0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
89HPES22H16ZABRI

89HPES22H16ZABRI

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    484-BBGA, FCBGA

  • 描述:

    IC INTFACE SPECIALIZED 484FCBGA

  • 数据手册
  • 价格&库存
89HPES22H16ZABRI 数据手册
89HPES22H16 Data Sheet 22-Lane 16-Port PCI Express® Switch ® Device Overview Flexible Architecture with Numerous Configuration Options – Port arbitration schemes utilizing round robin algorithms – Automatic per port link width negotiation from x4 to x2 or x1 – Automatic lane reversal on all ports – Automatic polarity inversion on all lanes – Supports locked transactions, allowing use with legacy software – Ability to load device configuration from serial EEPROM – Ability to control device via SMBus Highly Integrated Solution – Requires no external components – Incorporates on-chip internal memory for packet buffering and queueing – Integrates twenty-two 2.5 Gbps embedded full duplex SerDes, 8B/10B encoder/decoder (no separate transceivers needed) Reliability, Availability, and Serviceability (RAS) Features – Redundant upstream port failover capability – Supports optional PCI Express end-to-end CRC checking ◆ The 89HPES22H16 is a member of the IDT PRECISE™ family of PCI Express® switching solutions. The PES22H16 is a 22-lane, 16-port peripheral chip that performs PCI Express packet switching with a feature set optimized for high-performance applications such as servers, storage, and communications/networking. It provides connectivity and switching functions between a PCI Express upstream port and up to fifteen downstream ports and supports switching between downstream ports. ◆ Features ◆ High Performance PCI Express Switch – Sixteen maximum switch ports • Two x4 ports • Fourteen x1 ports – Twenty-two 2.5 Gbps embedded SerDes • Supports pre-emphasis and receive equalization on per-port basis – Delivers 88 Gbps (11 GBps) of aggregate switching capacity – Low-latency cut-through switch architecture – Support for Max Payload Size up to 2048 bytes – Supports two virtual channels and eight traffic classes – PCI Express Base Specification Revision 1.1 compliant ◆ Block Diagram x4/x2/x1 x4/x2/x1 SerDes SerDes DL/Transaction Layer DL/Transaction Layer Port Arbitration Route Table 16-Port Switch Core Scheduler Frame Buffer DL/Transaction Layer DL/Transaction Layer SerDes SerDes x1 x1 . . . . . . . DL/Transaction Layer SerDes x1 22 PCI Express Lanes 2 x4 ports and 14 x1 Ports Figure 1 Internal Block Diagram IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc. 1 of 36 © 2009 Integrated Device Technology, Inc. October 21, 2009 IDT 89HPES22H16 Data Sheet – Internal end-to-end parity protection on all TLPs ensures data integrity even in systems that do not implement end-to-end CRC (ECRC) – Supports optional PCI Express Advanced Error Reporting – Supports PCI Express Hot-Plug • Compatible with Hot-Plug I/O expanders used on PC motherboards – Supports Hot-Swap ◆ Power Management – Supports PCI Power Management Interface specification, Revision 1.1 (PCI-PM) • Supports powerdown modes at the link level (L0, L0s, L1, L2/L3 Ready and L3) and at the device level (D0, D3hot) – Unused SerDes disabled ◆ Testability and Debug Features – Built in SerDes Pseudo-Random Bit Stream (PRBS) generator – Ability to read and write any internal register via the SMBus – Ability to bypass link training and force any link into any mode – Provides statistics and performance counters ◆ Thirty-two General Purpose Input/Output pins – Each pin may be individually configured as an input or output – Each pin may be individually configured as an interrupt input – Some pins have selectable alternate functions ◆ Packaged in a 23mm x 23mm 484-ball Flip Chip BGA with 1mm ball spacing Product Description Utilizing standard PCI Express interconnect, the PES22H16 provides the most efficient I/O connectivity for applications requiring high throughput, low latency, and simple board layout with a minimum number of board layers. It provides 88 Gbps of aggregated, full-duplex switching capacity through 22 integrated serial lanes, using proven and robust IDT technology. Each lane provides 2.5 Gbps of bandwidth in both directions and is fully compliant with PCI Express Base specification 1.1. The PES22H16 is based on a flexible and efficient layered architecture. The PCI Express layer consists of SerDes, Physical, Data Link and Transaction layers. The PES22H16 can operate either as a store and forward switch or a cut-through switch and is designed to switch memory and I/O transactions. It supports eight Traffic Classes (TCs) and two Virtual Channels (VCs) with sophisticated resource management to enable efficient switching and I/O connectivity. Six pins make up each of the two SMBus interfaces. These pins consist of an SMBus clock pin, an SMBus data pin, and 4 SMBus address pins. In the slave interface, these address pins allow the SMBus address to which the device responds to be configured. In the master interface, these address pins allow the SMBus address of the serial configuration EEPROM from which data is loaded to be configured. The SMBus address is set up on negation of PERSTN by sampling the corresponding address pins. When the pins are sampled, the resulting address is assigned as shown in Table 1. Bit Slave SMBus Address Master SMBus Address 1 SSMBADDR[1] MSMBADDR[1] 2 SSMBADDR[2] MSMBADDR[2] 3 SSMBADDR[3] MSMBADDR[3] 4 0 MSMBADDR[4] 5 SSMBADDR[5] 1 6 1 0 7 1 1 Table 1 Master and Slave SMBus Address Assignment As shown in Figure 3, the master and slave SMBuses may be used in a unified or split configuration. In the unified configuration, shown in Figure 3(a), the master and slave SMBuses are tied together and the PES22H16 acts both as a SMBus master as well as a SMBus slave on this bus. This requires that the SMBus master or processor that has access to PES22H16 registers supports SMBus arbitration. In some systems, this SMBus master interface may be implemented using general purpose I/O pins on a processor or micro controller, and