register 4......................................................
MAINT5: Maintenance Function Control Register 5......................................................
MAINT6: Maintenance Function Control Register 6......................................................
INTM0: Interrupt Mask Register 0 .................................................................................
INTM1: Interrupt Mask Register 1 .................................................................................
INTES: Interrupt Trigger Edges Select Register ...........................................................
STAT0: Line Status Register 0 (real time status monitor).............................................
STAT1: Line Status Register 1 (real time status monitor).............................................
INTS0: Interrupt Status Register 0 ................................................................................
INTS1: Interrupt Status Register 1 ................................................................................
CNT0: Error Counter L-byte Register 0.........................................................................
CNT1: Error Counter H-byte Register 1 ........................................................................
TERM: Transmit and Receive Termination Configuration Register ..............................
Instruction Register Description ....................................................................................
Device Identification Register Description.....................................................................
TAP Controller State Description ..................................................................................
Absolute Maximum Rating ............................................................................................
Recommended Operation Conditions ...........................................................................
Power Consumption......................................................................................................
DC Characteristics ........................................................................................................
E1 Receiver Electrical Characteristics ..........................................................................
T1/J1 Receiver Electrical Characteristics......................................................................
E1 Transmitter Electrical Characteristics ......................................................................
T1/J1 Transmitter Electrical Characteristics..................................................................
Transmitter and Receiver Timing Characteristics .........................................................
Jitter Tolerance .............................................................................................................
Jitter Attenuator Characteristics ....................................................................................
JTAG Timing Characteristics ........................................................................................
Serial Interface Timing Characteristics .........................................................................
Non_multiplexed Motorola Read Timing Characteristics ..............................................
Non_multiplexed Motorola Write Timing Characteristics ..............................................
Non_multiplexed Intel Read Timing Characteristics .....................................................
Non_multiplexed Intel Write Timing Characteristics......................................................
6
43
43
44
44
44
45
46
47
48
50
51
52
52
52
53
55
55
56
58
58
59
59
60
61
62
63
64
65
67
69
70
71
72
73
74
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
INDUSTRIAL
TEMPERATURE RANGES
LIST OF FIGURES
Figure-1
Figure-2
Figure-3
Figure-4
Figure-5
Figure-6
Figure-7
Figure-8
Figure-9
Figure-10
Figure-11
Figure-12
Figure-13
Figure-14
Figure-15
Figure-16
Figure-17
Figure-18
Figure-19
Figure-20
Figure-21
Figure-22
Figure-23
Figure-24
Figure-25
Figure-26
Figure-27
Figure-28
Figure-29
Figure-30
Figure-31
Figure-32
Figure-33
Figure-34
Figure-35
Figure-36
Block Diagram ................................................................................................................. 2
IDT82V2084 TQFP128 Package Pin Assignment .......................................................... 8
E1 Waveform Template Diagram .................................................................................. 14
E1 Pulse Template Test Circuit ..................................................................................... 14
DSX-1 Waveform Template .......................................................................................... 14
T1 Pulse Template Test Circuit ..................................................................................... 15
Receive Path Function Block Diagram .......................................................................... 20
Transmit/Receive Line Circuit ....................................................................................... 20
Monitoring Receive Line in Another Chip ...................................................................... 21
Monitor Transmit Line in Another Chip .......................................................................... 21
G.772 Monitoring Diagram ............................................................................................ 22
Jitter Attenuator ............................................................................................................. 23
LOS Declare and Clear ................................................................................................. 24
Analog Loopback .......................................................................................................... 27
Digital Loopback ............................................................................................................ 27
Remote Loopback ......................................................................................................... 27
Auto Report Mode ......................................................................................................... 29
Manual Report Mode ..................................................................................................... 30
TCLK Operation Flowchart ............................................................................................ 31
Serial Processor Interface Function Timing .................................................................. 32
JTAG Architecture ......................................................................................................... 54
JTAG State Diagram ..................................................................................................... 57
Transmit System Interface Timing ................................................................................ 65
Receive System Interface Timing ................................................................................. 65
E1 Jitter Tolerance Performance .................................................................................. 66
T1/J1 Jitter Tolerance Performance .............................................................................. 66
E1 Jitter Transfer Performance ..................................................................................... 68
T1/J1 Jitter Transfer Performance ................................................................................ 68
JTAG Interface Timing .................................................................................................. 69
Serial Interface Write Timing ......................................................................................... 70
Serial Interface Read Timing with SCLKE=1 ................................................................ 70
Serial Interface Read Timing with SCLKE=0 ................................................................ 70
Non_multiplexed Motorola Read Timing ....................................................................... 71
Non_multiplexed Motorola Write Timing ....................................................................... 72
Non_multiplexed Intel Read Timing .............................................................................. 73
Non_multiplexed Intel Write Timing .............................................................................. 74
7
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
VDDT1
VDDT1
NC
VDDIO
GNDIO
TCLK1
TD1/TDP1
TDN1
RCLK1
RD1/RDP1
CV1/RDN1
TCLK2
TD2/TDP2
TDN2
RCLK2
RD2/RDP2
CV2/RDN2
VDDD
GNDD
GNDIO
TCLK3
VDDIO
TD3/TDP3
TDN3
RCLK3
RD3/RDP3
CV3/RDN3
TCLK4
TD4/TDP4
TDN4
RCLK4
RD4/RDP4
CV4/RDN4
GNDIO
VDDIO
NC
NC
NC
IDT82V2084 PIN CONFIGURATIONS
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
IDT82V2084
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
TRING1
TTIP1
GNDT1
GNDT1
GNDR1
RRING1
RTIP1
VDDR1
VDDT2
VDDT2
TRING2
TTIP2
GNDT2
GNDT2
GNDR2
RRING2
RTIP2
VDDR2
VDDA
GNDA
TRST
TMS
TDI
TDO
TCK
LOS1
LOS2
LOS3
LOS4
THZ
SCLKE
INT/MOT
IC
P/S
VDDD
MCLK
GNDD
GNDIO
VDDIO
D7
D6
D5
D4
D3
D2
D1
D0
VDDIO
GNDIO
A7
A6
A5
A4
A3
A2
A1
A0
CS
SCLK
DS/RD
SDI/R/W/WR
SDO
INT
RST
1
INDUSTRIAL
TEMPERATURE RANGES
Figure-2 IDT82V2084 TQFP128 Package Pin Assignment
8
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
VDDR4
RTIP4
RRING4
GNDR4
GNDT4
GNDT4
TTIP4
TRING4
VDDT4
VDDT4
VDDR3
RTIP3
RRING3
GNDR3
GNDT3
GNDT3
TTIP3
TRING3
VDDT3
VDDT3
VDDA
REF
IC
GNDA
MCLKS
IC
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
2
INDUSTRIAL
TEMPERATURE RANGES
PIN DESCRIPTION
Table-1 Pin Description
Name
Type
TQFP128
Description
Transmit and Receive Line Interface
TTIP1
TTIP2
TTIP3
TTIP4
Output
Analog
TRING1
TRING2
TRING3
TRING4
RTIP1
RTIP2
RTIP3
RTIP4
104
114
48
58
103
113
47
57
Input
Analog
RRING1
RRING2
RRING3
RRING4
109
119
53
63
TTIPn1/TRINGn: Transmit Bipolar Tip/Ring for Channel 1~4
These pins are the differential line driver outputs and can be set to high impedance state globally or individually. A logic high on
THZ pin turns all these pins into high impedance state. When THZ bit (TCF1, 03H...)2 is set to ‘1’, the TTIPn/TRINGn in the corresponding channel is set to high impedance state.
In summary, these pins will become high impedance in the following conditions:
•
THZ pin is high: all TTIPn/TRINGn enter high impedance.
