89HPES12NT3
Data Sheet
12-lane 3-Port Non-Transparent
PCI Express® Switch
®
Device Overview
Flexible Architecture with Numerous Configuration Options
– Port arbitration schemes utilizing round robin
– Supports automatic per port link width negotiation (x4, x2, or
x1)
– Static lane reversal on all ports
– Automatic polarity inversion on all lanes
– Supports locked transactions, allowing use with legacy software
– Ability to load device configuration from serial EEPROM
– Ability to control device via SMBus
◆
Non-Transparent Port
– Crosslink support on NTB port
– Four mapping windows supported
• Each may be configured as a 32-bit memory or I/O window
• May be paired to form a 64-bit memory window
– Interprocessor communication
• Thirty-two inbound and outbound doorbells
• Four inbound and outbound message registers
• Two shared scratchpad registers
– Allows up to sixteen masters to communicate through the nontransparent port
– No limit on the number of supported outstanding transactions
through the non-transparent bridge
– Completely symmetric non-transparent bridge operation
allows similar/same configuration software to be run
– Supports direct connection to a transparent or non-transparent
port of another switch
◆
The 89HPES12NT3 is a member of the IDT PRECISE™ family of
PCI Express® switching solutions offering the next-generation I/O interconnect standard. The PES12NT3 is a 12-lane, 3-port peripheral chip
that performs PCI Express Base switching with a feature set optimized
for high performance applications such as servers, storage, and communications/networking. It provides high-performance I/O connectivity and
switching functions between a PCIe® upstream port, a transparent
downstream port, and a non-transparent downstream port.
With non-transparent bridging (NTB) functionality, the PES12NT3
can be used standalone or as a chipset with IDT PCIe System Interconnect Switches in multi-host and intelligent I/O applications such as
communications, storage, and blade servers where inter-domain
communication is required.
Features
◆
High Performance PCI Express Switch
– Twelve PCI Express lanes (2.5Gbps), three switch ports
– Delivers 48 Gbps (6 GBps) of aggregate switching capacity
– Low latency cut-through switch architecture
– Support for Max Payload size up to 2048 bytes
– Supports one virtual channel and eight traffic classes
– PCI Express Base specification Revision 1.0a compliant
Block Diagram
3-Port Switch Core
Frame Buffer
Port
Arbitration
Route Table
Scheduler
Transaction Layer
Transaction Layer
Transaction Layer
Data Link Layer
Data Link Layer
Data Link Layer
Multiplexer / Demultiplexer
Phy
Logical
Layer
Phy
Logical
Layer
SerDes
SerDes
...
Multiplexer / Demultiplexer
Phy
Logical
Layer
Phy
Logical
Layer
Phy
Logical
Layer
SerDes
SerDes
SerDes
...
NonTransparent
Bridge
Multiplexer / Demultiplexer
Phy
Logical
Layer
Phy
Logical
Layer
Phy
Logical
Layer
SerDes
SerDes
SerDes
...
Phy
Logical
Layer
SerDes
12 PCI Express Lanes
x4 Upstream Port and Two x4 Downstream Ports
Figure 1 Internal Block Diagram
IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.Inc.
1 of 29
February 19, 2009
DSC 6929
IDT 89HPES12NT3 Data Sheet
Highly Integrated Solution
– Requires no external components
– Incorporates on-chip internal memory for packet buffering and
queueing
– Integrates twelve 2.5 Gbps embedded full duplex SerDes,
8B/10B encoder/decoder (no separate transceivers needed)
◆
Reliability, Availability, and Serviceability (RAS) Features
– Upstream port can be dynamically swapped with non-transparent downstream port to support failover applications
– Internal end-to-end parity protection on all TLPs ensures data
integrity even in systems that do not implement end-to-end
CRC (ECRC)
– Supports ECRC pass-through in transparent and non-transparent ports
– Supports Hot-Swap
◆
Power Management
– Supports PCI Power Management Interface specification,
Revision 1.1 (PCI-PM)
– Unused SerDes are disabled
◆ Testability and Debug Features
– Built in SerDes Pseudo-Random Bit Stream (PRBS) generator
– Ability to read and write any internal register via the SMBus
– Ability to bypass link training and force any link into any mode
– Provides statistics and performance counters
◆ Two SMBus Interfaces
– Slave interface provides full access to all software-visible
registers by an external SMBus master
– Master interface provides connection for an optional serial
EEPROM used for initialization
– Master and slave interfaces may be tied together so the switch
can act as both master and slave
◆ Eight General Purpose Input/Output pins
◆
Packaged in 19x19mm 324-ball BGA with 1mm ball spacing
◆
bandwidth allocation and/or latency for critical traffic classes in applications such as high throughput 10 GbE I/Os, SATA controllers, and Fibre
Channel HBAs.
Switch Configuration
The PES12NT3 is a three port switch that contains 12 PCI Express
lanes. Each of the three ports is statically allocated 4 lanes with ports
labeled as A, B and C. Port A is the upstream port, port B is the transparent downstream port, and port C is the non-transparent downstream
port.
During link training, link width is automatically negotiated. Each
PES12NT3 port is capable of independently negotiating to a x4, x2 or x1
width. Thus, the PES12NT3 may be used in virtually any three port
switch configuration (e.g., {x4, x4, x4}, {x4, x2, x2}, {x4, x2, x1}, etc.).
The PES12NT3 supports static lane reversal. For example, lane
reversal for upstream port A may be configured by asserting the PCI
Express Port A Lane Reverse (PEALREV) input signal or through serial
EEPROM or SMBus initialization. Lane reversal for ports B and C may
be enabled via a configuration space register, serial EEPROM, or the
SMBus.