may not support SMBus arbitration. To support these systems, the PES22H16 may be configured to operate in a split configuration as shown in Figure 3(b). In the split configuration, the master and slave SMBuses operate as two independent buses and thus multi-master arbitration is never required. The PES22H16 supports reading and writing of the serial EEPROM on the master SMBus via the slave SMBus, allowing in system programming of the serial EEPROM. SMBus Interface The PES22H16 contains two SMBus interfaces. The slave interface provides full access to the configuration registers in the PES22H16, allowing every configuration register in the device to be read or written by an external agent. The master interface allows the default configuration register values of the PES22H16 to be overridden following a reset with values programmed in an external serial EEPROM. The master interface is also used by an external Hot-Plug I/O expander. 2 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet PES22H16 Processor SMBus Master Serial EEPROM ... Other SMBus Devices PES22H16 SSMBCLK SSMBDAT SSMBCLK SSMBDAT MSMBCLK MSMBDAT MSMBCLK MSMBDAT Processor SMBus Master ... Other SMBus Devices Serial EEPROM (b) Split Configuration and Management Buses (a) Unified Configuration and Management Bus Figure 3 SMBus Interface Configuration Examples Hot-Plug Interface The PES22H16 supports PCI Express Hot-Plug on each downstream port (ports 1 through 15). To reduce the number of pins required on the device, the PES22H16 utilizes an external I/O expander, such as that used on PC motherboards, connected to the SMBus master interface. Following reset and configuration, whenever the state of a Hot-Plug output needs to be modified, the PES22H16 generates an SMBus transaction to the I/O expander with the new value of all of the outputs. Whenever a Hot-Plug input changes, the I/O expander generates an interrupt which is received on the IOEXPINTN input pin (alternate function of GPIO) of the PES22H16. In response to an I/O expander interrupt, the PES22H16 generates an SMBus transaction to read the state of all of the Hot-Plug inputs from the I/O expander. General Purpose Input/Output The PES22H16 provides 32 General Purpose I/O (GPIO) pins that may be individually configured as general purpose inputs, general purpose outputs, or alternate functions. Some GPIO pins are shared with other on-chip functions. These alternate functions may be enabled via software, SMBus slave interface, or serial configuration EEPROM. Pin Description The following tables lists the functions of the pins provided on the PES22H16. Some of the functions listed may be multiplexed onto the same pin. The active polarity of a signal is defined using a suffix. Signals ending with an “N” are defined as being active, or asserted, when at a logic zero (low) level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level. Differential signals end with a suffix “N” or “P.” The differential signal ending in “P” is the positive portion of the differential pair and the differential signal ending in “N” is the negative portion of the differential pair. Signal Type Name/Description PE0RP[3:0] PE0RN[3:0] I PCI Express Port 0 Serial Data Receive. Differential PCI Express receive pairs for port 0. Port 0 is the upstream port. PE0TP[3:0] PE0TN[3:0] O PCI Express Port 0 Serial Data Transmit. Differential PCI Express transmit pairs for port 0. Port 0 is the upstream port. PE1RP[0] PE1RN[0] I PCI Express Port 1 Serial Data Receive. Differential PCI Express receive pair for port 1. PE1TP[0] PE1TN[0] O PCI Express Port 1 Serial Data Transmit. Differential PCI Express transmit pair for port 1. PE2RP[3:0] PE2RN[3:0] I PCI Express Port 2 Serial Data Receive. Differential PCI Express receive pairs for port 2. PE2TP[3:0] PE2TN[3:0] O PCI Express Port 2 Serial Data Transmit. Differential PCI Express transmit pairs for port 2. Table 2 PCI Express Interface Pins (Part 1 of 3) 3 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Signal Type Name/Description PE3RP[0] PE3RN[0] I PCI Express Port 3 Serial Data Receive. Differential PCI Express receive pair for port 3. PE3TP[0] PE3TN[0] O PCI Express Port 3 Serial Data Transmit. Differential PCI Express transmit pair for port 3. PE4RP[0] PE4RN[0] I PCI Express Port 4 Serial Data Receive. Differential PCI Express receive pair for port 4. PE4TP[0] PE4TN[0] O PCI Express Port 4 Serial Data Transmit. Differential PCI Express transmit pair for port 4. PE5RP[0] PE5RN[0] I PCI Express Port 5 Serial Data Receive. Differential PCI Express receive pair for port 5. PE5TP[0] PE5TN[0] O PCI Express Port 5 Serial Data Transmit. Differential PCI Express transmit pair for port 5. PE6RP[0] PE6RN[0] I PCI Express Port 6 Serial Data Receive. Differential PCI Express receive pair for port 6. PE6TP[0] PE6TN[0] O PCI Express Port 6 Serial Data Transmit. Differential PCI Express transmit pair for port 6. PE7RP[0] PE7RN[0] I PCI Express Port 7 Serial Data Receive. Differential PCI Express receive pair for port 7. PE7TP[0] PE7TN[0] O PCI Express Port 7 Serial Data Transmit. Differential PCI Express transmit pair for port 7. PE8RP[0] PE8RN[0] I PCI Express Port 8 Serial Data Receive. Differential PCI Express receive pair for port 8. PE8TP[0] PE8TN[0] O PCI Express Port 8 Serial Data Transmit. Differential PCI Express transmit pair for port 8. PE9RP[0] PE9RN[0] I PCI Express Port 9 Serial Data Receive. Differential PCI Express receive pair for port 9. PE9TP[[0] PE9TN[0] O PCI Express Port 9 Serial Data Transmit. Differential PCI Express transmit pair for port 9. PE10RP[0] PE10RN[0] I PCI Express Port 10 Serial Data Receive. Differential PCI Express receive pair for port 10. PE10TP[0] PE10TN[0] O PCI Express Port 10 Serial Data Transmit. Differential PCI Express transmit pair for port 10. PE11RP[0] PE11RN[0] I PCI Express Port 11 Serial Data Receive. Differential PCI Express receive pair for port 11. PE11TP[0] PE11TN[0] O PCI Express Port 11 Serial Data Transmit. Differential PCI Express transmit