•
THZn bit is set to 1: the corresponding TTIPn/TRINGn become high impedance;
•
Loss of MCLK: all TTIPn/TRINGn pins become high impedance;
•
Loss of TCLKn: the corresponding TTIPn/TRINGn become high impedance (exceptions: Remote Loopback; Transmit
internal pattern by MCLK);
•
Transmitter path power down: the corresponding TTIPn/TRINGn become high impedance;
•
After software reset; pin reset and power on: all TTIPn/TRINGn enter high impedance.
RTIPn/RRINGn: Receive Bipolar Tip/Ring for Channel 1~4
These pins are the differential line receiver inputs.
108
118
52
62
Transmit and Receive Digital Data Interface
TD1/TDP1
TD2/TDP2
TD3/TDP3
TD4/TDP4
Input
TDN1
TDN2
TDN3
TDN4
TCLK1
TCLK2
TCLK3
TCLK4
96
90
80
74
95
89
79
73
Input
97
91
82
75
TDn: Transmit Data for Channel 1~4
In Single Rail Mode, the NRZ data to be transmitted is input on these pins. Data on TDn is sampled into the device on the active
edge of TCLKn. The active edge of TCLKn is selected by the TCLK_SEL bit (TCF0, 02H...). Data is encoded by AMI, HDB3 or
B8ZS line code rules before being transmitted to the line. In this mode, TDNn should be connected to ground.
TDPn/TDNn: Positive/Negative Transmit Data for Channel 1~4
In Dual Rail Mode, the NRZ data to be transmitted is input on these pins. Data on TDPn/TDNn is sampled into the device on
the active edge of TCLKn. The active edge of the TCLKn is selected by the TCLK_SEL bit (TCF0, 02H...) The line code in Dual
Rail Mode is as follows:
TDPn
TDNn
0
0
Space
Output Pulse
0
1
Positive Pulse
1
0
Negative Pulse
1
1
Space
TCLKn: Transmit Clock for Channel 1~4
These pins input 1.544 MHz for T1/J1 mode or 2.048 MHz for E1 mode transmit clock. The transmit data on TDn/TDPn or TDNn
is sampled into the device on the active edge of TCLKn. If TCLKn is missing3 and the TCLKn missing interrupt is not masked,
an interrupt will be generated.
Notes:
1. The footprint ‘n’ (n = 1~4) represents one of the four channels.
2. The name and address of the registers that contain the preceding bit. Only the address of channel 1 register is listed, the rest addresses are represented by '...'. Users can find
these omitted addresses in the Register Description section.
3. TCLKn missing: the state of TCLKn continues to be high level or low level over 70 clock cycles.
9
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
INDUSTRIAL
TEMPERATURE RANGES
Table-1 Pin Description (Continued)
Name
Type
TQFP128
Description
RD1/RDP1
RD2/RDP2
RD3/RDP3
RD4/RDP4
Output
93
87
77
71
RDn: Receive Data for Channel 1~4
In Single Rail Mode, the NRZ receive data is output on these pins. Data is decoded according to AMI, HDB3 or B8ZS line code
rules. The active level on RDn pin is selected by the RD_INV bit (RCF0, 07H...).
CV1/RDN1
CV2/RDN2
CV3/RDN3
CV4/RDN4
92
86
76
70
CVn: Code Violation for Channel 1~4
In Single Rail Mode, the BPV/CV errors in received data streams will be reported by driving pin CVn to high level for a full clock
cycle. The B8ZS/HDB3 line code violation can be indicated when the B8ZS/HDB3 decoder is enabled. When AMI decoder is
selected, the bipolar violation can be indicated.
RDPn/RDNn: Positive/Negative Receive Data for Channel 1~4
In Dual Rail Mode with Clock & Data Recovery (CDR), these pins output the NRZ data with the recovered clock. An active level
on RDPn indicates the receipt of a positive pulse on RTIPn/RRINGn while an active level on RDNn indicates the receipt of a negative pulse on RTIPn/RRINGn. The active level on RDPn/RDNn is selected by the RD_INV bit (RCF0, 07H...). When CDR is
disabled, these pins directly output the raw RZ sliced data. The output data on RDn and RDPn/RDNn is updated on the active
edge of RCLKn.
RCLK1
RCLK2
RCLK3
RCLK4
Output
94
88
78
72
RCLKn: Receive Clock for Channel 1~4
These pins output 1.544 MHz for T1/J1 mode or 2.048 MHz for E1 mode receive clock. Under LOS conditions, if AISE bit
(MAINT0, 0AH...) is ‘1’, RCLKn is derived from MCLK.
In clock recovery mode, these pins provide the clock recovered from the signal received on RTIPn/RRINGn. The receive data
(RDn in Single Rail Mode or RDPn/RDNn in Dual Rail Mode) is updated on the active edge of RCLKn. The active edge is
selected by the RCLK_SEL bit (RCF0, 07H...).
If clock recovery is bypassed, RCLKn is the exclusive OR(XOR) output of the Dual Rail sliced data RDPn and RDNn. This signal
can be used in the applications with external clock recovery circuitry.
MCLK
Input
10
MCLK: Master Clock
MCLK is an independent, free-running reference clock. It is a single reference for all operation modes and provides selectable
1.544 MHz or 37.056 MHz for T1/J1 operating mode, while 2.048 MHz or 49.152 MHz for E1 operating mode.
The reference clock is used to generate several internal reference signals:
•
Timing reference for the integrated clock recovery unit.
•
Timing reference for the integrated digital jitter attenuator.
•
Timing reference for microcontroller interface.
•
Generation of RCLKn signal during a loss of signal condition.
•
Reference clock during Transmit All Ones (TAO) and all zeros condition. When sending PRBS/QRSS or Inband Loopback
code, either MCLK or TCLKn can be selected as the reference clock.
•
Reference clock for ATAO and AIS.
The loss of MCLK will turn all the four TTIP/TRING into high impedance status.
MCLKS
Input
40
MCLKS: Master Clock Select
If 2.048 MHz (E1) or 1.544 MHz (T1/J1) is selected as the MCLK, this pin should be connected to ground; and if the 49.152 MHz
(E1) or 37.056 MHz (T1/J1) is selected as the MCLK, this pin should be pulled high.
LOS1
LOS2
LOS3
LOS4
Output
128
1
2
3
LOSn: Loss of Signal Output for Channel 1~4
These pins are used to indicate the loss of received signals. When LOSn pin becomes high, it indicates the loss of received signals in channel n. The LOSn pin will become low automatically when valid received signal is detected again. The criteria of loss
of signal are described in 3.5 LOS AND AIS DETECTION.
Control Interface
P/S
Input
8
P/S: Parallel or Serial Control Interface Select
Level on this pin determines which control mode is selected to control the device as follows:
P/S
Control Interface
High
Parallel Microcontroller Interface
Low
Serial Microcontroller Interface
The serial microcontroller interface consists of CS, SCLK, SDI, SDO and SCLKE pins. Parallel microcontroller interface consists
of CS, A[7:0], D[7:0], DS/RD and R/W/WR pins. The device supports non-multiplexed parallel interface as follows:
P/S, INT/MOT
Microcontroller Interface
10
Motorola non-multiplexed
11
Intel non-multiplexed
10
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
INDUSTRIAL
TEMPERATURE RANGES
Table-1 Pin Description (Continued)
Name
Type
TQFP128
Description
INT/MOT
Input
6
INT/MOT: Intel or Motorola Microcontroller Interface Select
In microcontroller mode, the parallel microcontroller interface is configured for Motorola compatible microcontrollers when this
pin is low, or for Intel compatible microcontrollers when this pin is high.
CS
Input
32
CS: Chip Select
In microcontroller mode, this pin is asserted low by the microcontroller to enable microcontroller interface. For each read or write
operation, this pin must be changed from high to low, and will remain low until the operation is over.
