89HPES48H12
Data Sheet
48-Lane 12-Port PCI Express®
System Interconnect Switch
®
Device Overview
◆
The 89HPES48H12 is a member of the IDT PRECISE™ family of
PCI Express® switching solutions. The PES48H12 is a 48-lane, 12-port
system interconnect switch optimized for PCI Express packet switching
in high-performance applications, supporting multiple simultaneous
peer-to-peer traffic flows. Target applications include servers, storage,
communications, and embedded systems.
Features
◆
High Performance PCI Express Switch
– Twelve maximum switch ports
• Six main ports each of which consists of 8 SerDes
• Each x8 main port can further bifurcate to 2 x4-ports
– Forty-eight 2.5 Gbps embedded SerDes
• Supports pre-emphasis and receive equalization on per-port
basis
– Delivers 192 Gbps (24 GBps) of aggregate switching capacity
– Low-latency cut-through switch architecture
– Support for Max Payload Size up to 2048 bytes
– Supports two virtual channels and eight traffic classes
– PCI Express Base Specification Revision 1.1 compliant
◆
◆
Flexible Architecture with Numerous Configuration Options
– Port arbitration schemes utilizing round robin algorithms
– Virtual channels arbitration based on priority
– Automatic per port link width negotiation to x8, x4, x2 or x1
– Supports automatic lane reversal on all ports
– Supports automatic polarity inversion on all lanes
– Supports locked transactions, allowing use with legacy software
– Ability to load device configuration from serial EEPROM
– Ability to control device via SMBus
Highly Integrated Solution
– Requires no external components
– Incorporates on-chip internal memory for packet buffering and
queueing
– Integrates forty-eight 2.5 Gbps embedded full duplex SerDes,
8B/10B encoder/decoder (no separate transceivers needed)
Reliability, Availability, and Serviceability (RAS) Features
– Redundant upstream port failover capability
– Supports optional PCI Express end-to-end CRC checking
– Internal end-to-end parity protection on all TLPs ensures data
integrity even in systems that do not implement end-to-end
CRC (ECRC)
Block Diagram
x8/x4/x2/x1
x8/x4/x2/x1
x8/x4/x2/x1
SerDes
SerDes
SerDes
DL/Transaction Layer
DL/Transaction Layer
DL/Transaction Layer
Port
Arbitration
Route Table
12-Port Switch Core
Scheduler
Frame Buffer
DL/Transaction Layer
DL/Transaction Layer
DL/Transaction Layer
SerDes
SerDes
SerDes
x8/x4/x2/x1
x8/x4/x2/x1
x8/x4/x2/x1
48 PCI Express Lanes
Up to 6 x8 ports or 12 x4 Ports
Figure 1 Internal Block Diagram
IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.
1 of 48
© 2008 Integrated Device Technology, Inc.
October 7, 2008
DSC 6925
IDT 89HPES48H12 Data Sheet
– Supports optional PCI Express Advanced Error Reporting
– Supports PCI Express Hot-Plug
• Compatible with Hot-Plug I/O expanders used on PC
motherboards
– Supports Hot-Swap
◆ Power Management
– Supports PCI Power Management Interface specification,
Revision 1.1 (PCI-PM)
• Supports powerdown modes at the link level (L0, L0s, L1,
L2/L3 Ready and L3) and at the device level (D0, D3hot)
– Unused SerDes disabled
◆ Testability and Debug Features
– Built in SerDes Pseudo-Random Bit Stream (PRBS) generator
– Ability to read and write any internal register via the SMBus
– Ability to bypass link training and force any link into any mode
– Provides statistics and performance counters
◆ Thirty-two General Purpose Input/Output pins
– Each pin may be individually configured as an input or output
– Each pin may be individually configured as an interrupt input
– Some pins have selectable alternate functions
◆
Packaged in a 35mm x 35mm 1156-ball Flip Chip BGA with
1mm ball spacing
Product Description
The PES48H12 is based on a flexible and efficient layered architecture. The PCI Express layers consist of SerDes, Physical, Data Link and
Transaction layers. The PES48H12 can operate either as a store and
forward switch or a cut-through switch and is designed to switch memory
and I/O transactions. It supports eight Traffic Classes (TCs) and two
Virtual Channels (VCs) with sophisticated resource management to
enable efficient switching and I/O connectivity.