pair for port 11. PE12RP[0] PE12RN[0] I PCI Express Port 12 Serial Data Receive. Differential PCI Express receive pair for port 12. PE12TP[0] PE12TN[0] O PCI Express Port 12 Serial Data Transmit. Differential PCI Express transmit pair for port 12. PE13RP[0] PE13RN[0] I PCI Express Port 13 Serial Data Receive. Differential PCI Express receive pair for port 13. PE13TP[0] PE13TN[0] O PCI Express Port 13 Serial Data Transmit. Differential PCI Express transmit pair for port 13. W Table 2 PCI Express Interface Pins (Part 2 of 3) 4 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Signal Type Name/Description PE14RP[0] PE14RN[0] I PCI Express Port 14 Serial Data Receive. Differential PCI Express receive pair for port 14. PE14TP[0] PE14TN[0] O PCI Express Port 14 Serial Data Transmit. Differential PCI Express transmit pair for port 14. PE15RP[0] PE15RN[0] I PCI Express Port 15 Serial Data Receive. Differential PCI Express receive pair for port 15. PE15TP[0] PE15TN[0] O PCI Express Port 15 Serial Data Transmit. Differential PCI Express transmit pair for port 15. REFCLKM I PCI Express Reference Clock Mode Select. This signal selects the frequency of the reference clock input. 0x0 - 100 MHz 0x1 - 125 MHz PEREFCLKP[3:0] PEREFCLKN[3:0] I PCI Express Reference Clock. Differential reference clock pair input. This clock is used as the reference clock by on-chip PLLs to generate the clocks required for the system logic and on-chip SerDes. The frequency of the differential reference clock is determined by the REFCLKM signal. Table 2 PCI Express Interface Pins (Part 3 of 3) Signal Type Name/Description MSMBADDR[4:1] I MSMBCLK I/O Master SMBus Clock. This bidirectional signal is used to synchronize transfers on the master SMBus. It is active and generating the clock only when the EEPROM or I/O Expanders are being accessed. MSMBDAT I/O Master SMBus Data. This bidirectional signal is used for data on the master SMBus. SSMBADDR[5,3:1] I Slave SMBus Address. These pins determine the SMBus address to which the slave SMBus interface responds. SSMBCLK I/O Slave SMBus Clock. This bidirectional signal is used to synchronize transfers on the slave SMBus. SSMBDAT I/O Slave SMBus Data. This bidirectional signal is used for data on the slave SMBus. Master SMBus Address. These pins determine the SMBus address of the serial EEPROM from which configuration information is loaded. Table 3 SMBus Interface Pins Signal Type Name/Description GPIO[0] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[1] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[2] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[3] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Table 4 General Purpose I/O Pins (Part 1 of 4) 5 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Signal Type Name/Description GPIO[4] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[5] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: GPEN Alternate function pin type: Output Alternate function: General Purpose Event (GPE) output GPIO[6] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P1RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 1 GPIO[7] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P2RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 2 GPIO[8] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P3RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 3 GPIO[9] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P4RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 4 GPIO[10] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P5RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 5 GPIO[11] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P6RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 6 GPIO[12] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P7RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 7 GPIO[13] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P8RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 8 Table 4 General Purpose I/O Pins (Part 2 of 4) 6 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Signal Type Name/Description GPIO[14] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P9RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 9 GPIO[15] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P10RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 10 GPIO[16] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P11RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 11 GPIO[17] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P12RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 12 GPIO[18] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P13RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 13 GPIO[19] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P14RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 14 GPIO[20] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: P15RSTN Alternate function pin type: Output Alternate function: Reset output for downstream port 15 GPIO[21] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN0 Alternate function pin type: Input Alternate function: SMBus I/O expander interrupt 0 GPIO[22]1 I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN1 Alternate function pin type: Input Alternate function: SMBus I/O expander interrupt 1 GPIO[23] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN2 Alternate function pin type: Input Alternate function: SMBus I/O expander interrupt 2 Table 4 General Purpose I/O Pins (Part 3 of 4) 7 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Signal Type Name/Description GPIO[24] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN3 Alternate function pin type: Input Alternate function: SMBus I/O expander interrupt 3 GPIO[25]1 I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN4 Alternate function pin type: Input Alternate function: SMBus I/O expander interrupt 4 GPIO[26] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN5 Alternate function pin type: Input Alternate function: SMBus I/O expander interrupt 5 