SCLK
Input
33
SCLK: Shift Clock
In serial microcontroller mode, signal on this pin is the shift clock for the serial interface. Configuration data on pin SDI is sampled
on the rising edges of SCLK. Configuration and status data on pin SDO is clocked out of the device on the rising edges of SCLK
if pin SCLKE is low, or on the falling edges of SCLK if pin SCLKE is high.
DS/RD
Input
34
DS: Data Strobe
In parallel Motorola microcontroller interface mode, signal on this pin is the data strobe of the parallel interface. During a write
operation (R/W =0), data on D[7:0] is sampled into the device. During a read operation (R/W =1), data is output to D[7:0] from
the device.
RD: Read Operation
In parallel Intel microcontroller interface mode, this pin is asserted low by the microcontroller to initiate a read cycle. Data is output to D[7:0] from the device during a read operation.
SDI/R/W/WR
Input
35
SDI: Serial Data Input
In serial microcontroller mode, data is input on this pin. Input data is sampled on the rising edges of SCLK.
R/W: Read/Write Select
In parallel Motorola microcontroller interface mode, this pin is low for write operation and high for read operation.
WR: Write Operation
In parallel Intel microcontroller interface mode, this pin is asserted low by the microcontroller to initiate a write cycle. Data on
D[7:0] is sampled into the device during a write operation.
SDO
Output
36
SDO: Serial Data Output
In serial microcontroller mode, signal on this pin is the output data of the serial interface. Configuration and status data on pin
SDO is clocked out of the device on the active edge of SCLK.
INT
Output
37
INT: Interrupt Request
This pin outputs the general interrupt request for all interrupt sources. If INTM_GLB bit (GCF0, 40H) is set to ‘1’ all the interrupt
sources will be masked. And these interrupt sources also can be masked individually via registers (INTM0, 11H) and (INTM1,
12H). Interrupt status is reported via byte INT_CH (INTCH, 80H), registers (INTS0, 16H) and (INTS1, 17H).
Output characteristics of this pin can be defined to be push-pull (active high or low) or be open-drain (active low) by bits
INT_PIN[1:0] (GCF0, 40H).
D7
D6
D5
D4
D3
D2
D1
D0
I/O
Tri-state
14
15
16
17
18
19
20
21
Dn: Data Bus 7~0
These pins function as a bi-directional data bus of the microcontroller interface.
A7
A6
A5
A4
A3
A2
A1
A0
Input
24
25
26
27
28
29
30
31
An: Address Bus 7~0
These pins function as an address bus of the microcontroller interface.
RST
Input
38
RST: Hardware Reset
The chip is reset if a low signal is applied on this pin for more than 100ns. All the drivers output are in high-impedance state,
all the internal flip-flops are reset and all the registers are initialized to their default values.
11
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
INDUSTRIAL
TEMPERATURE RANGES
Table-1 Pin Description (Continued)
Name
Type
TQFP128
Description
THZ
Input
4
THZ: Transmit Driver Enable
This pin enables or disables all transmitter drivers on a global basis. A low level on this pin enables the drivers while a high level
turns all drivers into high impedance state. Note that functionality of internal circuits is not affected by signal on this pin.
REF
Input
43
REF: Reference Resistor
An external resistor (3 KΩ, 1%) is used to connect this pin to ground to provide a standard reference current for internal circuit.
SCLKE
Input
5
SCLKE: Serial Clock Edge Select
Signal on this pin determines the active edge of SCLK to output SDO. The active clock edge is selected as shown below:
SCLKE
SCLK
Low
Rising edge is active edge
High
Falling edge is active edge
JTAG Signals
TRST
Input
Pullup
123
TRST: JTAG Test Port Reset
This is the active low asynchronous reset to the JTAG Test Port. This pin has an internal pull-up resistor. To ensure deterministic
operation of the test logic, TMS should be held high while the signal applied to TRST changes from low to high.
For normal signal processing, this pin should be connected to ground.
TMS
Input
Pullup
124
TMS: JTAG Test Mode Select
This pin is used to control the test logic state machine and is sampled on the rising edges of TCK. TMS has an internal pull-up
resistor.
TCK
Input
127
TCK: JTAG Test Clock
This pin is the input clock for JTAG. The data on TDI and TMS is clocked into the device on the rising edges of TCK while the
data on TDO is clocked out of the device on the falling edges of TCK. When TCK is idle at a low level, all stored-state devices
contained in the test logic will retain their state indefinitely.
TDO
Output
Tri-state
126
TDO: JTAG Test Data Output
This is a tri-state output signal and used for reading all the serial configuration and test data from the test logic. The data on TDO
is clocked out of the device on the falling edges of TCK.
TDI
Input
Pullup
125
TDI: JTAG Test Data Input
This pin is used for loading instructions and data into the test logic and has an internal pullup resistor. The data on TDI is clocked
into the device on the rising edges of TCK.
Power Supplies and Grounds
VDDIO
-
13, 22
68, 81
99
3.3V I/O Power Supply
GNDIO
-
12, 23
69, 83
98
I/O Ground
VDDT1
VDDT2
VDDT3
VDDT4
-
101, 102 3.3V Power Supply for Transmitter Driver
111, 112
45, 46
55, 56
GNDT1
GNDT2
GNDT3
GNDT4
-
105, 106 Analog Ground for Transmitter Driver
115, 116
49, 50
59, 60
VDDA
-
44, 121 3.3V Analog Core Power Supply
GNDA
-
41, 122 Core Analog Ground
VDDD
-
9, 85
3.3V Digital Core Power Supply
GNDD
-
11, 84
Core Digital Ground
VDDR1
VDDR2
VDDR3
VDDR4
-
110
120
54
64
3.3V Power Supply for Receiver
12
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-1 Pin Description (Continued)
Name
Type
TQFP128
GNDR1
GNDR2
GNDR3
GNDR4
-
107
117
51
61
Analog Ground for Receiver
Description
IC
-
39
7
IC: Internal Connection
Internal Use. These pins should be connected to ground when in normal operation.
IC
-
42
IC: Internal Connection
Internal Use. This pin should be left open when in normal operation.
NC
-
Others
65, 66 NC: No Connection
67, 100
13
INDUSTRIAL
TEMPERATURE RANGES
INDUSTRIAL
TEMPERATURE RANGES
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
3
FUNCTIONAL DESCRIPTION
3.1
T1/E1/J1 MODE SELECTION
bits (TCF1, 03H...) should be set to ‘0000’; if the cable impedance is 120
Ω, the PULS[3:0] bits (TCF1, 03H...) should be set to ‘0001’. In external
impedance matching mode, for both E1/75 Ω and E1/120 Ω cable impedance, PULS[3:0] should be set to ‘0001’.
The IDT82V2084 can be used as a four-channel E1 LIU or a four-channel T1/J1 LIU. In E1 application, the T1E1 bit (GCF0, 40H) should be set
to ‘0’. In T1/J1 application, the T1E1 bit should be set to ‘1’.
3.2
1 .2 0
1 .0 0
TRANSMIT PATH
0 .8 0
3.2.1
Normalized Amplitude
The transmit path of each channel of the IDT82V2084 consists of an
Encoder, an optional Jitter Attenuator, a Waveform Shaper, a set of LBOs,
a Line Driver and a Programmable Transmit Termination.
TRANSMIT PATH SYSTEM INTERFACE
0 .6 0
0 .4 0
0 .2 0
The transmit path system interface consists of TCLKn pin, TDn/TDPn
pin and TDNn pin. In E1 mode, the TCLKn is a 2.048 MHz clock. In T1/J1
mode, the TCLKn is a 1.544 MHz clock. If the TCLKn is missing for more
than 70 MCLK cycles, an interrupt will be generated if it is not masked.