SMBus Interface
The PES48H12 contains two SMBus interfaces. The slave interface
provides full access to the configuration registers in the PES48H12,
allowing every configuration register in the device to be read or written
by an external agent. The master interface allows the default configuration register values of the PES48H12 to be overridden following a reset
with values programmed in an external serial EEPROM. The master
interface is also used by an external Hot-Plug I/O expander.
Six pins make up each of the two SMBus interfaces. These pins
consist of an SMBus clock pin, an SMBus data pin, and 4 SMBus
address pins. In the slave interface, these address pins allow the SMBus
address to which the device responds to be configured. In the master
interface, these address pins allow the SMBus address of the serial
configuration EEPROM from which data is loaded to be configured. The
SMBus address is set up on negation of PERSTN by sampling the
corresponding address pins. When the pins are sampled, the resulting
address is assigned as shown in Table 1.
Utilizing standard PCI Express interconnect, the PES48H12 provides
the most efficient system interconnect switching solution for applications
requiring high throughput, low latency, and simple board layout with a
minimum number of board layers. It provides 192 Gbps of aggregated,
full-duplex switching capacity through 48 integrated serial lanes, using
proven and robust IDT technology. Each lane provides 2.5 Gbps of
bandwidth in both directions and is fully compliant with PCI Express
Base specification 1.1.
Fully Bifurcated
Non-bifurcated
x8
x8
x8
3 2
1 0
x4
11 x8
10
4
5
6 7
8 9
x8
x8
2
x4
1
x4
0
11
x4
4
10
x4
5
9
x4
x4
3
x4
x4
6
x4
7
x4
8
x4
Figure 2 Port Configuration Examples
Note: The configurations in the above diagram show the maximum port widths. The PES48H12 can negotiate to narrower port widths —
x4, x2, or x1.
2 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Bit
Slave
SMBus
Address
Master
SMBus
Address
1
SSMBADDR[1]
MSMBADDR[1]
2
SSMBADDR[2]
MSMBADDR[2]
3
SSMBADDR[3]
MSMBADDR[3]
4
0
MSMBADDR[4]
5
SSMBADDR[5]
1
6
1
0
7
1
1
Table 1 Master and Slave SMBus Address Assignment
As shown in Figure 3, the master and slave SMBuses may be used in a unified or split configuration. In the unified configuration, shown in Figure
3(a), the master and slave SMBuses are tied together and the PES48H12 acts both as a SMBus master as well as a SMBus slave on this bus. This
requires that the SMBus master or processor that has access to PES48H12 registers supports SMBus arbitration. In some systems, this SMBus
master interface may be implemented using general purpose I/O pins on a processor or micro controller, and may not support SMBus arbitration. To
support these systems, the PES48H12 may be configured to operate in a split configuration as shown in Figure 3(b).
In the split configuration, the master and slave SMBuses operate as two independent buses and thus multi-master arbitration is never required.
The PES48H12 supports reading and writing of the serial EEPROM on the master SMBus via the slave SMBus, allowing in system programming of
the serial EEPROM.
PES48H12
Processor
SMBus
Master
Serial
EEPROM
...
Other
SMBus
Devices
PES48H12
SSMBCLK
SSMBDAT
SSMBCLK
SSMBDAT
MSMBCLK
MSMBDAT
MSMBCLK
MSMBDAT
Processor
SMBus
Master
...
Other
SMBus
Devices
Serial
EEPROM
(b) Split Configuration and Management Buses
(a) Unified Configuration and Management Bus
Figure 3 SMBus Interface Configuration Examples
Hot-Plug Interface
The PES48H12 supports PCI Express Hot-Plug on each downstream port (ports 1 through 11). To reduce the number of pins required on the
device, the PES48H12 utilizes an external I/O expander, such as that used on PC motherboards, connected to the SMBus master interface. Following
reset and configuration, whenever the state of a Hot-Plug output needs to be modified, the PES48H12 generates an SMBus transaction to the I/O
expander with the new value of all of the outputs. Whenever a Hot-Plug input changes, the I/O expander generates an interrupt which is received on
the IOEXPINTN input pin (alternate function of GPIO) of the PES48H12. In response to an I/O expander interrupt, the PES48H12 generates an
SMBus transaction to read the state of all of the Hot-Plug inputs from the I/O expander.
General Purpose Input/Output
The PES48H12 provides 32 General Purpose I/O (GPIO) pins that may be individually configured as general purpose inputs, general purpose
outputs, or alternate functions. Some GPIO pins are shared with other on-chip functions. These alternate functions may be enabled via software,
SMBus slave interface, or serial configuration EEPROM.