GPIO[27] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN6 Alternate function pin type: Input Alternate function: SMBus I/O expander interrupt 6 GPIO[28] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN7 Alternate function pin type: Input Alternate function: SMBus I/O expander interrupt 7 GPIO[29] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[30] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. GPIO[31] I/O General Purpose I/O. This pin can be configured as a general purpose I/O pin. Alternate function pin name: IOEXPINTN10 Alternate function pin type: Input Alternate function: SMBus I/O expander interrupt 10 Table 4 General Purpose I/O Pins (Part 4 of 4) 1. GPIO pins 22 and 25 are not available in the 23x23mm package. Signal Type Name/Description CCLKDS I Common Clock Downstream. When the CCLKDS pin is asserted, it indicates that a common clock is being used between the downstream device and the downstream port. CCLKUS I Common Clock Upstream. When the CCLKUS pin is asserted, it indicates that a common clock is being used between the upstream device and the upstream port. MSMBSMODE I Master SMBus Slow Mode. The assertion of this pin indicates that the master SMBus should operate at 100 KHz instead of 400 KHz. This value may not be overridden. Table 5 System Pins (Part 1 of 2) 8 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Signal Type Name/Description PERSTN I Fundamental Reset. Assertion of this signal resets all logic inside the PES22H16 and initiates a PCI Express fundamental reset. RSTHALT I Reset Halt. When this signal is asserted during a PCI Express fundamental reset, the PES22H16 executes the reset procedure and remains in a reset state with the Master and Slave SMBuses active. This allows software to read and write registers internal to the device before normal device operation begins. The device exits the reset state when the RSTHALT bit is cleared in the PA_SWCTL register by an SMBus master. SWMODE[3:0] I Switch Mode. These configuration pins determine the PES22H16 switch operating mode. These pins should be static and not change following the negation of PERSTN. 0x0 - Normal switch mode 0x1 - Normal switch mode with Serial EEPROM initialization 0x2 through 0x7 - Reserved 0x8 - Normal switch mode with upstream port failover (port 0 selected as the upstream port) 0x9 - Normal switch mode with upstream port failover (port 2 selected as the upstream port) 0xA - Normal switch mode with Serial EEPROM initialization and upstream port failover (port 0 selected as the upstream port) 0xB - Normal switch mode with Serial EEPROM initialization and upstream port failover (port 2 selected as the upstream port) 0xC through 0xF - Reserved Table 5 System Pins (Part 2 of 2) Signal Type Name/Description JTAG_TCK I JTAG Clock. This is an input test clock used to clock the shifting of data into or out of the boundary scan logic or JTAG Controller. JTAG_TCK is independent of the system clock with a nominal 50% duty cycle. JTAG_TDI I JTAG Data Input. This is the serial data input to the boundary scan logic or JTAG Controller. JTAG_TDO O JTAG Data Output. This is the serial data shifted out from the boundary scan logic or JTAG Controller. When no data is being shifted out, this signal is tri-stated. JTAG_TMS I JTAG Mode. The value on this signal controls the test mode select of the boundary scan logic or JTAG Controller. JTAG_TRST_N I JTAG Reset. This active low signal asynchronously resets the boundary scan logic and JTAG TAP Controller. An external pull-up on the board is recommended to meet the JTAG specification in cases where the tester can access this signal. However, for systems running in functional mode, one of the following should occur: 1) actively drive this signal low with control logic 2) statically drive this signal low with an external pull-down on the board Table 6 Test Pins Signal Type Name/Description VDDCORE I Core VDD. Power supply for core logic. VDDI/O I I/O VDD. LVTTL I/O buffer power supply. VDDPE I PCI Express Digital Power. PCI Express digital power used by the digital power of the SerDes. Table 7 Power and Ground Pins 9 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Signal Type VDDAPE I VSS I VTTPE Name/Description PCI Express Analog Power. PCI Express analog power used by the PLL and bias generator. Ground. PCI Express Serial Data Transmit Termination Voltage. This pin allows the driver termination voltage to be set, enabling the system designer to control the Common Mode Voltage and output voltage swing of the corresponding PCI Serial Data Transmit differential pair. Table 7 Power and Ground Pins 10 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Pin Characteristics Note: Some input pads of the PES22H16 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate levels. This is especially critical for unused control signal inputs which, if left floating, could adversely affect operation. Also, any input pin left floating can cause a slight increase in power consumption. Function Pin Name Type Buffer I/O Type PCI Express Interface PE0RN[3:0] I CML Serial Link PE0RP[3:0] I PE0TN[3:0] O PE0TP[3:0] O PE1RN[0] I PE1RP[0] I PE1TN[0] O PE1TP[0] O PE2RN[3:0] I PE2RP[3:0] I PE2TN[3:0] O PE2TP[3:0] O PE3RN[0] I PE3RP[0] I PE3TN[0] O PE3TP[0] O PE4RN[0] I PE4RP[0] I PE4TN[0] O PE4TP[0] O PE5RN[0] I PE5RP[0] I PE5TN[0] O PE5TP[0] O PE6RN[0] I PE6RP[0] I PE6TN[0] O PE6TP[0] O PE7RN[0] I PE7RP[0] I PE7TN[0] O PE7TP[0] O PE8RN[0] I Internal Resistor Notes Table 8 Pin Characteristics (Part 1 of 3) 11 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Function Pin Name Type Buffer I/O Type PCI Express Interface (cont.) PE8RP[0] I CML Serial Link PE8TN[0] O PE8TP[0] O PE9RN[0] I PE9RP[0] I PE9TN[0] O PE9TP[0] O PE10RN[0] I LVPECL/ CML Diff. Clock Input LVTTL Input PE10RP[0] I PE10TN[0] O PE10TP[0] O PE11RN[0] I PE11RP[0] I PE11TN[0] O PE11TP[0] O PE12RN[0] I PE12RP[0] I PE12TN[0] O PE12TP[0] O PE13RN[0] I PE13RP[0] I PE13TN[0] O PE13TP[0] O PE14RN[0] I PE14RP[0] I PE14TN[0] O PE14TP[0] O