0 .0 0
-0 .2 0
- 0 .2
0
0 .2
0 .4
0 .6
Figure-3 E1 Waveform Template Diagram
TTIPn
The transmit data from the system side can be provided in two different
ways: Single Rail and Dual Rail. In Single Rail mode, only TDn pin is used
for transmitting data and the T_MD[1] bit (TCF0, 02H...) should be set to
‘0’. In Dual Rail Mode, both TDPn and TDNn pins are used for transmitting
data, the T_MD[1] bit (TCF0, 02H...) should be set to ‘1’.
IDT82V2084
RLOAD
VOUT
TRINGn
Note: 1. For RLOAD = 75 Ω (nom), Vout (Peak)=2.37V (nom)
2. For RLOAD =120 Ω (nom), Vout (Peak)=3.00V (nom)
ENCODER
When T1/J1 mode is selected, in Single Rail mode, the Encoder can be
selected to be a B8ZS encoder or an AMI encoder by setting T_MD[0] bit
(TCF0, 02H...).
Figure-4 E1 Pulse Template Test Circuit
For T1 applications, the pulse shape is shown in Figure-5 according to
the T1.102 and the measuring diagram is shown in Figure-6. This also
meets the requirement of G.703, 2001. The cable length is divided into five
grades, and there are five pulse templates used for each of the cable length.
The pulse template is selected by PULS[3:0] bits (TCF1, 03H...).
When E1 mode is selected, in Single Rail mode, the Encoder can be configured to be a HDB3 encoder or an AMI encoder by setting T_MD[0] bit
(TCF0, 02H...).
In both T1/J1 mode and E1 mode, when Dual Rail mode is selected (bit
T_MD[1] is ‘1’), the Encoder is by-passed. In the Dual Rail mode, a logic ‘1’
on the TDPn pin and a logic ‘0’ on the TDNn pin results in a negative pulse
on the TTIPn/TRINGn; a logic ‘0’ on TDPn pin and a logic ‘1’ on TDNn pin
results in a positive pulse on the TTIPn/TRINGn. If both TDPn and TDNn
are logic ‘1’ or logic ‘0’, the TTIPn/TRINGn outputs a space (Refer to TDn/
TDPn, TDNn Pin Description).
1.2
1
0.8
Normalized Amplitude
3.2.3
- 0 .4
T im e in U n it In te rv a ls
Transmit data is sampled on the TDn/TDPn and TDNn pins by the active
edge of TCLKn. The active edge of TCLKn can be selected by the
TCLK_SEL bit (TCF0, 02H...). And the active level of the data on TDn/TDPn
and TDNn can be selected by the TD_INV bit (TCF0, 02H...).
3.2.2
-0 .6
PULSE SHAPER
The IDT82V2084 provides three ways of manipulating the pulse shape
before sending it. The first is to use preset pulse templates for short haul
application, the second is to use LBO (Line Build Out) for long haul application and the other way is to use user-programmable arbitrary waveform
template.
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
0
3.2.3.1 Preset Pulse Templates
250
500
750
1000
Time (ns)
For E1 applications, the pulse shape is shown in Figure-3 according to
the G.703 and the measuring diagram is shown in Figure-4. In internal
impedance matching mode, if the cable impedance is 75 Ω, the PULS[3:0]
Figure-5 DSX-1 Waveform Template
14
1250
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Secondly, through the value of SCAL[5:0] bits increased or decreased
by 1, the pulse amplitude can be scaled up or down at the percentage ratio
against the standard pulse amplitude if needed. For different pulse shapes,
the value of SCAL[5:0] bits and the scaling percentage ratio are different.
The following twelve tables list these values.
TTIPn
Cable
IDT82V2084
INDUSTRIAL
TEMPERATURE RANGES
RLOAD VOUT
Do the followings step by step, the desired waveform can be programmed, based on the selected waveform template:
(1).Select the UI by UI[1:0] bits (TCF3, 05H...)
(2).Specify the sample address in the selected UI by SAMP [3:0] bits
(TCF3, 05H...)
(3).Write sample data to WDAT[6:0] bits (TCF4, 06H...). It contains the
data to be stored in the RAM, addressed by the selected UI and the
corresponding sample address.
(4).Set the RW bit (TCF3, 05H...) to ‘0’ to implement writing data to RAM,
or to ‘1’ to implement read data from RAM
(5).Implement the Read from RAM/Write to RAM by setting the DONE
bit (TCF3, 05H...)
TRINGn
Note: RLOAD = 100 Ω ± 5%
Figure-6 T1 Pulse Template Test Circuit
For J1 applications, the PULS[3:0] (TCF1, 03H...) should be set to
‘0111’. Table-14 lists these values.
3.2.3.2 LBO (Line Build Out)
To prevent the cross-talk at the far end, the output of TTIP/TRING could
be attenuated before transmission for long haul applications. The FCC Part
68 Regulations specifies four grades of attenuation with a step of 7.5 dB.
Three LBOs are used to implement the pulse attenuation. The PULS[3:0]
bits (TCF1, 03H...) are used to select the attenuation grade. Both Table-14
and Table-15 list these values.
Repeat the above steps until all the sample data are written to or read
from the internal RAM.
(6).Write the scaling data to SCAL[5:0] bits (TCF2, 04H...) to scale the
amplitude of the waveform based on the selected standard pulse
amplitude
3.2.3.3 User-Programmable Arbitrary Waveform
When the PULS[3:0] bits are set to ‘11xx’, user-programmable arbitrary
waveform generator mode can be used in the corresponding channel. This
allows the transmitter performance to be tuned for a wide variety of line condition or special application.
When more than one UI is used to compose the pulse template, the overlap of two consecutive pulses could make the pulse amplitude overflow
(exceed the maximum limitation) if the pulse amplitude is not set properly.
This overflow is captured by DAC_OV_IS bit (INTS1, 17H...), and, if
enabled by the DAC_OV_IM bit (INTM1, 12H...), an interrupt will be generated.
Each pulse shape can extend up to 4 UIs (Unit Interval), addressed by
UI[1:0] bits (TCF3, 05H...) and each UI is divided into 16 sub-phases,
addressed by the SAMP[3:0] bits (TCF3, 05H...). The pulse amplitude of
each phase is represented by a binary byte, within the range from +63 to 63, stored in WDAT[6:0] bits (TCF4, 06H...) in signed magnitude form. The
most positive number +63 (D) represents the maximum positive amplitude
of the transmit pulse while the most negative number -63 (D) represents the
maximum negative amplitude of the transmit pulse. Therefore, up to 64
bytes are used. For each channel, a 64 bytes RAM is available.
The following tables give all the sample data based on the preset pulse
templates and LBOs in detail for reference. For preset pulse templates and
LBOs, scaling up/down against the pulse amplitude is not supported.
1.Table-2 Transmit Waveform Value For E1 75 Ω
2.Table-3 Transmit Waveform Value For E1 120 Ω
3.Table-4 Transmit Waveform Value For T1 0~133 ft
4.Table-5 Transmit Waveform Value For T1 133~266 ft
5.Table-6 Transmit Waveform Value For T1 266~399 ft
6.Table-7 Transmit Waveform Value For T1 399~533 ft
7.Table-8 Transmit Waveform Value For T1 533~655 ft
8.Table-9 Transmit Waveform Value For J1 0~655 ft
9.Table-10 Transmit Waveform Value For DS1 0 dB LBO
10.Table-11 Transmit Waveform Value For DS1 -7.5 dB LBO
11.Table-12 Transmit Waveform Value For DS1 -15.0 dB LBO
12.Table-13 Transmit Waveform Value For DS1 -22.5 dB LBO
There are twelve standard templates which are stored in a local ROM.