3 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Pin Description
The following tables lists the functions of the pins provided on the PES48H12. Some of the functions listed may be multiplexed onto the same pin.
The active polarity of a signal is defined using a suffix. Signals ending with an “N” are defined as being active, or asserted, when at a logic zero (low)
level. All other signals (including clocks, buses, and select lines) will be interpreted as being active, or asserted, when at a logic one (high) level. Differential signals end with a suffix “N” or “P.” The differential signal ending in “P” is the positive portion of the differential pair and the differential signal
ending in “N” is the negative portion of the differential pair.
Signal
Type
Name/Description
PE0RP[3:0]
PE0RN[3:0]
I
PCI Express Port 0 Serial Data Receive. Differential PCI Express receive pairs for
port 0. Port 0 is the upstream port.
PE0TP[3:0]
PE0TN[3:0]
O
PCI Express Port 0 Serial Data Transmit. Differential PCI Express transmit pairs for
port 0. Port 0 is the upstream port.
PE1RP[3:0]
PE1RN[3:0]
I
PCI Express Port 1 Serial Data Receive. Differential PCI Express receive pairs for
port 1. When port 0 is merged with port 1, these signals become port 0 receive pairs
for lanes 4 through 7.
PE1TP[3:0]
PE1TN[3:0]
O
PCI Express Port 1 Serial Data Transmit. Differential PCI Express transmit pairs for
port 1. When port 0 is merged with port 1, these signals become port 0 transmit pairs
for lanes 4 through 7.
PE2RP[3:0]
PE2RN[3:0]
I
PCI Express Port 2 Serial Data Receive. Differential PCI Express receive pairs for
port 2.
PE2TP[3:0]
PE2TN[3:0]
O
PCI Express Port 2 Serial Data Transmit. Differential PCI Express transmit pairs for
port 2.
PE3RP[3:0]
PE3RN[3:0]
I
PCI Express Port 3 Serial Data Receive. Differential PCI Express receive pairs for
port 3. When port 2 is merged with port 3, these signals become port 2 receive pairs
for lanes 4 through 7.
PE3TP[3:0]
PE3TN[3:0]
O
PCI Express Port 3 Serial Data Transmit. Differential PCI Express transmit pairs for
port 2. When port 2 is merged with port 3, these signals become port 2 transmit pairs
for lanes 4 through 7.
PE4RP[3:0]
PE4RN[3:0]
I
PCI Express Port 4 Serial Data Receive. Differential PCI Express receive pairs for
port 4.
PE4TP[3:0]
PE4TN[3:0]
O
PCI Express Port 4 Serial Data Transmit. Differential PCI Express transmit pairs for
port 4.
PE5RP[3:0]
PE5RN[3:0]
I
PCI Express Port 5 Serial Data Receive. Differential PCI Express receive pairs for
port 5. When port 4 is merged with port 5, these signals become port 4 receive pairs
for lanes 4 through 7.
PE5TP[3:0]
PE5TN[3:0]
O
PCI Express Port 5 Serial Data Transmit. Differential PCI Express transmit pairs for
port 5. When port 4 is merged with port 5, these signals become port 4 transmit pairs
for lanes 4 through 7.
PE6RP[3:0]
PE6RN[3:0]
I
PCI Express Port 6 Serial Data Receive. Differential PCI Express receive pairs for
port 6.
PE6TP[3:0]
PE6TN[3:0]
O
PCI Express Port 6 Serial Data Transmit. Differential PCI Express transmit pairs for
port 6.
PE7RP[3:0]
PE7RN[3:0]
I
PCI Express Port 7 Serial Data Receive. Differential PCI Express receive pairs for
port 7. When port 6 is merged with port 7, these signals become port 6 receive pairs
for lanes 4 through 7.
Table 2 PCI Express Interface Pins (Part 1 of 2)
4 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal
Type
Name/Description
PE7TP[3:0]
PE7TN[3:0]
O
PCI Express Port 7 Serial Data Transmit. Differential PCI Express transmit pairs for
port 7. When port 6 is merged with port 7, these signals become port 6 transmit pairs
for lanes 4 through 7.
PE8RP[3:0]
PE8RN[3:0]
I
PCI Express Port 8 Serial Data Receive. Differential PCI Express receive pairs for
port 8.
PE8TP[3:0]
PE8TN[3:0]
O
PCI Express Port 8 Serial Data Transmit. Differential PCI Express transmit pairs for
port 8.