PE15RN[0] I PE15RP[0] I PE15TN[0] O PE15TP[0] O PEREFCLKN[3:0] I PEREFCLKP[3:0] I REFCLKM I Internal Resistor Notes Refer to Table 9 pull-down Table 8 Pin Characteristics (Part 2 of 3) 12 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Pin Name Type Buffer SMBus MSMBADDR[4:1] I LVTTL MSMBCLK I/O STI1 MSMBDAT I/O STI SSMBADDR[5,3:1] I SSMBCLK I/O SSMBDAT I/O I/O LVTTL System Pins CCLKDS I LVTTL pull-up STI pull-up Input pull-up CCLKUS I pull-up MSMBSMODE I pull-down PERSTN I RSTHALT I pull-down SWMODE[3:0] I pull-down JTAG_TCK I LVTTL STI pull-up STI pull-up JTAG_TDI I JTAG_TDO O JTAG_TMS I STI pull-up JTAG_TRST_N I STI pull-up Schmitt Trigger Input (STI). Notes STI GPIO[31:0] EJTAG / JTAG Internal Resistor pull-up General Purpose I/O 1. I/O Type Function External pull-down Table 8 Pin Characteristics (Part 3 of 3) 13 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Logic Diagram — PES22H16 PCI Express Switch SerDes Input Port 1 ... PE0RP[3] PE0RN[3] PE0TP[3] PE0TN[3] PE1RP[0] PE1RN[0] PE1TP[0] PE1TN[0] PE2TP[0] PE2TN[0] PE2RP[0] PE2RN[0] PE2RP[3] PE2RN[3] PE2TP[3] PE2TN[3] PE3RP[0] PE3RN[0] PE3TP[0] PE3TN[0] PCI Express Switch SerDes Input Port 15 Master SMBus Interface PES22H16 PE15TP[0] PE15TN[0] PE15RP[0] PE15RN[0] MSMBADDR[4:1] MSMBCLK MSMBDAT 4 4 32 System Pins MSMBSMODE CCLKDS CCLKUS RSTHALT PERSTN SWMODE[3:0] PCI Express Switch SerDes Output Port 0 PCI Express Switch SerDes Output Port 1 PCI Express Switch SerDes Output Port 2 PCI Express Switch SerDes Output Port 3 ... ... PCI Express Switch SerDes Input Port 3 PE0TP[0] PE0TN[0] PE0RP[0] PE0RN[0] ... PCI Express Switch SerDes Input Port 2 4 ... PCI Express Switch SerDes Input Port 0 4 PEREFCLKP[3:0] PEREFCLKN[3:0] REFCLKM ... Reference Clock SSMBADDR[5,3:1] SSMBCLK SSMBDAT GPIO[31:0] JTAG_TCK JTAG_TDI JTAG_TDO JTAG_TMS JTAG_TRST_N 4 VDDCORE VDDIO VDDPE VDDAPE VSS PCI Express Switch SerDes Output Port 15 Slave SMBus Interface General Purpose I/O JTAG Pins Power/Ground VTTPE Figure 4 PES22H16 Logic Diagram Note: GPIO pins 22 and 25 are not available in the 23x23mm package. 14 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet System Clock Parameters Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 13 and 14. Parameter Description Min Typical Max Unit 1251 MHz 60 % 0.2*RCUI RCUI3 1.6 V 125 ps PEREFCLK RefclkFREQ Input reference clock frequency range 100 RefclkDC2 Duty cycle of input clock 40 TR, TF Rise/Fall time of input clocks VSW Differential input voltage swing4 Tjitter Input clock jitter (cycle-to-cycle) RT Termination Resistor 50 0.6 110 Ohms Table 9 Input Clock Requirements 1. The input clock frequency will be either 100 or 125 MHz depending on signal REFCLKM. 2. ClkIn must be AC coupled. Use 0.01 — 0.1 µF ceramic capacitors. 3. RCUI (Reference Clock Unit Interval) refers to the reference clock period. 4. AC coupling required. AC Timing Characteristics Parameter Description Min1 Typical1 Max1 Units 399.88 400 400.12 ps 0.7 .9 PCIe Transmit UI Unit Interval TTX-EYE Minimum Tx Eye Width TTX-EYE-MEDIAN-toMAX-JITTER Maximum time between the jitter median and maximum deviation from the median TTX-RISE, TTX-FALL D+ / D- Tx output rise/fall time 50 TTX- IDLE-MIN Minimum time in idle 50 TTX-IDLE-SET-TO- Maximum time to transition to a valid Idle after sending an Idle ordered set 20 UI IDLE TTX-IDLE-TO-DIFF- Maximum time to transition from valid idle to diff data 20 UI 500 1300 ps 400 400.12 ps UI 0.15 90 UI ps UI DATA TTX-SKEW Transmitter data skew between any 2 lanes PCIe Receive UI Unit Interval 399.88 TRX-EYE (with jitter) Minimum Receiver Eye Width (jitter tolerance) TRX-EYE-MEDIUM TO Max time between jitter median & max deviation 0.3 UI Unexpected Idle Enter Detect Threshold Integration Time 10 ms Lane to lane input skew 20 ns 0.4 UI MAX JITTER TRX-IDLE-DET-DIFFENTER TIME TRX-SKEW Table 10 PCIe AC Timing Characteristics 15 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet 1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.1 Signal Symbol Reference Edge Min Max Unit Timing Diagram Reference Tpw_13b2 None 50 — ns See Figure 5. GPIO GPIO[31:0]1 Table 11 GPIO AC Timing Characteristics 1. GPIO signals must meet the setup and hold times if they are synchronous or the minimum pulse width if they are asynchronous. 2. The values for this symbol were determined by calculation, not by testing. EXTCLK Tpw_13b GPIO (asynchronous input) Figure 5 GPIO AC Timing Waveform Signal Symbol Reference Edge Min Max Unit Timing Diagram Referenc e Tper_16a none 50.0 — ns See Figure 6. 10.0 25.0 ns 2.4 — ns 1.0 — ns — 20 ns — 20 ns 25.0 — ns JTAG JTAG_TCK Thigh_16a, Tlow_16a JTAG_TMS1, JTAG_TDI JTAG_TDO Tsu_16b JTAG_TCK rising Thld_16b Tdo_16c JTAG_TCK falling Tdz_16c2 JTAG_TRST_N Tpw_16d2 none Table 12 JTAG AC Timing Characteristics 1. The JTAG specification, IEEE 1149.1, recommends that JTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK when JTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state. 2. The values for this symbol were determined by calculation, not by testing. 16 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Tlow_16a Tper_16a Thigh_16a JTAG_TCK Thld_16b Tsu_16b JTAG_TDI Thld_16b Tsu_16b JTAG_TMS Tdo_16c Tdz_16c JTAG_TDO Tpw_16d JTAG_TRST_N Figure 6 JTAG AC Timing Waveform Recommended Operating Supply Voltages Symbol Parameter Minimum Typical Maximum Unit VDDCORE Internal logic supply 0.9 1.0 1.1 V VDDI/O I/O supply except for SerDes LVPECL/CML 3.0 3.3 3.6 V VDDPE PCI Express Digital Power 0.9 1.0 1.1 V VDDAPE PCI Express Analog Power 0.9 1.0 1.1 V VTTPE PCI Express Serial Data Transmit Termination Voltage 1.425 1.5 1.575 V VSS Common ground 0 0 0 V Table 13 PES22H16 Operating Voltages Power-Up Sequence This section describes the sequence in which various voltages must be applied to the part during power-up to ensure proper functionality. For the PES22H16, the power-up sequence must be as follows: 1. VDDI/O — 3.3V 2. VDDCore, VDDPE, VDDAPE — 1.0V 3. VTTPE — 1.5V When powering up, each voltage level must ramp and stabilize prior to applying the next voltage in the sequence to ensure internal latch-up issues are avoided. There are no maximum time limitations in ramping to valid power levels. The power-down sequence must be in the reverse order of the power-up sequence. 