User can select one of them as reference and make some changes to get
the desired waveform.
User can change the wave shape and the amplitude to get the desired
pulse shape. In order to do this, firstly, users can choose a set of waveform
value from the following twelve tables, which is the most similar to the
desired pulse shape. Table-2, Table-3, Table-4, Table-5, Table-6, Table-7,
Table-8, Table-9, Table-10, Table-11, Table-12 and Table-13 list the sample
data and scaling data of each of the twelve templates. Then modify the corresponding sample data to get the desired transmit pulse shape.
15
INDUSTRIAL
TEMPERATURE RANGES
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-2 Transmit Waveform Value For E1 75 Ω
Table-4 Transmit Waveform Value For T1 0~133 ft
Sample
UI 1
UI 2
UI 3
UI 4
Sample
UI 1
UI 2
UI 3
UI 4
1
0000000
0000000
0000000
0000000
1
0010111
1000010
0000000
0000000
2
0000000
0000000
0000000
0000000
2
0100111
1000001
0000000
0000000
3
0000000
0000000
0000000
0000000
3
0100111
0000000
0000000
0000000
4
0001100
0000000
0000000
0000000
4
0100110
0000000
0000000
0000000
5
0110000
0000000
0000000
0000000
5
0100101
0000000
0000000
0000000
6
0110000
0000000
0000000
0000000
6
0100101
0000000
0000000
0000000
7
0110000
0000000
0000000
0000000
7
0100101
0000000
0000000
0000000
8
0110000
0000000
0000000
0000000
8
0100100
0000000
0000000
0000000
9
0110000
0000000
0000000
0000000
9
0100011
0000000
0000000
0000000
10
0110000
0000000
0000000
0000000
10
1001010
0000000
0000000
0000000
11
0110000
0000000
0000000
0000000
11
1001010
0000000
0000000
0000000
12
0110000
0000000
0000000
0000000
12
1001001
0000000
0000000
0000000
13
0000000
0000000
0000000
0000000
13
1000111
0000000
0000000
0000000
14
0000000
0000000
0000000
0000000
14
1000101
0000000
0000000
0000000
15
0000000
0000000
0000000
0000000
15
1000100
0000000
0000000
0000000
16
0000000
0000000
0000000
0000000
16
1000011
0000000
0000000
0000000
SCAL[5:0] = 100001 (default), One step change of this value of SCAL[5:0]
results in 3% scaling up/down against the pulse amplitude.
1101101
SCAL[5:0] =
(default), One step change of this value of SCAL[5:0]
results in 2% scaling up/down against the pulse amplitude.
1. In T1 mode, when arbitrary pulse for short haul application is configured,
users should write ‘110110’ to SCAL[5:0] bits if no scaling is required.
Table-3 Transmit Waveform Value For E1 120 Ω
Sample
UI 1
UI 2
UI 3
UI 4
1
0000000
0000000
0000000
0000000
2
0000000
0000000
0000000
0000000
Sample
UI 1
UI 2
UI 3
UI 4
0011011
1000011
0000000
0000000
Table-5 Transmit Waveform Value For T1 133~266 ft
3
0000000
0000000
0000000
0000000
1
4
0001111
0000000
0000000
0000000
2
0101110
1000010
0000000
0000000
0101100
1000001
0000000
0000000
5
0111100
0000000
0000000
0000000
3
6
0111100
0000000
0000000
0000000
4
0101010
0000000
0000000
0000000
0101001
0000000
0000000
0000000
7
0111100
0000000
0000000
0000000
5
8
0111100
0000000
0000000
0000000
6
0101000
0000000
0000000
0000000
0100111
0000000
0000000
0000000
9
0111100
0000000
0000000
0000000
7
10
0111100
0000000
0000000
0000000
8
0100110
0000000
0000000
0000000
0100101
0000000
0000000
0000000
11
0111100
0000000
0000000
0000000
9
12
0111100
0000000
0000000
0000000
10
1010000
0000000
0000000
0000000
1001111
0000000
0000000
0000000
13
0000000
0000000
0000000
0000000
11
14
0000000
0000000
0000000
0000000
12
1001101
0000000
0000000
0000000
1001010
0000000
0000000
0000000
15
0000000
0000000
0000000
0000000
13
16
0000000
0000000
0000000
0000000
14
1001000
0000000
0000000
0000000
15
1000110
0000000
0000000
0000000
16
1000100
0000000
0000000
0000000
SCAL[5:0] = 100001 (default), One step change of this value of SCAL[5:0]
results in 3% scaling up/down against the pulse amplitude.
See Table-4
16
INDUSTRIAL
TEMPERATURE RANGES
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-6 Transmit Waveform Value For T1 266~399 ft
Table-8 Transmit Waveform Value For T1 533~655 ft
Sample
UI 1
UI 2
UI 3
UI 4
Sample
UI 1
UI 2
UI 3
UI 4
1
0011111
1000011
0000000
0000000
1
0100000
1000011
0000000
0000000
2
0110100
1000010
0000000
0000000
2
0111111
1000010
0000000
0000000
3
0101111
1000001
0000000
0000000
3
0111000
1000001
0000000
0000000
4
0101100
0000000
0000000
0000000
4
0110011
0000000
0000000
0000000
5
0101011
0000000
0000000
0000000
5
0101111
0000000
0000000
0000000
6
0101010
0000000
0000000
0000000
6
0101110
0000000
0000000
0000000
7
0101001
0000000
0000000
0000000
7
0101101
0000000
0000000
0000000
8
0101000
0000000
0000000
0000000
8
0101100
0000000
0000000
0000000
9
0100101
0000000
0000000
0000000
9
0101001
0000000
0000000
0000000
10
1010111
0000000
0000000
0000000
10
1011111
0000000
0000000
0000000
11
1010011
0000000
0000000
0000000
11
1011110
0000000
0000000
0000000
12
1010000
0000000
0000000
0000000
12
1010111
0000000
0000000
0000000
13
1001011
0000000
0000000
0000000
13
1001111
0000000
0000000
0000000
14
1001000
0000000
0000000
0000000
14
1001001
0000000
0000000
0000000
15
1000110
0000000
0000000
0000000
15
1000111
0000000
0000000
0000000
16
1000100
0000000
0000000
0000000
16
1000100
0000000
0000000
0000000
See Table-4
See Table-4
Table-7 Transmit Waveform Value For T1 399~533 ft
Table-9 Transmit Waveform Value For J1 0~655 ft
Sample
UI 1
UI 2
UI 3
UI 4
Sample
UI 1
UI 2
UI 3
UI 4
1
0100000
1000011
0000000
0000000
1
0010111
1000010
0000000
0000000
2
0111011
1000010
0000000
0000000
2
0100111
1000001
0000000
0000000
3
0110101
1000001
0000000
0000000
3
0100111
0000000
0000000
0000000
4
0101111
0000000
0000000
0000000
4
0100110
0000000
0000000
0000000
5
0101110
0000000
0000000
0000000
5
0100101
0000000
0000000
0000000
6
0101101
0000000
0000000
0000000
6
0100101
0000000
0000000
0000000
7
0101100
0000000
0000000
0000000
7
0100101
0000000
0000000
0000000
8
0101010
0000000
0000000
0000000
8
0100100
0000000
0000000
0000000
9
0101000
0000000
0000000
0000000
9
0100011
0000000
0000000
0000000
10
1011000
0000000
0000000
0000000
10
1001010
0000000
0000000
0000000
11
1011000
0000000
0000000
0000000
11
1001010
0000000
0000000
0000000
12
1010011
0000000
0000000
0000000
12
1001001
0000000
0000000
0000000
13
1001100
0000000
0000000
0000000
13
1000111
0000000
0000000
0000000
14
1001000
0000000
0000000
0000000
14
1000101
0000000
0000000
0000000
15
1000110
0000000
0000000
0000000
15
1000100
0000000
0000000
0000000
16
1000100
0000000
0000000
0000000
16
1000011
0000000
0000000
0000000
See Table-4
SCAL[5:0] = 110110 (default), One step change of this value of SCAL[5:0]
results in 2% scaling up/down against the pulse amplitude.