Product Description
Utilizing standard PCI Express interconnect, the PES12NT3 provides
the most efficient high-performance I/O connectivity solution for applications requiring high throughput, low latency, and simple board layout
with a minimum number of board layers. With support for non-transparent bridging, the PES12NT3, as a standalone switch or as a chipset
with IDT PCIe System Interconnect Switches, enables multi-host and
intelligent I/O applications requiring inter-domain communication. The
PES12NT3 provides 48 Gbps (6 GBps) of aggregated, full-duplex
switching capacity through 12 integrated serial lanes, using proven and
robust IDT technology. Each lane provides 2.5 Gbps of bandwidth in
both directions and is fully compliant with PCI Express Base specification 1.0a.
The PES12NT3 is based on a flexible and efficient layered architecture. The PCI Express layer consists of SerDes, Physical, Data Link and
Transaction layers in compliance with PCI Express Base specification
Revision 1.0a. The PES12NT3 can operate either as a store and
forward or cut-through switch depending on the packet size and is
designed to switch memory and I/O transactions. It supports eight Traffic
Classes (TCs) and one Virtual Channel (VC) with sophisticated resource
management. This includes round robin port arbitration, guaranteeing
2 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
CPU
CPU
CPU
PES12NT3
PES12NT3
PES12NT3
PCIe System Interconnect Switch
PCIe System Interconnect Switch
Embedded
CPU
Embedded
CPU
FC
SATA / SAS
Embedded
CPU
GbE / 10GigE
Figure 2 PCIe System Interconnect Architecture Block Diagram
Controller 1
Controller 2
CPU
CPU
Cache Maint. &
Possible Data Flow
x4 PCIe
x4 PCIe
PES12N3
PES12N3
x4 PCIe
FC
Controller
FC
Controller
Storage
To Server
FC 2Gb/s and
FC 2Gb/s and
4Gb/s
4Gb/s
To Server
Figure 3 Dual Host Storage System
3 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Pin Description
The following tables list the functions of the pins provided on the PES12NT3. Some of the functions listed may be multiplexed onto the same pin.
The active polarity of a signal is defined using a suffix. Signals ending with an “N” are defined as being active, or asserted, when at a logic zero (low)
level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level.
Signal
Type
Name/Description
PEALREV
I
PCI Express Port A Lane Reverse. When this bit is asserted, the lanes of
PCI Express Port A are reversed. This value may be overridden by modifying the value of the PALREV bit in the PA_SWCTL register.
PEARP[3:0]
PEARN[3:0]
I
PCI Express Port A Serial Data Receive. Differential PCI Express receive
pairs for port A.
PEATP[3:0]
PEATN[3:0]
O
PCI Express Port A Serial Data Transmit. Differential PCI Express transmit pairs for port A
PEBLREV
I
PCI Express Port B Lane Reverse. When this bit is asserted, the lanes of
PCI Express Port B are reversed. This value may be overridden by modifying the value of the PBLREV bit in the PA_SWCTL register.
PEBRP[3:0]
PEBRN[3:0]
I
PCI Express Port B Serial Data Receive. Differential PCI Express receive
pairs for port B.
PEBTP[3:0]
PEBTN[3:0]
O
PCI Express Port B Serial Data Transmit. Differential PCI Express transmit pairs for port B
PECLREV
I
PCI Express Port C Lane Reverse. When this bit is asserted, the lanes of
PCI Express Port C are reversed. This value may be overridden by modifying the value of the PCLREV bit in the PA_SWCTL register.
PECRP[3:0]
PECRN[3:0]
I
PCI Express Port C Serial Data Receive. Differential PCI Express receive
pairs for port C.
PECTP[3:0]
PECTN[3:0]
O
PCI Express Port C Serial Data Transmit. Differential PCI Express transmit pairs for port C
PEREFCLKP[1:0]
PEREFCLKN[1:0]
I
PCI Express Reference Clock. Differential reference clock pair input. This
clock is used as the reference clock by on-chip PLLs to generate the clocks
required for the system logic and on-chip SerDes. The frequency of the differential reference clock is determined by the REFCLKM signal.
REFCLKM
I
PCI Express Reference Clock Mode Select. These signals select the frequency of the reference clock input.
0x0 - 100 MHz
0x1 - 125 MHz
Table 1 PCI Express Interface Pins
Signal
Type
Name/Description
MSMBADDR[4:1]
I
Master SMBus Address. These pins determine the SMBus address of the
serial EEPROM from which configuration information is loaded.
MSMBCLK
I/O
Master SMBus Clock. This bidirectional signal is used to synchronize
transfers on the master SMBus. It is active and generating the clock only
when the EEPROM is being accessed.
MSMBDAT
I/O
Master SMBus Data. This bidirectional signal is used for data on the master SMBus.
Table 2 SMBus Interface Pins (Part 1 of 2)
4 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Signal
Type
Name/Description
SSMBADDR[5,3:1]
I
SSMBCLK
I/O
Slave SMBus Clock. This bidirectional signal is used to synchronize transfers on the slave SMBus.
SSMBDAT
I/O
Slave SMBus Data. This bidirectional signal is used for data on the slave
SMBus.
Slave SMBus Address. These pins determine the SMBus address to
which the slave SMBus interface responds.
Table 2 SMBus Interface Pins (Part 2 of 2)
Signal
Type
Name/Description
GPIO[0]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PEBRSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port B
GPIO[1]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PECRSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port C
GPIO[2]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PALINKUPN
Alternate function pin type: Output
Alternate function: Port A link up status output
GPIO[3]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PBLINKUPN
Alternate function pin type: Output
Alternate function: Port B link up status output
GPIO[4]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PCLINKUPN
Alternate function pin type: Output
Alternate function: Port C link up status output
GPIO[5]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: FAILOVERP
Alternate function pin type: Input
Alternate function: NTB upstream port failover
GPIO[6]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[7]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Table 3 General Purpose I/O Pins
5 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Signal
Type
Name/Description
CCLKDS
I
Common Clock Downstream. When the CCLKDS pin is asserted, it indicates that a common clock is being used between the downstream device
and the downstream port.