17 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Recommended Operating Temperature Grade Temperature Commercial 0°C to +70°C Ambient Industrial -40°C to +85°C Ambient Table 14 PES22H16 Operating Temperatures Power Consumption Typical power is measured under the following conditions: 25°C Ambient, 35% total link usage on all ports, typical voltages defined in Table 13 (and also listed below). Maximum power is measured under the following conditions: 70°C Ambient, 85% total link usage on all ports, maximum voltages defined in Table 13 (and also listed below). Core Supply PCIe Digital Supply PCIe Analog Supply PCIe Termination Supply Typ 1.0V Max 1.1V Typ 1.0V Max 1.1V Typ 1.0V Max 1.1V Typ 1.5V Max 1.575V Typ 3.3V Max 3.6V Typ Power Max Power mA 1900 2364 1400 1727 800 1000 535 762 5 5 — — Watts 1.9 2.6 1.4 1.9 0.8 1.1 0.8 1.2 0.018 0.02 4.92 6.82 Number of active Lanes per Port Two x4 and fourteen x1 I/O Supply Total Table 15 PES22H16 Power Consumption Thermal Considerations This section describes thermal considerations for the PES22H16 (23mm2 FCBGA484 package). The data in Table 16 below contains information that is relevant to the thermal performance of the PES22H16 switch. Symbol Parameter Value Units Conditions TJ(max) Junction Temperature 125 oC Maximum TA(max) Ambient Temperature 70 oC Maximum for commercial-rated products θJA(effective) Effective Thermal Resistance, Junction-to-Ambient 13.4 o C/W Zero air flow 7.2 oC/W 1 m/S air flow 6.2 oC/W 2 m/S air flow θJB Thermal Resistance, Junction-to-Board 2.5 o θJC Thermal Resistance, Junction-to-Case 0.1 oC/W P Power Dissipation of the Device 6.82 Watts C/W Maximum Table 16 Thermal Specifications for PES22H16, 23x23mm FCBGA484 Package Note: The parameter θJA(eff) is not the absolute thermal resistance for the package as defined by JEDEC (JESD-51). Because resistance can vary with the number of board layers, size of the board, and airflow, θJA(eff) is the effective thermal resistance. The values for effective θJA given above are based on a 10-layer, standard height, full length (4.3”x12.2”) PCIe add-in card. 18 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet DC Electrical Characteristics Values based on systems running at recommended supply voltages, as shown in Table 13. Note: See Table 8, Pin Characteristics, for a complete I/O listing. I/O Type Serial Link Parameter Min1 Description Typ1 Max1 Unit 800 1200 mV -3 -4 dB 3.7 V Conditions PCIe Transmit VTX-DIFFp-p VTX-DE-RATIO Differential peak-to-peak output voltage De-emphasized differential output voltage VTX-DC-CM DC Common mode voltage VTX-CM-ACP RMS AC peak common mode output voltage 20 mV VTX-CM-DC- Abs delta of DC common mode voltage between L0 and idle 100 mV Abs delta of DC common mode voltage between D+ and D- 25 mV Electrical idle diff peak output 20 mV Voltage change during receiver detection 600 mV active-idle-delta VTX-CM-DC-linedelta VTX-Idle-DiffP VTX-RCV-Detect -0.1 1 RLTX-DIFF Transmitter Differential Return loss 12 dB RLTX-CM Transmitter Common Mode Return loss 6 dB ZTX-DEFF-DC DC Differential TX impedance 80 100 120 Ω ZOSE Single ended TX Impedance 40 50 60 Ω Transmitter Eye Diagram TX Eye Height (De-emphasized bits) 505 650 mV Transmitter Eye Diagram TX Eye Height (Transition bits) 800 950 mV VRX-DIFFp-p Differential input voltage (peak-to-peak) 175 VRX-CM-AC Receiver common-mode voltage for AC coupling RLRX-DIFF Receiver Differential Return Loss 15 dB RLRX-CM Receiver Common Mode Return Loss 6 dB Differential input impedance (DC) 80 100 120 Ω Single-ended input impedance 40 50 60 Ω 200k 350k PCIe Receive ZRX-DIFF-DC ZRX-COMM-DC ZRX-COMM-HIGH- Powered down input common mode impedance (DC) Z-DC VRX-IDLE-DET- Electrical idle detect threshold 65 Input Capacitance 1.5 1200 mV 150 mV Ω 175 mV DIFFp-p PCIe REFCLK CIN — pF Table 17 DC Electrical Characteristics (Part 1 of 2) 19 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet I/O Type Min1 Typ1 Max1 Unit Conditions IOL — 2.5 — mA VOL = 0.4v IOH — -5.5 — mA VOH = 1.5V IOL — 12.0 — mA VOL = 0.4v IOH — -20.0 — mA VOH = 1.5V Parameter Description Other I/Os LOW Drive Output High Drive Output Schmitt Trigger Input (STI) VIL -0.3 — 0.8 V — VIH 2.0 — VDDI/O + 0.5 V — Input VIL -0.3 — 0.8 V — VIH 2.0 — VDDI/O + 0.5 V — CIN — — 8.5 pF — Inputs — — + 10 μA VDDI/O (max) I/OLEAK W/O Pull-ups/downs — — + 10 μA VDDI/O (max) I/OLEAK WITH Pull-ups/downs — — + 80 μA VDDI/O (max) Capacitance Leakage Table 17 DC Electrical Characteristics (Part 2 of 2) 1. Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.0a. 20 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Package Pinout — 484-BGA Signal Pinout for PES22H16 The following table lists the pin numbers and signal names for the PES22H16 device. Pin Function A1 VDDI/O A2 GPIO_16 A3 Alt Pin Function Alt Pin Function Alt Pin Function B13 VSS D3 GPIO_27 1 E15 VSS B14 PE2TP03 D4 GPIO_23 1 E16 VDDPE VSS B15 PE2TP02 D5 GPIO_20 1 E17 VDDPE A4 PE9TN00 B16 VSS D6 VSS E18 JTAG_TRST_N A5 PE8TN00 B17 PE2TN01 D7 PE9RP00 E19 SSMBCLK A6 VSS B18 PE2TN00 D8 PE9RN00 E20 SSMBADDR_2 A7 PE3RP00 B19 MSMBADDR_3 D9 PE8RP00 E21 PE1TP00 A8 PE2RP03 B20 JTAG_TDO D10 PE8RN00 E22 PE1TN00 A9 VSS B21 PERSTN D11 VSS F1 PE10RP00 A10 PEREFCLKN1 B22 JTAG_TDI D12 PE2RP02 F2 PE10RN00 A11 VSS C1 VDDI/O D13 PE2RN02 F3 VSS A12 PE3TN00 C2 GPIO_21 1 D14 PE2RP01 F4 GPIO_30 A13 VSS C3 GPIO_19 1 D15 PE2RN01 F5 VDDI/O A14 PE2TN03 C4 VSS D16 PE2RP00 F6 VDDI/O A15 PE2TN02 C5 VSS D17 PE2RN00 F7 VDDPE A16 VSS C6 VSS D18 MSMBADDR_1 F8 VDDPE A17 PE2TP01 C7 VSS D19 VDDI/O F9 VDDPE A18 PE2TP00 C8 VSS D20 CCLKDS F10 VDDCORE A19 MSMBSMODE C9 VSS D21 SSMBADDR_1 F11 VDDCORE A20 MSMBDAT C10 VSS D22 SSMBADDR_3 F12 VDDCORE A21 JTAG_TMS C11 VSS E1 VSS F13 VDDCORE A22 VSS C12 VSS E2 VSS F14 VDDPE B1 VSS C13 VSS E3 GPIO_31 1 F15 VDDPE B2 GPIO_18 