17
INDUSTRIAL
TEMPERATURE RANGES
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
Table-10 Transmit Waveform Value For DS1 0 dB LBO
Table-12 Transmit Waveform Value For DS1 -15.0 dB LBO
Sample
UI 1
UI 2
UI 3
UI 4
Sample
UI 1
UI 2
UI 3
UI 4
1
0010111
1000010
0000000
0000000
1
0000000
0110101
0001111
0000011
2
0100111
1000001
0000000
0000000
2
0000000
0110011
0001101
0000010
3
0100111
0000000
0000000
0000000
3
0000000
0110000
0001100
0000010
4
0100110
0000000
0000000
0000000
4
0000001
0101101
0001011
0000010
5
0100101
0000000
0000000
0000000
5
0000100
0101010
0001010
0000010
6
0100101
0000000
0000000
0000000
6
0001000
0100111
0001001
0000001
7
0100101
0000000
0000000
0000000
7
0001110
0100100
0001000
0000001
8
0100100
0000000
0000000
0000000
8
0010100
0100001
0000111
0000001
9
0100011
0000000
0000000
0000000
9
0011011
0011110
0000110
0000001
10
1001010
0000000
0000000
0000000
10
0100010
0011100
0000110
0000001
11
1001010
0000000
0000000
0000000
11
0101010
0011010
0000101
0000001
12
1001001
0000000
0000000
0000000
12
0110000
0010111
0000101
0000001
13
1000111
0000000
0000000
0000000
13
0110101
0010101
0000100
0000001
14
1000101
0000000
0000000
0000000
14
0110111
0010100
0000100
0000000
15
1000100
0000000
0000000
0000000
15
0111000
0010010
0000011
0000000
16
1000011
0000000
0000000
0000000
16
0110111
0010000
0000011
0000000
SCAL[5:0] = 110110 (default), One step change of this Value results in 2%
scaling up/down against the pulse amplitude.
SCAL[5:0] = 001000 (default), One step change of the value of SCAL[5:0]
results in 12.5% scaling up/down against the pulse amplitude.
Table-11 Transmit Waveform Value For DS1 -7.5 dB LBO
Table-13 Transmit Waveform Value For DS1 -22.5 dB LBO
Sample
UI 1
UI 2
UI 3
UI 4
Sample
UI 1
UI 2
UI 3
UI 4
1
0000000
0010100
0000010
0000000
1
0000001
0110101
0011011
0000111
2
0000010
0010010
0000010
0000000
2
0000011
0110101
0011001
0000110
3
0001001
0010000
0000010
0000000
3
0000101
0110100
0010111
0000110
4
0010011
0001110
0000010
0000000
4
0001000
0110011
0010101
0000101
5
0011101
0001100
0000010
0000000
5
0001100
0110010
0010100
0000101
6
0100101
0001011
0000001
0000000
6
0010001
0110000
0010010
0000101
7
0101011
0001010
0000001
0000000
7
0010110
0101110
0010001
0000100
8
0110001
0001001
0000001
0000000
8
0011011
0101101
0010000
0000100
9
0110110
0001000
0000001
0000000
9
0100001
0101011
0001110
0000100
10
0111010
0000111
0000001
0000000
10
0100110
0101001
0001101
0000100
11
0111001
0000110
0000001
0000000
11
0101010
0100111
0001100
0000011
12
0110000
0000101
0000001
0000000
12
0101110
0100100
0001011
0000011
13
0101000
0000100
0000000
0000000
13
0110001
0100010
0001010
0000011
14
0100000
0000100
0000000
0000000
14
0110011
0100000
0001001
0000011
15
0011010
0000011
0000000
0000000
15
0110100
0011110
0001000
0000011
16
0010111
0000011
0000000
0000000
16
0110100
0011100
0001000
0000010
SCAL[5:0] = 010001 (default), One step change of this value of SCAL[5:0]
results in 6.25% scaling up/down against the pulse amplitude.
SCAL[5:0] = 000100 (default), One step change of this value of SCAL[5:0]
results in 25% scaling up/down against the pulse amplitude.
18
INDUSTRIAL
TEMPERATURE RANGES
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
3.2.4
TRANSMIT PATH LINE INTERFACE
of the recommended impedance matching for transmitter.
The transmit line interface consists of TTIPn pin and TRINGn pin. The
impedance matching can be realized by the internal impedance matching
circuit or the external impedance matching circuit. If T_TERM[2] is set to
‘0’, the internal impedance matching circuit will be selected. In this case,
the T_TERM[1:0] bits (TERM, 1AH...) can be set to choose 75 Ω, 100 Ω,
110 Ω or 120 Ω internal impedance of TTIPn/TRINGn. If T_TERM[2] is set
to ‘1’, the internal impedance matching circuit will be disabled. In this case,
the external impedance matching circuit will be used to realize the impedance matching. For T1/J1 mode, the external impedance matching circuit
for the transmitter is not supported. Figure-8 shows the appropriate external
components to connect with the cable for one channel. Table-14 is the list
The TTIPn/TRINGn can be turned into high impedance globally by pulling THZ pin to high or individually by setting the THZ bit (TCF1, 03H...) to
‘1’. In this state, the internal transmit circuits are still active.
Besides, in the following cases, TTIPn/TRINGn will also become high
impedance:
•
Loss of MCLK: all TTIPn/TRINGn pins become high impedance;·
•
Loss of TCLKn: corresponding TTIPn/TRINGn become HZ (exceptions: Remote Loopback; Transmit internal pattern by MCLK);
•
Transmit path power down;
•
After software reset; pin reset and power on.
Table-14 Impedance Matching for Transmitter
Cable Configuration
Internal Termination
External Termination
T_TERM[2:0]
PULS[3:0]
RT
T_TERM[2:0]
PULS[3:0]
RT
E1/75 Ω
000
0000
0Ω
1XX
0001
9.4 Ω
E1/120 Ω
001
0001
T1/0~133 ft
010
0010
T1/133~266 ft
0011
T1/266~399 ft
0100
T1/399~533 ft
0101
T1/533~655 ft
0110
J1/0~655 ft
011
0111
0 dB LBO
010
1000
-7.5 dB LBO
1001
-15.0 dB LBO
1010
-22.5 dB LBO
1011
0001
-
Note: The precision of the resistors should be better than ± 1%
3.2.5
TRANSMIT PATH POWER DOWN
The transmit path can be powered down individually by setting the
T_OFF bit (TCF0, 02H...) to ‘1’. In this case, the TTIPn/TRINGn pins are
turned into high impedance.
19
-
-
INDUSTRIAL
TEMPERATURE RANGES
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
3.3
RECEIVE PATH
is set to ‘0’, the internal impedance matching circuit will be selected. In this
case, the R_TERM[1:0] bits (TERM, 1AH...) can be set to choose 75 Ω, 100
Ω, 110 Ω or 120 Ω internal impedance of RTIPn/RRINGn. If R_TERM[2]
is set to ‘1’, the internal impedance matching circuit will be disabled. In this
case, the external impedance matching circuit will be used to realize the
impedance matching.
The receive path consists of Receive Internal Termination, Monitor
Gain, Amplitude/Wave Shape Detector, Digital Tuning Controller, Adaptive
Equalizer, Data Slicer, CDR (Clock and Data Recovery), Optional Jitter
Attenuator, Decoder and LOS/AIS Detector. Refer to Figure-7.