CCLKUS
I
Common Clock Upstream. When the CCLKUS pin is asserted, it indicates that a common clock is being used between the upstream device and
the upstream port.
MSMBSMODE
I
Master SMBus Slow Mode. The assertion of this pin indicates that the
master SMBus should operate at 100 KHz instead of 400 KHz. This value
may not be overridden.
PENTBRSTN
I
Non-Transparent Bridge Reset. Assertion of this signal indicates a reset
on the external side of the non-transparent bridge. This signal is only used
when the switch mode selects a non-transparent mode and has no effect
otherwise.
PERSTN
I
Fundamental Reset. Assertion of this signal resets all logic inside the
PES12NT3 and initiates a PCI Express fundamental reset.
RSTHALT
I
Reset Halt. When this signal is asserted during a PCI Express fundamental
reset, the PES12NT3 executes the reset procedure and remains in a reset
state with the Master and Slave SMBuses active. This allows software to
read and write registers internal to the device before normal device operation begins. The device exits the reset state when the RSTHALT bit is
cleared in the PA_SWCTL register by an SMBus master.
SWMODE[3:0]
I
Switch Mode. These configuration pins determine the PES12NT3 switch
operating mode.
0x0 - Reserved
0x1 - Reserved
0x2 - Non-transparent mode
0x3 - Non-transparent mode with serial EEPROM initialization
0x4 - Non-transparent failover mode
0x5 - Non-transparent failover mode with serial EEPROM initialization
0x6 through 0xF - Reserved
Table 4 System Pins
Signal
Type
Name/Description
JTAG_TCK
I
JTAG Clock. This is an input test clock used to clock the shifting of data
into or out of the boundary scan logic or JTAG Controller. JTAG_TCK is
independent of the system clock with a nominal 50% duty cycle.
JTAG_TDI
I
JTAG Data Input. This is the serial data input to the boundary scan logic or
JTAG Controller.
Table 5 Test Pins (Part 1 of 2)
6 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Signal
Type
Name/Description
JTAG_TDO
O
JTAG Data Output. This is the serial data shifted out from the boundary
scan logic or JTAG Controller. When no data is being shifted out, this signal
is tri-stated.
JTAG_TMS
I
JTAG Mode. The value on this signal controls the test mode select of the
boundary scan logic or JTAG Controller.
JTAG_TRST_N
I
JTAG Reset. This active low signal asynchronously resets the boundary
scan logic and JTAG TAP Controller. An external pull-up on the board is
recommended to meet the JTAG specification in cases where the tester
can access this signal. However, for systems running in functional mode,
one of the following should occur:
1) actively drive this signal low with control logic
2) statically drive this signal low with an external pull-down on the board
Table 5 Test Pins (Part 2 of 2)
Signal
Type
Name/Description
VDDCORE
I
Core VDD. Power supply for core logic.
VDDIO
I
I/O VDD. LVTTL I/O buffer power supply.
VDDPE
I
PCI Express Digital Power. PCI Express digital power used by the digital
power of the SerDes.
VDDAPE
I
PCI Express Analog Power. PCI Express analog power used by the PLL
and bias generator.
VTTPE
I
PCI Express Termination Power.
VSS
I
Ground.
Table 6 Power and Ground Pins
7 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Pin Characteristics
Note: Some input pads of the PES12NT3 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate
levels. This is especially critical for unused control signal inputs which, if left floating, could adversely affect operation. Also, any input pin left
floating can cause a slight increase in power consumption.
Function
PCI Express Interface
SMBus
Type
Buffer
I/O
Type
Internal
Resistor
PEALREV
I
LVTTL
Input
pull-down
PEARN[3:0]
I
CML
Serial link
PEARP[3:0]
I
PEATN[3:0]
O
PEATP[3:0]
O
PEBLREV
I
LVTTL
Input
PEBRN[3:0]
I
CML
Serial link
PEBRP[3:0]
I
PEBTN[3:0]
O
PEBTP[3:0]
O
PECLREV
I
LVTTL
Input
PECRN[3:0]
I
CML
Serial link
PECRP[3:0]
I
PECTN[3:0]
O
PECTP[3:0]
O
PEREFCLKN[1:0]
I
PEREFCLKP[1:0]
I
LVPECL/
CML
Diff. Clock
Input
REFCLKM
I
LVTTL
Input
pull-down
MSMBADDR[4:1]
I
LVTTL
Input
pull-up
Pin Name
MSMBCLK
I/O
MSMBDAT
I/O
SSMBADDR[5,3:1]
General Purpose I/O
Notes
pull-down
pull-down
Refer to
Table 8
STI
I
Input
SSMBCLK
I/O
STI
SSMBDAT
I/O
GPIO[7:0]
I/O
LVTTL
Input,
High Drive
pull-up
pull-up
Table 7 Pin Characteristics (Part 1 of 2)
8 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Function
System Pins
JTAG
Type
Buffer
I/O
Type
Internal
Resistor
CCLKDS
I
LVTTL
Input
pull-up
CCLKUS
I
pull-up
MSMBSMODE
I
pull-down
PENTBRSTN
I
PERSTN
I
RSTHALT
I
pull-down
SWMODE[3:0]
I
pull-up
JTAG_TCK
I
JTAG_TDI
I
JTAG_TDO
O
Low Drive
JTAG_TMS
I
STI
JTAG_TRST_N
I
Pin Name
LVTTL
STI
Notes
pull-up
pull-up
pull-up
pull-up
External pulldown
Table 7 Pin Characteristics (Part 2 of 2)
9 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Logic Diagram — PES12NT3
PEATP[0]
PEATN[0]
PEARP[1]
PEARN[1]
PEATP[1]
PEATN[1]
...