C14 VSS E4 GPIO_28 1 F16 VDDI/O B3 VSS C15 VSS E5 GPIO_26 1 F17 VDDI/O B4 PE9TP00 C16 VSS E6 GPIO_17 1 F18 SSMBADDR_5 B5 PE8TP00 C17 VSS E7 VDDPE F19 VSS B6 VSS C18 MSMBADDR_4 E8 VSS F20 VSS B7 PE3RN00 C19 MSMBADDR_2 E9 VTTPE F21 PE0TN03 B8 PE2RN03 C20 MSMBCLK E10 VTTPE F22 PE0TP03 B9 VSS C21 SSMBDAT E11 VDDPEA G1 PE11RP00 B10 PEREFCLKP1 C22 JTAG_TCK E12 VDDPEA G2 PE11RN00 B11 VSS D1 GPIO_29 E13 VTTPE G3 VSS B12 PE3TP00 D2 GPIO_24 E14 VTTPE G4 VSS 1 1 1 Alt Table 18 PES22H16 Signal Pin-Out (Part 1 of 4) 21 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Pin Function Alt Pin Function Alt Pin Function Alt Pin Function G5 VDDI/O H20 VSS K13 VSS M6 VSS G6 VDDPE H21 PE0TN02 K14 VDDCORE M7 VSS G7 VSS H22 PE0TP02 K15 VDDCORE M8 VDDCORE G8 VDDCORE J1 PE10TN00 K16 VSS M9 VDDCORE G9 VDDCORE J2 PE10TP00 K17 VDDPE M10 VSS G10 VSS J3 VSS K18 VTTPE M11 VDDCORE G11 VDDCORE J4 VSS K19 PE0RP03 M12 VDDCORE G12 VDDCORE J5 VTTPE K20 VSS M13 VSS G13 VSS J6 VDDPE K21 VSS M14 VDDCORE G14 VDDCORE J7 VSS K22 VSS M15 VDDCORE G15 VDDCORE J8 VDDCORE L1 VSS M16 VSS G16 VSS J9 VDDCORE L2 VSS M17 VSS G17 VDDI/O J10 VSS L3 VSS M18 VDDPEA G18 VSS J11 VDDCORE L4 VSS M19 PE0RN02 G19 PE1RN00 J12 VDDCORE L5 VDDPEA M20 VSS G20 VSS J13 VSS L6 VSS M21 VSS G21 VSS J14 VDDCORE L7 VSS M22 VSS G22 VSS J15 VDDCORE L8 VDDCORE N1 VSS H1 VSS J16 VSS L9 VDDCORE N2 VSS H2 VSS J17 VDDPE L10 VSS N3 VSS H3 VSS J18 VTTPE L11 VDDCORE N4 VSS H4 VSS J19 PE0RN03 L12 VDDCORE N5 VTTPE H5 VDDPE J20 VSS L13 VSS N6 VSS H6 VDDPE J21 PE0TP01 L14 VDDCORE N7 VSS H7 VSS J22 PE0TN01 L15 VDDCORE N8 VDDCORE H8 VDDCORE K1 PE11TN00 L16 VSS N9 VDDCORE H9 VDDCORE K2 PE11TP00 L17 VSS N10 VSS H10 VSS K3 VSS L18 VDDPEA N11 VDDCORE H11 VDDCORE K4 VSS L19 PE0RP02 N12 VDDCORE H12 VDDCORE K5 VTTPE L20 VSS N13 VSS H13 VSS K6 VSS L21 PE0TP00 N14 VDDCORE H14 VDDCORE K7 VSS L22 PE0TN00 N15 VDDCORE H15 VDDCORE K8 VDDCORE M1 PEREFCLKN2 N16 VSS H16 VSS K9 VDDCORE M2 PEREFCLKP2 N17 VSS H17 VDDPE K10 VSS M3 VSS N18 VTTPE H18 VDDPE K11 VDDCORE M4 VSS N19 VSS H19 PE1RP00 K12 VDDCORE M5 VDDPEA N20 VSS Alt Table 18 PES22H16 Signal Pin-Out (Part 2 of 4) 22 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Pin Function Alt Pin Function Alt Pin Function Alt Pin Function N21 PEREFCLKN0 R14 VDDCORE U7 VDDPE V22 PE15TP00 N22 PEREFCLKP0 R15 VDDCORE U8 VDDPE W1 VSS P1 PE4TN00 R16 VSS U9 VDDPE W2 VSS P2 PE4TP00 R17 VDDPE U10 VDDCORE W3 VSS P3 VSS R18 VSS U11 VDDCORE W4 REFCLKM P4 VSS R19 PE15RN00 U12 VDDCORE W5 RSTHALT P5 VTTPE R20 VSS U13 VDDCORE W6 SWMODE_1 P6 VDDPE R21 PE0RN01 U14 VDDPE W7 VSS P7 VSS R22 PE0RP01 U15 VDDPE W8 VSS P8 VDDCORE T1 VSS U16 VDDI/O W9 VSS P9 VDDCORE T2 VSS U17 VDDI/O W10 VSS P10 VSS T3 VSS U18 VSS W11 VDDPEA P11 VDDCORE T4 VSS U19 PE14RN00 W12 VSS P12 VDDCORE T5 VSS U20 VSS W13 VSS P13 VSS T6 VDDPE U21 VSS W14 VSS P14 VDDCORE T7 VSS U22 VSS W15 VDDI/O P15 VDDCORE T8 VDDCORE V1 PE5RP00 W16 GPIO_01 P16 VSS T9 VDDCORE V2 PE5RN00 W17 GPIO_03 P17 VDDPE T10 VSS V3 VSS W18 GPIO_04 P18 VTTPE T11 VDDCORE V4 VSS W19 GPIO_08 P19 PE15RP00 T12 VDDCORE V5 VDDI/O W20 VSS P20 VSS T13 VSS V6 VDDI/O W21 PE14TN00 P21 VSS T14 VDDCORE V7 VSS W22 PE14TP00 P22 VSS T15 VDDCORE V8 VDDPE Y1 VDDI/O R1 PE5TN00 T16 VSS V9 VTTPE Y2 CCLKUS R2 PE5TP00 T17 VDDPE V10 VTTPE Y3 VDDI/O R3 VSS T18 VDDPE V11 VDDPEA Y4 SWMODE_0 R4 VSS T19 PE14RP00 V12 VTTPE Y5 VSS R5 VDDPE T20 VSS V13 VTTPE Y6 VSS R6 VDDPE T21 PE0RN00 V14 VDDPE Y7 VSS R7 VSS T22 PE0RP00 V15 VDDPE Y8 VSS R8 VDDCORE U1 PE4RP00 V16 VDDI/O Y9 VSS R9 VDDCORE U2 PE4RN00 V17 GPIO_06 1 Y10 VSS R10 VSS U3 VSS V18 GPIO_11 1 Y11 VSS R11 VDDCORE U4 VSS V19 VSS Y12 VSS R12 VDDCORE U5 VSS V20 VSS Y13 VSS R13 VSS U6 VDDI/O V21 PE15TN00 Y14 VSS Alt 1 Table 18 PES22H16 Signal Pin-Out (Part 3 of 4) 23 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Pin Function Alt Pin Function Alt Pin Function Alt Pin Function 1 AB10 VSS AB11 PEREFCLKN3 Alt Y15 VSS AA6 PE7RN00 AA19 GPIO_05 Y16 VSS AA7 VSS AA20 VDDI/O Y17 VSS AA8 PE6TP00 AA21 GPIO_12 1 AB12 VSS Y18 GPIO_00 AA9 PE7TP00 AA22 GPIO_14 1 AB13 PE12TN00 Y19 GPIO_07 1 AA10 VSS AB1 VDDI/O AB14 PE13TN00 Y20 GPIO_09 1 AA11 PEREFCLKP3 AB2 VSS AB15 VSS Y21 VSS AA12 VSS AB3 SWMODE_2 AB16 PE12RP00 Y22 VSS AA13 PE12TP00 AB4 VSS AB17 PE13RP00 AA1 VSS AA14 PE13TP00 AB5 PE6RP00 AB18 VSS AA2 VDDI/O AA15 VSS AB6 PE7RP00 AB19 GPIO_02 AA3 SWMODE_3 AA16 PE12RN00 AB7 VSS AB20 GPIO_10 1 AA4 VSS AA17 PE13RN00 AB8 PE6TN00 AB21 GPIO_13 1 AA5 PE6RN00 AA18 VSS AB9 PE7TN00 AB22 GPIO_15 Table 18 PES22H16 Signal Pin-Out (Part 4 of 4) Alternate Signal Functions Pin GPIO Alternate Pin GPIO Alternate AA19 GPIO_05 GPEN E6 GPIO_17 P12RSTN V17 GPIO_06 P1RSTN B2 GPIO_18 P13RSTN Y19 GPIO_07 P2RSTN C3 GPIO_19 P14RSTN W19 GPIO_08 P3RSTN D5 GPIO_20 P15RSTN Y20 GPIO_09 P4RSTN C2 GPIO_21 IOEXPINTN0 AB20 GPIO_10 P5RSTN D4 GPIO_23 IOEXPINTN2 V18 GPIO_11 P6RSTN D2 GPIO_24 IOEXPINTN3 AA21 GPIO_12 P7RSTN E5 GPIO_26 IOEXPINTN5 AB21 GPIO_13 P8RSTN D3 GPIO_27 IOEXPINTN6 AA22 GPIO_14 P9RSTN E4 GPIO_28 IOEXPINTN7 AB22 GPIO_15 P10RSTN E3 GPIO_31 IOEXPINTN10 A2 GPIO_16 P11RSTN — — — Table 19 PES22H16 Alternate Signal Functions 24 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Power Pins VDDCore VDDCore VDDCore VDDCore VDDIO VDDPE VDDPE VDDPEA VTTPE F10 J9 M8 P15 A1 E7 P6 E11 E9 F11 J11 M9 R8 C1 E16 P17 E12 E10 F12 J12 M11 R9 D19 E17 R5 L5 E13 F13 J14 M12 R11 F5 F7 R6 L18 E14 G8 J15 M14 R12 F6 F8 R17 M5 J5 G9 K8 M15 R14 F16 F9 T6 M18 J18 G11 K9 N8 R15 F17 F14 T17 V11 K5 G12 K11 N9 T8 G5 F15 T18 W11 K18 G14 K12 N11 T9 G17 G6 U7 N5 G15 K14 N12 T11 U6 H5 U8 N18 H8 K15 N14 T12 U16 H6 U9 P5 H9 L8 N15 T14 U17 H17 U14 P18 H11 L9 P8 T15 V5 H18 U15 V9 H12 L11 P9 U10 V6 J6 V8 V10 H14 L12 P11 U11 V16 J17 V14 V12 H15 L14 P12 U12 W15 K17 V15 V13 J8 L15 P14 U13 Y1 Y3 AA2 AA20 AB1 Table 20 PES22H16 Power Pins 25 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Ground Pins Vss Vss Vss Vss Vss Vss Vss A3 C17 H16 L16 P4 U4 Y10 A6 D6 H20 L17 P7 U5 Y11 A9 D11 J3 L20 P10 U18 Y12 A11 E1 J4 M3 P13 U20 Y13 A13 E2 J7 M4 P16 U21 Y14 A16 E8 J10 M6 P20 U22 Y15 A22 E15 J13 M7 P21 V3 Y16 B1 F3 J16 M10 