3.3.1
RECEIVE INTERNAL TERMINATION
Figure-8 shows the appropriate external components to connect with
the cable for one channel. Table-15 is the list of the recommended impedance matching for receiver.
The impedance matching can be realized by the internal impedance
matching circuit or the external impedance matching circuit. If R_TERM[2]
LOS/AIS
Detector
RTIP
RRING
Receive
Internal
termination
Adaptive
Equalizer
Monitor Gain
Data Slicer
Clock
and Data
Recovery
LOS
RCLK
Jitter
Attenuator
Decoder
RDP
RDN
Figure-7 Receive Path Function Block Diagram
Table-15 Impedance Matching for Receiver
Cable Configuration
Internal Termination
External Termination
R_TERM[2:0]
RR
R_TERM[2:0]
120 Ω
1XX
RR
E1/75 Ω
000
E1/120 Ω
001
120 Ω
T1
010
100 Ω
J1
011
110 Ω
A
D8
1:1
• •
•
RX Line
RR
B
•
TX Line
2:1
•
D7
One of the Four Identical Channels
•·
VDDRn
D6
•·
•
D5 VDDTn
D4
RT
•·
D3
RTIPn
RRINGn
TTIPn
Note: 1. Common decoupling capacitor
2. Cp 0-560 (pF)
3. D1 - D8, Motorola - MBR0540T1;
D13
•
GNDRn
3.3 V
VDDTn
Cp
RT
68 F 1
0.1 F
2
VDDTn
D2
3.3 V
VDDRn
IDT82V2084
VDDRn
75 Ω
68 F 1
0.1 F
•·
TRINGn
GNDTn
International Rectifier - 11DQ04 or 10BQ060
Figure-8 Transmit/Receive Line Circuit
20
•
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
3.3.2
LINE MONITOR
by UPDW[1:0] bits (RCF2, 09H...). A shorter observation period allows
quicker response to pulse amplitude variation while a longer observation
period can minimize the possible overshoots. The default observation
period is 128 symbol periods.
In both T1/J1 and E1 short haul applications, the non-intrusive monitoring on channels located in other chips can be performed by tapping the monitored channel through a high impedance bridging circuit. Refer to Figure9 and Figure-10.
Based on the observed peak value for a period, the equalizer will be
adjusted to achieve a normalized signal. LATT[4:0] bits (STAT1, 15H...)
indicate the signal attenuation introduced by the cable in approximately 2
dB per step.
After a high resistance bridging circuit, the signal arriving at the RTIPn/
RRINGn is dramatically attenuated. To compensate this attenuation, the
Monitor Gain can be used to boost the signal by 22 dB, 26 dB and 32 dB,
selected by MG[1:0] bits (RCF2, 09H...). For normal operation, the Monitor
Gain should be set to 0 dB.
3.3.4
RTIP
3.3.5
monitor
gain=0dB
normal receive mode
RTIP
3.3.6
monitor gain
=22/26/32dB
CDR (Clock & Data Recovery)
The CDR is used to recover the clock from the received signals. The
recovered clock tracks the jitter in the data output from the Data Slicer and
keeps the phase relationship between data and clock during the absence
of the incoming pulse. The CDR can also be by-passed in the Dual Rail
mode. When CDR is by-passed, the data from the Data Slicer is output to
the RDPn/RDNn pins directly.
RRING
monitor mode
Figure-9 Monitoring Receive Line in Another Chip
DSX cross connect
point
3.3.7
TTIP
DECODER
In T1/J1 applications, the R_MD[1:0] bits (RCF0, 07H...) is used to
select the AMI decoder or B8ZS decoder. In E1 applications, the R_MD[1:0]
bits (RCF0, 07H...) are used to select the AMI decoder or HDB3 decoder.
TRING
normal transmit mode
3.3.8
RTIP
RECEIVE PATH SYSTEM INTERFACE
The receive path system interface consists of RCLKn pin, RDn/RDPn
pin and RDNn pin. In E1 mode, the RCLKn outputs a recovered 2.048 MHz
clock. In T1/J1 mode, the RCLKn outputs a recovered 1.544 MHz clock. The
received data is updated on the RDn/RDPn and RDNn pins on the active
edge of RCLKn. The active edge of RCLKn can be selected by the
RCLK_SEL bit (RCF0, 07H...). And the active level of the data on RDn/
RDPn and RDNn can also be selected by the RD_INV bit (RCF0, 07H...).
monitor gain
monitor gain
=22/26/32dB
RRING
monitor mode
Figure-10 Monitor Transmit Line in Another Chip
3.3.3
DATA SLICER
The Data Slicer is used to generate a standard amplitude mark or a
space according to the amplitude of the input signals. The threshold can
be 40%, 50%, 60% or 70%, as selected by the SLICE[1:0] bits (RCF2,
09H...). The output of the Data Slicer is forwarded to the CDR (Clock & Data
Recovery) unit or to the RDPn/RDNn pins directly if the CDR is disabled.
RRING
R
RECEIVE SENSITIVITY
For short haul application, the Receive Sensitivity for both E1 and T1/
J1 is -10 dB. For long haul application, the receive sensitivity is -43 dB for
E1 and -36 dB for T1/J1.
DSX cross connect
point
R
INDUSTRIAL
TEMPERATURE RANGES
ADAPTIVE EQUALIZER
The received data can be output to the system side in two different ways:
Single Rail or Dual Rail, as selected by R_MD bit [1] (RCF0, 07H...). In Single Rail mode, only RDn pin is used to output data and the RDNn/CVn pin
is used to report the received errors. In Dual Rail Mode, both RDPn pin and
RDNn pin are used for outputting data.
The adaptive equalizer can remove most of the signal distortion due to
intersymbol interference caused by cable attenuation. It can be enabled or
disabled by setting EQ_ON bit to ‘1’ or ‘0’ (RCF1, 08H...).
When the adaptive equalizer is out of range, EQ_S bit (STAT0, 14H...)
will be set to ‘1’ to indicate the status of equalizer. If EQ_IES bit (INTES,
13H...) is set to ‘1’, any changes of EQ_S bit will generate an interrupt and
EQ_IS bit (INTS0, 16H...) will be set to ‘1’ if it is not masked. If EQ_IES bit
is set to ‘0’, only the ‘0’ to ‘1’ transition of the EQ_S bit will generate an interrupt and EQ_IS bit will be set to ‘1’ if it is not masked. The EQ_IS bit will be
reset after being read.
In the receive Dual Rail mode, the CDR unit can be by-passed by setting
R_MD[1:0] to ‘11’ (binary). In this situation, the output data from the Data
Slicer will be output to the RDPn/RDNn pins directly, and the RCLKn outputs the exclusive OR (XOR) of the RDPn and RDNn.
3.3.9
The Amplitude/wave shape detector keeps on measuring the amplitude/wave shape of the incoming signals during an observation period. This
observation period can be 32, 64, 128 or 256 symbol periods, as selected
RECEIVE PATH POWER DOWN
The receive path can be powered down individually by setting R_OFF
bit (RCF0, 07H...) to ‘1’. In this case, the RCLKn, RDn/RDPn, RDPn and
LOSn will be logic low.
21
INDUSTRIAL
TEMPERATURE RANGES
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
3.3.10 G.772 NON-INTRUSIVE MONITORING
The monitored line signal (transmit or receive) goes through Channel
1's Clock and Data Recovery. The signal can be observed digitally at the
RCLK1, RD1/RDP1 and RDN1. If Channel 1 is configured to Remote Loopback while in the Monitoring mode, the monitored data will be output on
TTIP1/TRING1.
In applications using only three channels, channel 1 can be configured
to monitor the data received or transmitted in any one of the remaining channels. The MON[3:0] bits (GCF1, 60H) determine which channel and which
direction (transmit/receive) will be monitored. The monitoring is non-intrusive per ITU-T G.772. Figure-11 illustrates the concept.