PE9RP[3:0]
PE9RN[3:0]
I
PCI Express Port 9 Serial Data Receive. Differential PCI Express receive pairs for
port 9. When port 8 is merged with port 9, these signals become port 8 receive pairs
for lanes 4 through 7.
PE9TP[3:0]
PE9TN[3:0]
O
PCI Express Port 9 Serial Data Transmit. Differential PCI Express transmit pairs for
port 9. When port 8 is merged with port 9, these signals become port 8 transmit pairs
for lanes 4 through 7.
PE10RP[3:0]
PE10RN[3:0]
I
PCI Express Port 10 Serial Data Receive. Differential PCI Express receive pairs for
port 10.
PE10TP[3:0]
PE10TN[3:0]
O
PCI Express Port 10 Serial Data Transmit. Differential PCI Express transmit pairs
for port 10.
PE11RP[3:0]
PE11RN[3:0]
I
PCI Express Port 11 Serial Data Receive. Differential PCI Express receive pairs for
port 11. When port 10 is merged with port 11, these signals become port 10 receive
pairs for lanes 4 through 7.
PE11TP[3:0]
PE11TN[3:0]
O
PCI Express Port 11 Serial Data Transmit. Differential PCI Express transmit pairs
for port 11. When port 10 is merged with port 11, these signals become port 10 transmit pairs for lanes 4 through 7.
REFCLKM
I
PCI Express Reference Clock Mode Select. This signal selects the frequency of the
reference clock input.
0x0 - 100 MHz
0x1 - 125 MHz
REFCLKP[3:0]
REFCLKN[3:0]
I
PCI Express Reference Clock. Differential reference clock pair input. This clock is
used as the reference clock by on-chip PLLs to generate the clocks required for the
system logic and on-chip SerDes. The frequency of the differential reference clock is
determined by the REFCLKM signal.
Table 2 PCI Express Interface Pins (Part 2 of 2)
Signal
Type
Name/Description
MSMBADDR[4:1]
I
MSMBCLK
I/O
Master SMBus Clock. This bidirectional signal is used to synchronize transfers on the
master SMBus. It is active and generating the clock only when the EEPROM or I/O
Expanders are being accessed.
MSMBDAT
I/O
Master SMBus Data. This bidirectional signal is used for data on the master SMBus.
Master SMBus Address. These pins determine the SMBus address of the serial
EEPROM from which configuration information is loaded.
Table 3 SMBus Interface Pins (Part 1 of 2)
5 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal
Type
Name/Description
SSMBADDR[5,3:1]
I
Slave SMBus Address. These pins determine the SMBus address to which the slave
SMBus interface responds.
SSMBCLK
I/O
Slave SMBus Clock. This bidirectional signal is used to synchronize transfers on the
slave SMBus.
SSMBDAT
I/O
Slave SMBus Data. This bidirectional signal is used for data on the slave SMBus.
Table 3 SMBus Interface Pins (Part 2 of 2)
Signal
Type
Name/Description
GPIO[0]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[1]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[2]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[3]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[4]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[5]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: GPEN
Alternate function pin type: Output
Alternate function: General Purpose Event (GPE) output
GPIO[6]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P1RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 1
GPIO[7]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P2RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 2
GPIO[8]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P3RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 3
GPIO[9]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P4RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 4
Table 4 General Purpose I/O Pins (Part 1 of 3)
6 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal
Type
Name/Description
GPIO[10]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P5RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 5
GPIO[11]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P6RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 6
GPIO[12]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P7RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 7
GPIO[13]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P8RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 8
GPIO[14]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P9RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 9
GPIO[15]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P10RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 10
GPIO[16]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: P11RSTN
Alternate function pin type: Output
Alternate function: Reset output for downstream port 11
GPIO[17]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[18]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[19]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[20]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[21]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: IOEXPINTN0
Alternate function pin type: Input
Alternate function: SMBus I/O expander interrupt 0
Table 4 General Purpose I/O Pins (Part 2 of 3)
7 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal
Type
Name/Description
GPIO[22]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: IOEXPINTN1
Alternate function pin type: Input
Alternate function: SMBus I/O expander interrupt 1
GPIO[23]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: IOEXPINTN2
Alternate function pin type: Input
Alternate function: SMBus I/O expander interrupt 2
GPIO[24]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: IOEXPINTN3
Alternate function pin type: Input
Alternate function: SMBus I/O expander interrupt 3
GPIO[25]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: IOEXPINTN4
Alternate function pin type: Input
Alternate function: SMBus I/O expander interrupt 4
GPIO[26]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: IOEXPINTN5
Alternate function pin type: Input
Alternate function: SMBus I/O expander interrupt 5
GPIO[27]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[28]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[29]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[30]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
GPIO[31]
I/O
General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: IOEXPINTN10
Alternate function pin type: Input
Alternate function: SMBus I/O expander interrupt 10
Table 4 General Purpose I/O Pins (Part 3 of 3)
Signal
Type
Name/Description
CCLKDS
I
Common Clock Downstream. When the CCLKDS pin is asserted, it indicates that a
common clock is being used between the downstream device and the downstream
port.