P22 V4 Y17 B3 F19 J20 M13 R3 V7 Y21 B6 F20 K3 M16 R4 V19 Y22 B9 G3 K4 M17 R7 V20 AA1 B11 G4 K6 M20 R10 W1 AA4 B13 G7 K7 M21 R13 W2 AA7 B16 G10 K10 M22 R16 W3 AA10 C4 G13 K13 N1 R18 W7 AA12 C5 G16 K16 N2 R20 W8 AA15 C6 G18 K20 N3 T1 W9 AA18 C7 G20 K21 N4 T2 W10 AB2 C8 G21 K22 N6 T3 W12 AB4 C9 G22 L1 N7 T4 W13 AB7 C10 H1 L2 N10 T5 W14 AB10 C11 H2 L3 N13 T7 W20 AB12 C12 H3 L4 N16 T10 Y5 AB15 C13 H4 L6 N17 T13 Y6 AB18 C14 H7 L7 N19 T16 Y7 C15 H10 L10 N20 T20 Y8 C16 H13 L13 P3 U3 Y9 Table 21 PES22H16 Ground Pins 26 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Signals Listed Alphabetically Signal Name I/O Type Location Signal Category CCLKDS I D20 System CCLKUS I Y2 GPIO_00 I/O Y18 GPIO_01 I/O W16 GPIO_02 I/O AB19 GPIO_03 I/O W17 GPIO_04 I/O W18 GPIO_05 I/O AA19 GPIO_06 I/O V17 GPIO_07 I/O Y19 GPIO_08 I/O W19 GPIO_09 I/O Y20 GPIO_10 I/O AB20 GPIO_11 I/O V18 GPIO_12 I/O AA21 GPIO_13 I/O AB21 GPIO_14 I/O AA22 GPIO_15 I/O AB22 GPIO_16 I/O A2 GPIO_17 I/O E6 GPIO_18 I/O B2 GPIO_19 I/O C3 GPIO_20 I/O D5 GPIO_21 I/O C2 GPIO_23 I/O D4 GPIO_24 I/O D2 GPIO_26 I/O E5 GPIO_27 I/O D3 GPIO_28 I/O E4 GPIO_29 I/O D1 GPIO_30 I/O F4 GPIO_31 I/O E3 General Purpose Input/Output Table 22 PES22H16 Alphabetical Signal List (Part 1 of 5) 27 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Signal Name I/O Type Location Signal Category JTAG_TCK I C22 JTAG JTAG_TDI I B22 JTAG_TDO O B20 JTAG_TMS I A21 JTAG_TRST_N I E18 MSMBADDR_1 I D18 MSMBADDR_2 I C19 MSMBADDR_3 I B19 MSMBADDR_4 I C18 MSMBCLK I/O C20 MSMBDAT I/O A20 MSMBSMODE I A19 System PE0RN00 I T21 PCI Express PE0RN01 I R21 PE0RN02 I M19 PE0RN03 I J19 PE0RP00 I T22 PE0RP01 I R22 PE0RP02 I L19 PE0RP03 I K19 PE0TN00 O L22 PE0TN01 O J22 PE0TN02 O H21 PE0TN03 O F21 PE0TP00 O L21 PE0TP01 O J21 PE0TP02 O H22 PE0TP03 O F22 PE1RN00 I G19 PE1RP00 I H19 PE1TN00 O E22 PE1TP00 O E21 PE2RN00 I D17 PE2RN01 I D15 PE2RN02 I D13 PE2RN03 I B8 SMBus Table 22 PES22H16 Alphabetical Signal List (Part 2 of 5) 28 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Signal Name I/O Type Location Signal Category PE2RP00 I D16 PCI Express (Cont.) PE2RP01 I D14 PE2RP02 I D12 PE2RP03 I A8 PE2TN00 O B18 PE2TN01 O B17 PE2TN02 O A15 PE2TN03 O A14 PE2TP00 O A18 PE2TP01 O A17 PE2TP02 O B15 PE2TP03 O B14 PE3RN00 I B7 PE3RP00 I A7 PE3TN00 O A12 PE3TP00 O B12 PE4RN00 I U2 PE4RP00 I U1 PE4TN00 O P1 PE4TP00 O P2 PE5RN00 I V2 PE5RP00 I V1 PE5TN00 O R1 PE5TP00 O R2 PE6RN00 I AA5 PE6RP00 I AB5 PE6TN00 O AB8 PE6TP00 O AA8 PE7RN00 I AA6 PE7RP00 I AB6 PE7TN00 O AB9 PE7TP00 O AA9 PE8RN00 I D10 PE8RP00 I D9 PE8TN00 O A5 PE8TP00 O B5 Table 22 PES22H16 Alphabetical Signal List (Part 3 of 5) 29 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Signal Name I/O Type Location Signal Category PE9RN00 I D8 PCI Express (Cont.) PE9RP00 I D7 PE9TN00 O A4 PE9TP00 O B4 PE10RN00 I F2 PE10RP00 I F1 PE10TN00 O J1 PE10TP00 O J2 PE11RN00 I G2 PE11RP00 I G1 PE11TN00 O K1 PE11TP00 O K2 PE12RN00 I AA16 PE12RP00 I AB16 PE12TN00 O AB13 PE12TP00 O AA13 PE13RN00 I AA17 PE13RP00 I AB17 PE13TN00 O AB14 PE13TP00 O AA14 PE14RN00 I U19 PE14RP00 I T19 PE14TN00 O W21 PE14TP00 O W22 PE15RN00 I R19 PE15RP00 I P19 PE15TN00 O V21 PE15TP00 O V22 PEREFCLKN0 I N21 PEREFCLKN1 I A10 PEREFCLKN2 I M1 PEREFCLKN3 I AB11 PEREFCLKP0 I N22 PEREFCLKP1 I B10 PEREFCLKP2 I M2 PEREFCLKP3 I AA11 Table 22 PES22H16 Alphabetical Signal List (Part 4 of 5) 30 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Signal Name I/O Type Location Signal Category PERSTN I B21 System REFCLKM I W4 PCI Express RSTHALT I W5 System SSMBADDR_1 I D21 SMBus SSMBADDR_2 I E20 SSMBADDR_3 I D22 SSMBADDR_5 I F18 SSMBCLK I/O E19 SSMBDAT I/O C21 SWMODE_0 I Y4 SWMODE_1 I W6 SWMODE_2 I AB3 SWMODE_3 I AA3 System VDDCORE, VDDPEA, VDDIO, VDDPE, VTTPE See Table 20 for a listing of power pins. VSS See Table 21 for a listing of ground pins. Table 22 PES22H16 Alphabetical Signal List (Part 5 of 5) 31 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet PES22H16 Pinout — Top View 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 A A B B C C D D X X X X E E F F G G H H J X X J K X X K L L M M N X X N P X X P R R T T U U X X X X V V W W Y Y AA AA AB AB 1 2 3 4 5 VDDCore (Power) VDDI/O (Power) 6 7 8 X 9 10 11 12 13 14 15 16 17 18 19 20 21 22 VTTPE (Power) Vss (Ground) Signals VDDPE (Power) VDDPEA (Power) 32 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet www.IDT.com IDT PES22H16 Package Drawing — 484-Pin BL484/BR484 33 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet www.IDT.com IDT PES22H16 Package Drawing — Page Two 34 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Revision History April 7, 2008: Publication of Preliminary data sheet with 23x23mm FCBGA package option. April 16, 2008: In Table 16, Thermal Specifications, revised values for θJA, θJB, and θJC. November 17, 2008: In Table 15, Power Consumption, changed Watts value for typical PCIe Termination Supply from 0.9 to 0.8 and changed Total Typical Power from 5.018 to 4.92. October 21, 2009: Added Industrial temperature to ordering codes on page 36. 35 of 36 October 21, 2009 IDT 89HPES22H16 Data Sheet Ordering Information NN A AAA NNANN AA Product Family Operating Voltage Device Family Product Detail Device Revision AA Legend A = Alpha Character N = Numeric Character A Package Temp Range Blank I Commercial Temperature (0°C to +70°C Ambient) Industrial Temperature (-40° C to +85° C Ambient) BL BR 484-ball FCBGA 484-ball FCBGA, RoHS ZA ZA revision 22H16 22-lane, 16-port PES PCI Express Switch H 1.0V +/- 0.1V Core Voltage 89 Serial Switching Product Valid Combinations 89HPES22H16ZABL 484-ball FCBGA package, Commercial Temperature 89HPES22H16ZABR 484-ball RoHS FCBGA package, Commercial Temperature 89HPES22H16ZABLI 484-ball FCBGA package, Industrial Temperature 89HPES22H16ZABRI 484-ball RoHS FCBGA package, Industrial Temperature ® CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com 36 of 36 for Tech Support: email: ssdhelp@idt.com phone: 408-284-8208 October 21, 2009
89HPES22H16ZABRI 价格&库存

很抱歉,暂时无法提供与“89HPES22H16ZABRI”相匹配的价格&库存,您可以联系我们找货

免费人工找货