Channel N (N > 2)
LOSn
LOS/AIS
Detector
RCLKn
RDn/RDPn
CVn/RDNn
B8ZS/
HDB3/AMI
Decoder
Jitter
Attenuator
TCLKn
TDn/TDPn
TDNn
B8ZS/
HDB3/AMI
Encoder
Jitter
Attenuator
Clock and
Data
Recovery
Data
Slicer
Adaptive
Equalizer
Line
Driver
Waveform
Shaper/LBO
Receiver
Internal
Termination
RTIPn
Transmitter
Internal
Termination
TTIPn
Channel 1
LOS1
RCLK1
RDn/RDP1
CVn/RDN1
LOS/AIS
Detector
B8ZS/
HDB3/AMI
Decoder
Jitter
Attenuator
Clock and
Data
Recovery
Data
Slicer
Adaptive
Equalizer
RRINGn
TRINGn
G.772
Monitor
Receiver
Internal
Termination
RTIP1
Transmitter
Internal
Termination
TTIP1
RRING1
Remote
Loopback
TCLK1
TDn/TDP1
TDN1
B8ZS/
HDB3/AMI
Encoder
Jitter
Attenuator
Line
Driver
Waveform
Shaper/LBO
Figure-11 G.772 Monitoring Diagram
22
TRING1
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
3.4
JITTER ATTENUATOR
In E1 applications, the Corner Frequency of the DPLL can be 0.9 Hz or
6.8 Hz, as selected by the JABW bit (JACF, 01H...). In T1/J1 applications,
the Corner Frequency of the DPLL can be 1.25 Hz or 5.00 Hz, as selected
by the JABW bit (JACF, 01H...). The lower the Corner Frequency is, the
longer time is needed to achieve synchronization.
There is one Jitter Attenuator in each channel of the LIU. The Jitter Attenuator can be deployed in the transmit path or the receive path, and can also
be disabled. This is selected by the JACF[1:0] bits (JACF, 01H...).
3.4.1
JITTER ATTENUATION FUNCTION DESCRIPTION
When the incoming data moves faster than the outgoing data, the FIFO
will overflow. This overflow is captured by the JAOV_IS bit (INTS1, 17H...).
If the incoming data moves slower than the outgoing data, the FIFO will
underflow. This underflow is captured by the JAUD_IS bit (INTS1, 17H...).
For some applications that are sensitive to data corruption, the JA limit
mode can be enabled by setting JA_LIMIT bit (JACF, 01H...) to ‘1’. In the
JA limit mode, the speed of the outgoing data will be adjusted automatically
when the FIFO is close to its full or emptiness. The criteria of starting speed
adjustment are shown in Table-16. The JA limit mode can reduce the possibility of FIFO overflow and underflow, but the quality of jitter attenuation
is deteriorated.
The Jitter Attenuator is composed of a FIFO and a DPLL, as shown in
Figure-12. The FIFO is used as a pool to buffer the jittered input data, then
the data is clocked out of the FIFO by a de-jittered clock. The depth of the
FIFO can be 32 bits, 64 bits or 128 bits, as selected by the JADP[1:0] bits
(JACF, 01H...). Consequently, the constant delay of the Jitter Attenuator
will be 16 bits, 32 bits or 64 bits. Deeper FIFO can tolerate larger jitter, but
at the expense of increasing data latency time.
Jittered Data
Jittered Clock
RDn/RDPn
FIFO
32/64/128
3.4.2
De-jittered Data
DPLL
JITTER ATTENUATOR PERFORMANCE
The performance of the Jitter Attenuator in the IDT82V2084 meets the
ITU-T I.431, G.703, G.736-739, G.823, G.824, ETSI 300011, ETSI TBR12/
13, AT&T TR62411 specifications. Details of the Jitter Attenuator performance is shown in Table-68 Jitter Tolerance and Table-69 Jitter Attenuator
Characteristics.
(To properly configure IDT82V2081 for ITU-T G.703 Chapter 13
compliance, please refer to application note AN-875 or contact IDT
for more information)
RDNn
R
W
INDUSTRIAL
TEMPERATURE RANGES
De-jittered Clock
RCLKn
MCLK
Table-16 Criteria of Starting Speed Adjustment
Figure-12 Jitter Attenuator
23
FIFO Depth
Criteria for Adjusting Data Outgoing Speed
32 Bits
2 bits close to its full or emptiness
64 Bits
3 bits close to its full or emptiness
128 Bits
4 bits close to its full or emptiness
INDUSTRIAL
TEMPERATURE RANGES
QUAD CHANNEL T1/E1/J1 LONG HAUL/SHORT HAUL LINE INTERFACE UNIT
3.5
LOS AND AIS DETECTION
3.5.1
LOS DETECTION
• LOS detect level threshold
In short haul mode, the amplitude threshold Q is fixed on 800 mVpp,
while P=Q+200 mVpp (200 mVpp is the LOS level detect hysteresis).
The Loss of Signal Detector monitors the amplitude of the incoming signal level and pulse density of the received signal on RTIPn and RRINGn.
In long haul mode, the value of Q can be selected by LOS[4:0] bit
(RCF1, 08H...), while P=Q+4 dB (4 dB is the LOS level detect hysteresis).
The LOS[4:0] default value is 10101 (-46 dB).
• LOS declare (LOS=1)
A LOS is detected when the incoming signal has “no transitions”, i.e.,
when the signal level is less than Q dB below nominal for N consecutive
pulse intervals. Here N is defined by LAC bit (MAINT0, 0AH...). LOS will be
declared by pulling LOSn pin to high (LOS=1) and LOS interrupt will be generated if it is not masked.
• Criteria for declare and clear of a LOS detect
The detection supports the ANSI T1.231 and I.431 for T1/J1 mode and
G.775 and ETSI 300233/I.431 for E1 mode. The criteria can be selected
by LAC bit (MAINT0, 0AH...) and T1E1 bit (GCF0, 40H).
Table-17 and Table-18 summarize LOS declare and clear criteria for
both short haul and long haul application.
• LOS clear (LOS=0)
The LOS is cleared when the incoming signal has “transitions”, i.e.,
when the signal level is greater than P dB below nominal and has an average pulse density of at least 12.5% for M consecutive pulse intervals, starting with the receipt of a pulse. Here M is defined by LAC bit (MAINT0,
0AH...). LOS status is cleared by pulling LOSn pin to low.
• All Ones output during LOS
On the system side, the RDPn/RDNn will reflect the input pulse “transition” at the RTIPn/RRINGn side and output recovery clock (but the quality
of the output clock can not be guaranteed when the input level is lower than
the maximum receive sensitivity) when AISE bit (MAINT0, 0AH...) is 0; or
output All Ones as AIS when AISE bit (MAINT0, 0AH...) is 1. In this case
RCLKn output is replaced by MCLK.
LOS=1
On the line side, the TTIPn/TRINGn will output All Ones as AIS when
ATAO bit (MAINT0, 0AH...) is 1. The All Ones pattern uses MCLK as the
reference clock.
signal level>P
density=OK
LOS indicator is always active for all kinds of loopback modes.
signal level 1 Vpp
M=128 bits
12.5% mark density
1 Vpp
M=128 bits
12.5% mark density
1 Vpp
M=32 bits
12.5% mark density
1 Vpp
M=32 bits
12.5% mark density
Q+ 4dB
M=128 bits
12.5% mark density
Q+ 4dB
I.431 Level detect range is -18 to -30 dB.
M=128 bits
12.5% mark density
Q+ 4dB
M=32 bits
12.5% mark density
Q+ 4dB
M=32 bits
12.5% mark density