CCLKUS
I
Common Clock Upstream. When the CCLKUS pin is asserted, it indicates that a
common clock is being used between the upstream device and the upstream port.
MSMBSMODE
I
Master SMBus Slow Mode. The assertion of this pin indicates that the master SMBus
should operate at 100 KHz instead of 400 KHz. This value may not be overridden.
Table 5 System Pins (Part 1 of 2)
8 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal
Type
Name/Description
P01MERGEN
I
Port 0 and 1 Merge. P01MERGEN is an active low signal. It is pulled low internally via
a 251K ohm resistor.
When this pin is low, port 0 is merged with port 1 to form a single x8 port. The Serdes
lanes associated with port 1 become lanes 4 through 7 of port 0. When this pin is
high, port 0 and port 1 are not merged, and each operates as a single x4 port.
P23MERGEN
I
Port 2 and 3 Merge. P23MERGEN is an active low signal. It is pulled low internally via
a 251K ohm resistor.
When this pin is low, port 2 is merged with port 3 to form a single x8 port. The Serdes
lanes associated with port 3 become lanes 4 through 7 of port 2. When this pin is
high, port 2 and port 3 are not merged, and each operates as a single x4 port.
P45MERGEN
I
Port 4 and 5 Merge. P45MERGEN is an active low signal. It is pulled low internally via
a 251K ohm resistor.
When this pin is low, port 4 is merged with port 5 to form a single x8 port. The Serdes
lanes associated with port 5 become lanes 4 through 7 of port 4. When this pin is
high, port 4 and port 5 are not merged, and each operates as a single x4 port.
P67MERGEN
I
Port 6 and 7 Merge. P67MERGEN is an active low signal. It is pulled low internally via
a 251K ohm resistor.
When this pin is low, port 6 is merged with port 7 to form a single x8 port. The Serdes
lanes associated with port 7 become lanes 4 through 7 of port 6. When this pin is
high, port 6 and port 7 are not merged, and each operates as a single x4 port.
P89MERGEN
I
Port 8 and 9 Merge. P89MERGEN is an active low signal. It is pulled low internally via
a 251K ohm resistor.
When this pin is low, port 8 is merged with port 9 to form a single x8 port. The Serdes
lanes associated with port 9 become lanes 4 through 7 of port 8. When this pin is
high, port 8 and port 9 are not merged, and each operates as a single x4 port.
P1011MERGEN
I
Port 10 and 11 Merge. P67MERGEN is an active low signal. It is pulled low internally
via a 251K ohm resistor.
When this pin is low, port 10 is merged with port 11 to form a single x8 port. The
Serdes lanes associated with port 11 become lanes 4 through 7 of port 10. When this
pin is high, port 10 and port 11 are not merged, and each operates as a single x4 port.
PERSTN
I
Fundamental Reset. Assertion of this signal resets all logic inside PES48H12 and initiates a PCI Express fundamental reset.
RSTHALT
I
Reset Halt. When this signal is asserted during a PCI Express fundamental reset,
PES48H12 executes the reset procedure and remains in a reset state with the Master
and Slave SMBuses active. This allows software to read and write registers internal to
the device before normal device operation begins. The device exits the reset state
when the RSTHALT bit is cleared in the PA_SWCTL register by an SMBus master.
SWMODE[3:0]
I
Switch Mode. These configuration pins determine the PES48H12 switch operating
mode.