PEALREV
PEARP[0]
PEARN[0]
PEARP[3]
PEARN[3]
PEATP[3]
PEATN[3]
PEBLREV
PEBRP[0]
PEBRN[0]
PEBTP[0]
PEBTN[0]
PEBRP[1]
PEBRN[1]
PEBTP[1]
PEBTN[1]
...
PCI Express
Switch
SerDes Input
Port B
2
...
PCI Express
Switch
SerDes Input
Port A
2
PEREFCLKP
PEREFCLKN
REFCLKM
...
Reference
Clock
PEBRP[3]
PEBRN[3]
PES12NT3
PECTP[0]
PECTN[0]
PECTP[1]
PECTN[1]
PECRP[1]
PECRN[1]
...
...
PECRP[3]
PECRN[3]
Master
SMBus Interface
Slave
SMBus Interface
MSMBADDR[4:1]
MSMBCLK
MSMBDAT
SSMBADDR[5,3:1]
SSMBCLK
SSMBDAT
PCI Express
Switch
SerDes Output
Port B
PEBTP[3]
PEBTN[3]
PECLREV
PECRP[0]
PECRN[0]
PCI Express
Switch
SerDes Input
Port C
PCI Express
Switch
SerDes Output
Port A
PCI Express
Switch
SerDes Output
Port C
PECTP[3]
PECTN[3]
4
8
GPIO[7:0]
JTAG_TCK
JTAG_TDI
JTAG_TDO
JTAG_TMS
JTAG_TRST_N
4
General Purpose
I/O
JTAG Pins
PENTBRSTN
System
Pins
VDDCORE
VDDIO
VDDPE
VDDAPE
VSS
MSMBSMODE
CCLKDS
CCLKUS
RSTHALT
PERSTN
SWMODE[3:0]
4
Power/Ground
VTTPE
Figure 4 PES12NT3 Logic Diagram
10 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
System Clock Parameters
Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 12 and 13.
Parameter
Description
Min
RefclkFREQ
Input reference clock frequency range
100
RefclkDC2
Duty cycle of input clock
40
TR, TF
Rise/Fall time of input clocks
VSW
Differential input voltage swing4
Tjitter
Input clock jitter (cycle-to-cycle)
RT
Termination Resistor
Typical
50
0.6
Max
Unit
1251
MHz
60
%
0.2*RCUI
RCUI3
1.6
V
125
ps
110
Ohms
Table 8 Input Clock Requirements
1. The input clock frequency will be either 100 or 125 MHz depending on signal REFCLKM.
2. ClkIn must be AC coupled. Use 0.01 — 0.1 µF ceramic capacitors.
3.
RCUI (Reference Clock Unit Interval) refers to the reference clock period.
4. AC coupling required.
AC Timing Characteristics
Parameter
Description
Min1
Typical1
Max1
Units
399.88
400
400.12
ps
0.7
.9
PCIe Transmit
UI
Unit Interval
TTX-EYE
Minimum Tx Eye Width
TTX-EYE-MEDIAN-toMAX-JITTER
Maximum time between the jitter median and maximum
deviation from the median
TTX-RISE, TTX-FALL
D+ / D- Tx output rise/fall time
50
TTX- IDLE-MIN
Minimum time in idle
50
TTX-IDLE-SET-TO-
Maximum time to transition to a valid Idle after sending
an Idle ordered set
20
UI
IDLE
TTX-IDLE-TO-DIFF-
Maximum time to transition from valid idle to diff data
20
UI
UI
0.15
90
UI
ps
UI
DATA
TTX-IDLE-RCV-DET-
Max time spend in idle before initiating a RX detect
sequence
20
100
ms
MAX
TTX-SKEW
Transmitter data skew between any 2 lanes
500
1300
ps
400
400.12
ps
PCIe Receive
UI
Unit Interval
399.88
TRX-EYE (with jitter)
Minimum Receiver Eye Width (jitter tolerance)
0.4
UI
Table 9 PCIe AC Timing Characteristics (Part 1 of 2)
11 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Max1
Units
Max time between jitter median & max deviation
0.3
UI
Unexpected Idle Enter Detect Threshold Integration Time
10
ms
Lane to lane input skew
20
ns
Parameter
Min1
Description
TRX-EYE-MEDIUM TO
Typical1
MAX JITTER
TRX-IDLE-DET-DIFFENTER TIME
TRX-SKEW
Table 9 PCIe AC Timing Characteristics (Part 2 of 2)
1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.0a
Signal
Symbol
Reference
Min Max Unit
Edge
Timing
Diagram
Reference
GPIO
GPIO[7:0]1
Tpw_13b2
None
50
—
ns
Table 10 GPIO AC Timing Characteristics
1. GPIO signals must meet the setup and hold times if they are synchronous or the minimum pulse width if
they are asynchronous.
2. The values for this symbol were determined by calculation, not by testing.
Signal
Symbol
Reference
Edge
Min
Max
Unit
Timing
Diagram
Reference
Tper_16a
none
50.0
—
ns
See Figure 5.
10.0
25.0
ns
2.4
—
ns
1.0
—
ns
—
20
ns
—
20
ns
25.0
—
ns
JTAG
JTAG_TCK
Thigh_16a,
Tlow_16a
JTAG_TMS1,
JTAG_TDI
JTAG_TDO
Tsu_16b
Thld_16b
Tdo_16c
Tdz_16c
JTAG_TRST_N
JTAG_TCK rising
JTAG_TCK falling
2
Tpw_16d2
none
Table 11 JTAG AC Timing Characteristics
1.
The JTAG specification, IEEE 1149.1, recommends that JTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N
changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK
when JTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state.
2.
The values for this symbol were determined by calculation, not by testing.
12 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Tlow_16a
Tper_16a
Thigh_16a
JTAG_TCK
Thld_16b
Tsu_16b
JTAG_TDI
Thld_16b
Tsu_16b
JTAG_TMS
Tdo_16c
Tdz_16c
JTAG_TDO
Tpw_16d
JTAG_TRST_N
Figure 5 JTAG AC Timing Waveform
Recommended Operating Supply Voltages
Symbol
Parameter
Minimum
Typical
Maximum
Unit
VDDCORE
Internal logic supply
0.9
1.0
1.1
V
VDDI/O
I/O supply except for SerDes LVPECL/CML
3.0
3.3
3.6
V
VDDPE
PCI Express Digital Power
0.9
1.0
1.1
V
VDDAPE
PCI Express Analog Power
0.9
1.0
1.1
V
VTTPE
PCI Express Serial Data Transmit
Termination Voltage
1.425
1.5
1.575
V
VSS
Common ground
0
0
0
V
Table 12 PES12NT3 Operating Voltages
Recommended Operating Temperature
Grade
Temperature
Commercial
0°C to +70°C Ambient
Industrial
-40°C to +85°C Ambient
Table 13 PES12NT3 Operating Temperatures
13 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Power-Up Sequence
This section describes the sequence in which various voltages must be applied to the part during power-up to ensure proper functionality. For the
PES12NT3, the power-up sequence must be as follows:
1.
VDDI/O — 3.3V
2.
VDDCore, VDDPE, VDDAPE — 1.0V
3.
VTTPE — 1.5V
When powering up, each voltage level must ramp and stabilize prior to applying the next voltage in the sequence to ensure internal latch-up issues
are avoided. There are no maximum time limitations in ramping to valid power levels. The power-down sequence must be in the reverse order of the
power-up sequence.
Power Consumption
Typical power is measured under the following conditions: 25°C Ambient, 35% total link usage on all ports, typical voltages defined in Table 14.
Maximum power is measured under the following conditions: 70°C Ambient, 85% total link usage on all ports, maximum voltages defined in
Table 14.
All power measurements assume that the part is mounted on a 10 layer printed circuit board with 0 LFM airflow.
Number of
Connected Lanes:
Port-A/Port-B/Port-C
Core (Watts)
(1.0V supply)
PCIe Digital
(Watts)
(1.0V supply)
PCIe Analog
(Watts)
(1.0V supply)
PCIe Termination (Watts)
(1.5V supply)
I/O (Watts)
Total (Watts)
(3.3V supply)
Typ
Max
Typ
Max
Typ
Max
Typ
Max
Typ
Max
Typ
Max
1/1/1
0.52
0.67
0.27
0.36
0.13
0.16
0.11
0.13
0.01
0.01
1.04
1.33
4/1/1
0.56
0.76
0.47
0.58
0.19
0.21
0.22
0.26
0.01
0.01
1.44
1.81
4/4/4
0.65
0.89
0.68
0.81
0.21
0.25
0.38
0.51
0.01
0.01
1.92
2.47
Table 14 PES12NT3 Power Consumption
Thermal Considerations
This section describes thermal considerations for the PES12NT3 (19mm2 BCG324 package). The data in Table 15 below contains information that
is relevant to the thermal performance of the PES12NT3 switch.
Symbol
Parameter
Value
Units
Conditions
TJ(max)
Junction Temperature
125
oC
Maximum
70
o
TA(max)
θJA(effective)
Ambient Temperature
Effective Thermal Resistance, Junction-to-Ambient
C
Maximum for commercial-rated products
21.8
oC/W
Zero air flow
15.1
oC/W
1 m/S air flow
13.9
o
2 m/S air flow
C/W
θJB
Thermal Resistance, Junction-to-Board
11.4
oC/W
θJC
Thermal Resistance, Junction-to-Case
5.1
oC/W
P
Power Dissipation of the Device
2.47
Watts
Maximum
Table 15 Thermal Specifications for PES12NT3, 19x19mm BCG324 Package
Note: The parameter θJA(eff) is not the absolute thermal resistance for the package as defined by JEDEC (JESD-51). Because resistance
can vary with the number of board layers, size of the board, and airflow, θJA(eff) is the effective thermal resistance. The values for effective
θJA given above are based on a 10-layer, standard height, full length (4.3”x12.2”) PCIe add-in card.
14 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
DC Electrical Characteristics
Values based on systems running at recommended supply voltages, as shown in Table 12.
Note: See Table 7, Pin Characteristics, for a complete I/O listing.
I/O Type
Parameter
Serial Link
PCIe Transmit
Min1
Description
Typ1
Max1
Unit
800
1200
mV
-3
-4
dB
3.7
V
VTX-DIFFp-p
Differential peak-to-peak output voltage
VTX-DE-RATIO
De-emphasized differential output voltage
VTX-DC-CM
DC Common mode voltage
VTX-CM-ACP
RMS AC peak common mode output voltage
20
mV
VTX-CM-DC-
Abs delta of DC common mode voltage
between L0 and idle
100
mV
25
mV
delta
Abs delta of DC common mode voltage
between D+ and D-
VTX-Idle-DiffP
Electrical idle diff peak output
20
mV
VTX-RCV-Detect
Voltage change during receiver detection
600
mV
RLTX-DIFF
Transmitter Differential Return loss
12
dB
RLTX-CM
Transmitter Common Mode Return loss
6
dB
ZTX-DEFF-DC
DC Differential TX impedance
80
100
120
Ω
ZOSE
Single ended TX Impedance
40
50
60
Ω
Transmitter Eye
Diagram
TX Eye Height (De-emphasized bits)
505
650
mV
Transmitter Eye
Diagram
TX Eye Height (Transition bits)
800
950
mV
VRX-DIFFp-p
Differential input voltage (peak-to-peak)
175
VRX-CM-AC
Receiver common-mode voltage for AC
coupling
RLRX-DIFF
Receiver Differential Return Loss
15
dB
RLRX-CM
Receiver Common Mode Return Loss
6
dB
ZRX-DIFF-DC
Differential input impedance (DC)
80
100
120
Ω
ZRX-COMM-DC
Single-ended input impedance
40
50
60
Ω
ZRX-COMM-HIGH-
200k
350k
Z-DC
Powered down input common mode
impedance (DC)
VRX-IDLE-DET-
Electrical idle detect threshold
65
Input Capacitance
1.5
active-idle-delta
VTX-CM-DC-line-
-0.1
1
Conditions
PCIe Receive
1200
mV
150
mV
Ω
175
mV
DIFFp-p
PCIe REFCLK
CIN
—
pF
Table 16 DC Electrical Characteristics (Part 1 of 2)
15 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
I/O Type
Min1
Typ1
Max1
Unit
Conditions
IOL
—
2.5
—
mA
VOL = 0.4v
IOH
—
-5.5
—
mA
VOH = 1.5V
IOL
—
12.0
—
mA
VOL = 0.4v
IOH
—
-20.0
—
mA
VOH = 1.5V
Parameter
Description
Other I/Os
LOW Drive
Output
High Drive
Output
Schmitt Trigger Input
(STI)
VIL
-0.3
—
0.8
V
—
VIH
2.0
—
VDDIO +
0.5
V
—
Input
VIL
-0.3
—
0.8
V
—
VIH
2.0
—
VDDIO +
0.5
V
—
Capacitance
CIN
—
—
8.5
pF
—
Leakage
Inputs
—
—
+ 10
μA
VDDI/O (max)
I/OLEAK W/O
Pull-ups/downs
—
—
+ 10
μA
VDDI/O (max)
I/OLEAK WITH
Pull-ups/downs
—
—
+ 80
μA
VDDI/O (max)
Table 16 DC Electrical Characteristics (Part 2 of 2)
1.
Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.0a.
16 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Package Pinout — 324-BGA Signal Pinout for PES12NT3
The following table lists the pin numbers and signal names for the PES12NT3 device.
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
A1
VSS
E10
VDDPE
K1
VDDCORE
P10
VDDIO
A2
VSS
E11
VSS
K2
VSS
P11
VDDIO
A3
PEARP03
E12
VDDPE
K3
VTTPE
P12
VDDIO
A4
VDDCORE
E13
VSS
K4
VDDCORE
P13
VDDIO
A5
PEATN03
E14
VDDCORE
K5
VDDPE
P14
VDDIO
A6
VDDCORE
E15
VDDAPE
K6
VSS
P15
VSS
A7
PEATP02
E16
VSS
K7
VSS
P16
VTTPE
A8
VDDCORE
E17
PECTP03
K8
VSS
P17
VSS
A9
PEARN02
E18
PECTN03
K9
VSS
P18
VDDCORE
A10
VDDCORE
F1
VDDCORE
K10
VSS
R1
PEBTN03
A11
PEARP01
F2
VSS
K11
VSS
R2
PEBTP03
A12
VDDCORE
F3
VDDCORE
K12
VSS
R3
VSS
A13
PEATP01
F4
VDDAPE
K13
VSS
R4
VDDIO
A14
VDDCORE
F5
VSS
K14
VSS
R5
VSS
A15
VDDCORE
F6
VDDCORE
K15
VDDPE
R6
VDDCORE
A16
PEATN00
F7
VSS
K16
VTTPE
R7
MSMBDAT
A17
VSS
F8
VDDCORE
K17
VSS
R8
SSMBADDR_5
A18
VSS
F9
VSS
K18
VDDCORE
R9
PEALREV
B1
VDDCORE
F10
VDDCORE
L1
PEBRN02
R10
SWMODE_2
B2
VDDCORE
F11
VSS
L2
PEBRP02
R11
RSTHALT
B3
PEARN03
F12
VSS
L3
VSS
R12
GPIO_04
B4
VSS
F13
VDDPE
L4
VDDPE
R13
VDDCORE
B5
PEATP03
F14
VSS
L5
VSS
R14
VSS
B6
VSS
F15
VDDIO
L6
VDDCORE
R15
VDDIO
B7
PEATN02
F16
VSS
L7
VDDCORE
R16
VSS
B8
VSS
F17
VSS
L8
VDDCORE
R17
PECTP00
B9
PEARP02
F18
VDDCORE
L9
VDDCORE
R18
PECTN00
B10
VSS
G1
PEBTP01
L10
VDDCORE
T1
VDDCORE
B11
PEARN01
G2
PEBTN01
L11
VDDCORE
T2
VSS
B12
VSS
G3
VSS
L12
VDDCORE
T3
VSS
B13
PEATN01
G4
VDDPE
L13
VDDCORE
T4
JTAG_TCK
B14
VSS
G5
VDDAPE
L14
VSS
T5
JTAG_TDO
B15
VSS
G6
VSS
L15
VDDPE
T6
MSMBADDR_1
B16
PEATP00
G7
VSS
L16
VSS
T7
MSMBCLK
Alt
1
Table 17 PES12NT3 324-pin Signal Pin-Out (Part 1 of 3)
17 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
B17
VDDCORE
G8
VDDIO
L17
PECRP01
T8
SSMBADDR_2
B18
VDDCORE
G9
VSS
L18
PECRN01
T9
CCLKDS
C1
PEBRP00
G10
VDDIO
M1
VDDCORE
T10
SWMODE_1
C2
PEBRN00
G11
VSS
M2
VSS
T11
PERSTN
C3
VSS
G12
VDDCORE
M3
VSS
T12
GPIO_03
C4
VDDCORE
G13
VSS
M4
VDDAPE
T13
GPIO_07
C5
VSS
G14
VDDAPE
M5
VSS
T14
VSS
C6
VTTPE
G15
VDDPE
M6
VDDCORE
T15
REFCLKM
C7
VSS
G16
VSS
M7
VSS
T16
VSS
C8
VTTPE
G17
PECTN02
M8
VSS
T17
VSS
C9
VSS
G18
PECTP02
M9
VDDCORE
T18
VDDCORE
C10
VTTPE
H1
VDDCORE
M10
VDDCORE
U1
PEBRP03
C11
VSS
H2
VSS
M11
VSS
U2
PEBRN03
C12
VTTPE
H3
VTTPE
M12
VSS
U3
VSS
C13
VDDCORE
H4
VDDAPE
M13
VDDCORE
U4
JTAG_TDI
C14
PEARP00
H5
VSS
M14
VSS
U5
JTAG_TMS
C15
PEARN00
H6
VSS
M15
VDDAPE
U6
MSMBADDR_2
C16
VDDCORE
H7
VDDCORE
M16
VSS
U7
MSMBADDR_4
C17
PECRN03
H8
VSS
M17
VSS
U8
SSMBADDR_3
C18
PECRP03
H9
VDDCORE
M18
VDDCORE
U9
CCLKUS
D1
VDDCORE
H10
VDDCORE
N1
PEBTP02
U10
SWMODE_0
D2
VSS
H11
VSS
N2
PEBTN02
U11
PECLREV
D3
VSS
H12
VDDCORE
N3
VTTPE
U12
GPIO_00
D4
VDDCORE
H13
VSS
N4
VDDAPE
U13
GPIO_02
D5
VSS
H14
VDDAPE
N5
VSS
U14
GPIO_06
D6
VDDAPE
H15
VDDPE
N6
VSS
U15
MSMBSMODE
D7
VSS
H16
VTTPE
N7
VSS
U16
VSS
D8
VDDAPE
H17
VSS
N8
VSS
U17
PECRN00
D9
VSS
H18
VDDCORE
N9
VSS
U18
PECRP00
D10
VDDAPE
J1
PEBRP01
N10
VSS
V1
VDDCORE
D11
VSS
J2
PEBRN01
N11
VSS
V2
VSS
D12
VDDAPE
J3
VSS
N12
VSS
V3
PEREFCLKP0
D13
VSS
J4
VDDPE
N13
VSS
V4
PEREFCLKN0
D14
VDDCORE
J5
VSS
N14
VSS
V5
JTAG_TRST_N
D15
VSS
J6
VDDCORE
N15
VDDAPE
V6
MSMBADDR_3
D16
VSS
J7
VSS
N16
VTTPE
V7
SSMBADDR_1
D17
VSS
J8
VSS
N17
PECTN01
V8
SSMBCLK
Alt
1
1
Table 17 PES12NT3 324-pin Signal Pin-Out (Part 2 of 3)
18 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
D18
VDDCORE
J9
VDDCORE
N18
PECTP01
V9
SSMBDAT
E1
PEBTN00
J10
VDDCORE
P1
VDDCORE
V10
PEBLREV
E2
PEBTP00
J11
VSS
P2
VSS
V11
SWMODE_3
E3
VDDCORE
J12
VSS
P3
VTTPE
V12
PENTBRSTN
E4
VSS
J13
VDDCORE
P4
VSS
V13
GPIO_01
E5
VDDCORE
J14
VSS
P5
VDDIO
V14
GPIO_05
E6
VSS
J15
VDDCORE
P6
VDDIO
V15
PEREFCLKP1
E7
VSS
J16
VSS
P7
VDDIO
V16
PEREFCLKN1
E8
VDDPE
J17
PECRP02
P8
VDDIO
V17
VSS
E9
VSS
J18
PECRN02
P9
VDDIO
V18
VDDCORE
Alt
1
Table 17 PES12NT3 324-pin Signal Pin-Out (Part 3 of 3)
Alternate Signal Functions
Pin
GPIO
Alternate
U13
GPIO[2]
IOEXPINTN
T12
GPIO[3]
PAABN
R12
GPIO[4]
PAAIN
V14
GPIO[5]
PAPIN
Table 18 PES12NT3 Alternate Signal Functions
19 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Power Pins
VDDCore
VDDCore
VDDCore
VDDIO
VDDPE
VDDAPE
VTTPE
A4
F3
L8
F15
E8
D6
C6
A6
F6
L9
G8
E10
D8
C8
A8
F8
L10
G10
E12
D10
C10
A10
F10
L11
P5
F13
D12
C12
A12
F18
L12
P6
G4
E15
H3
A14
G12
L13
P7
G15
F4
H16
A15
H1
M1
P8
H15
G5
K3
B1
H7
M6
P9
J4
G14
K16
B2
H9
M9
P10
K5
H4
N3
B17
H10
M10
P11
K15
H14
N16
B18
H12
M13
P12
L4
M4
P3
C4
H18
M18
P13
L15
M15
P16
C13
J6
P1
P14
N4
C16
J9
P18
R4
N15
D1
J10
R6
R15
D4
J13
R13
D14
J15
T1
D18
K1
T18
E3
K4
V1
E5
K18
V18
E14
L6
F1
L7
Table 19 PES12NT3 Power Pins
20 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Ground Pins
Vss
Vss
Vss
Vss
Vss
A1
D16
G16
K13
N12
A2
D17
H2
K14
N13
A17
E4
H5
K17
N14
A18
E6
H6
L3
P2
B4
E7
H8
L5
P4
B6
E9
H11
L14
P15
B8
E11
H13
L16
P17
B10
E13
H17
M2
R3
B12
E16
J3
M3
R5
B14
F2
J5
M5
R14
B15
F5
J7
M7
R16
C3
F7
J8
M8
T2
C5
F9
J11
M11
T3
C7
F11
J12
M12
T14
C9
F12
J14
M14
T16
C11
F14
J16
M16
T17
D2
F16
K2
M17
U3
D3
F17
K6
N5
U16
D5
G3
K7
N6
V2
D7
G6
K8
N7
V17
D9
G7
K9
N8
D11
G9
K10
N9
D13
G11
K11
N10
D15
G13
K12
N11
Table 20 PES12NT3 Ground Pins
21 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Signals Listed Alphabetically
Signal Name
I/O Type
Location
Signal Category
CCLKDS
I
T9
System
CCLKUS
I
U9
GPIO_00
I/O
U12
GPIO_01
I/O
V13
GPIO_02
I/O
U13
GPIO_03
I/O
T12
GPIO_04
I/O
R12
GPIO_05
I/O
V14
GPIO_06
I/O
U14
GPIO_07
I/O
T13
JTAG_TCK
I
T4
JTAG_TDI
I
U4
JTAG_TDO
O
T5
JTAG_TMS
I
U5
JTAG_TRST_N
I
V5
MSMBADDR_1
I
T6
MSMBADDR_2
I
U6
MSMBADDR_3
I
V6
MSMBADDR_4
I
U7
MSMBCLK
I/O
T7
MSMBDAT
I/O
R7
MSMBSMODE
I
U15
System
PEALREV
I
R9
PCI Express
PEARN00
I
C15
PEARN01
I
B11
PEARN02
I
A9
PEARN03
I
B3
PEARP00
I
C14
PEARP01
I
A11
PEARP02
I
B9
PEARP03
I
A3
PEATN00
O
A16
PEATN01
O
B13
PEATN02
O
B7
General Purpose Input/Output
JTAG
SMBus
Table 21 PES12NT3 Alphabetical Signal List (Part 1 of 3)
22 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Signal Name
I/O Type
Location
Signal Category
PEATN03
O
A5
PCI Express
PEATP00
O
B16
PEATP01
O
A13
PEATP02
O
A7
PEATP03
O
B5
PEBLREV
I
V10
PEBRN00
I
C2
PEBRN01
I
J2
PEBRN02
I
L1
PEBRN03
I
U2
PEBRP00
I
C1
PEBRP01
I
J1
PEBRP02
I
L2
PEBRP03
I
U1
PEBTN00
O
E1
PEBTN01
O
G2
PEBTN02
O
N2
PEBTN03
O
R1
PEBTP00
O
E2
PEBTP01
O
G1
PEBTP02
O
N1
PEBTP03
O
R2
PECLREV
I
U11
PECRN00
I
U17
PECRN01
I
L18
PECRN02
I
J18
PECRN03
I
C17
PECRP00
I
U18
PECRP01
I
L17
PECRP02
I
J17
PECRP03
I
C18
PECTN00
O
R18
PECTN01
O
N17
PECTN02
O
G17
PECTN03
O
E18
PECTP00
O
R17
Table 21 PES12NT3 Alphabetical Signal List (Part 2 of 3)
23 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Signal Name
I/O Type
Location
Signal Category
PECTP01
O
N18
PCI Express
PECTP02
O
G18
PECTP03
O
E17
PENTBRSTN
I
V12
System
PEREFCLKN0
I
V4
PCI Express
PEREFCLKN1
I
V16
PEREFCLKP0
I
V3
PEREFCLKP1
I
V15
PERSTN
I
T11
System
REFCLKM
I
T15
PCI Express
RSTHALT
I
R11
System
SSMBADDR_1
I
V7
SMBus
SSMBADDR_2
I
T8
SSMBADDR_3
I
U8
SSMBADDR_5
I
R8
SSMBCLK
I/O
V8
SSMBDAT
I/O
V9
SWMODE_0
I
U10
SWMODE_1
I
T10
SWMODE_2
I
R10
SWMODE_3
I
V11
SMBus
System
System
VDDCORE,
VDDAPE, VDDIO,
VDDPE, VTTPE
See Table 19 for a listing of power pins.
VSS
See Table 20 for a listing of ground pins.
Table 21 PES12NT3 Alphabetical Signal List (Part 3 of 3)
24 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
PES12NT3 Pinout — Top View
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
VDDCore (Power)
VTTPE (Power)
VDDI/O (Power)
VDDPE (Power)
Vss (Ground)
Signals
VDDAPE (Power)
25 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
PES12NT3 Package Drawing — 324-Pin BC324/BCG324
26 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
PES12NT3 Package Drawing — Page Two
27 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Revision History
April 15, 2008: Initial publication of data sheet.
January 5, 2009: On the Ordering Information page, changed silicon revision from ZA to ZB.
February 19, 2009: Added industrial temperature to Table 13 and to Order page.
28 of 29
February 19, 2009
IDT 89HPES12NT3 Data Sheet
Ordering Information
NN
A
AAA
NNAAN
AA
AA
A
Product
Family
Operating
Voltage
Device
Family
Product
Detail
Revision
ID
Package
Temp Range
Legend
A = Alpha Character
N = Numeric Character
Blank
I
Commercial Temperature
(0°C to +70°C Ambient)
Industrial Temperature
(-40° C to +85° C Ambient)
BC
BC324 324-ball CABGA
BCG
BCG324 324-ball CABGA, Green
ZB
Silicon revision
12NT3
12-lane, 3-port
PES
PCI Express Switch
H
1.0V +/- 0.1V Core Voltage
89
Serial Switching Product
Valid Combinations
89HPES12NT3ZBBC
324-pin BC324 package, Commercial Temperature
89HPES12NT3ZBBCG
324-pin Green BC324 package, Commercial Temperature
89HPES12NT3ZBBCI
324-pin BC324 package, Industrial Temperature
89HPES12NT3ZBBCGI
324-pin Green BC324 package, Industrial Temperature
CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
29 of 29
for Tech Support:
email: ssdhelp@idt.com
phone: 408-284-8208
February 19, 2009
IMPORTANT NOTICE AND DISCLAIMER
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)
Corporate Headquarters
Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:
www.renesas.com/contact/
Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.
© 2020 Renesas Electronics Corporation. All rights reserved.