0x0 - Normal switch mode
0x1 - Normal switch mode with Serial EEPROM initialization
0x2 through 0x7 - Reserved
0x8 - Normal switch mode with upstream port failover (port 0 selected as the
upstream port)
0x9 - Normal switch mode with upstream port failover (port 2 selected as the
upstream port)
0xA - Normal switch mode with Serial EEPROM initialization and upstream port
failover (port 0 selected as the upstream port)
0xB - Normal switch mode with Serial EEPROM initialization and upstream port
failover (port 2 selected as the upstream port)
0xC through 0xF - Reserved
Table 5 System Pins (Part 2 of 2)
9 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal
Type
Name/Description
JTAG_TCK
I
JTAG Clock. This is an input test clock used to clock the shifting of data into or out of
the boundary scan logic or JTAG Controller. JTAG_TCK is independent of the system
clock with a nominal 50% duty cycle.
JTAG_TDI
I
JTAG Data Input. This is the serial data input to the boundary scan logic or JTAG
Controller.
JTAG_TDO
O
JTAG Data Output. This is the serial data shifted out from the boundary scan logic or
JTAG Controller. When no data is being shifted out, this signal is tri-stated.
JTAG_TMS
I
JTAG Mode. The value on this signal controls the test mode select of the boundary
scan logic or JTAG Controller.
JTAG_TRST_N
I
JTAG Reset. This active low signal asynchronously resets the boundary scan logic
and JTAG TAP Controller. An external pull-up on the board is recommended to meet
the JTAG specification in cases where the tester can access this signal. However, for
systems running in functional mode, one of the following should occur:
1) actively drive this signal low with control logic
2) statically drive this signal low with an external pull-down on the board
Table 6 Test Pins
Signal
Type
Name/Description
VDDCORE
I
Core VDD. Power supply for core logic.
VDDIO
I
I/O VDD. LVTTL I/O buffer power supply.
VDDPE
I
PCI Express Digital Power. PCI Express digital power used by the digital
power of the SerDes.
VDDAPE
I
PCI Express Analog Power. PCI Express analog power used by the PLL
and bias generator.
VSS
I
Ground.
VTTPE
I
PCI Express Serial Data Transmit Termination Voltage. This pin allows
the driver termination voltage to be set, enabling the system designer to
control the Common Mode Voltage and output voltage swing of the corresponding PCI Serial Data Transmit differential pair.
Table 7 Power and Ground Pins
10 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Pin Characteristics
Note: Some input pads of the PES48H12 do not contain internal pull-ups or pull-downs. Unused inputs should be tied off to appropriate
levels. This is especially critical for unused control signal inputs which, if left floating, could adversely affect operation. Also, any input pin left
floating can cause a slight increase in power consumption.
Function
Pin Name
Type
Buffer
I/O
Type
PCI Express Interface
PE0RN[3:0]
I
CML
Serial Link
PE0RP[3:0]
I
PE0TN[3:0]
O
PE0TP[3:0]
O
PE1RN[3:0]
I
PE1RP[3:0]
I
PE1TN[3:0]
O
PE1TP[3:0]
O
PE2RN[3:0]
I
PE2RP[3:0]
I
PE2TN[3:0]
O
PE2TP[3:0]
O
PE3RN[3:0]
I
PE3RP[3:0]
I
PE3TN[3:0]
O
PE3TP[3:0]
O
PE4RN[3:0]
I
PE4RP[3:0]
I
PE4TN[3:0]
O
PE4TP[3:0]
O
PE5RN[3:0]
I
PE5RP[3:0]
I
PE5TN[3:0]
O
PE5TP[3:0]
O
PE6RN[3:0]
I
PE6RP[3:0]
I
PE6TN[3:0]
O
PE6TP[3:0]
O
PE7RN[3:0]
I
PE7RP[3:0]
I
PE7TN[3:0]
O
PE7TP[3:0]
O
Internal
Resistor
Notes
Table 8 Pin Characteristics (Part 1 of 3)
11 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Function
Pin Name
Type
Buffer
I/O
Type
PCI Express Interface
(cont.)
PE8RN[3:0]
I
CML
Serial Link
LVPECL/
CML
Diff. Clock
Input
SMBus Interface
PE8RP[3:0]
I
PE8TN[3:0]
O
PE8TP[3:0]
O
PE9RN[3:0]
I
PE9RP[3:0]
I
PE9TN[3:0]
O
PE9TP[3:0]
O
PE10RN[3:0]
I
PE10RP[3:0]
I
PE10TN[3:0]
O
PE10TP[3:0]
O
PE11RN[3:0]
I
PE11RP[3:0]
I
PE11TN[3:0]
O
PE11TP[3:0]
O
PEREFCLKN[3:0]
I
Internal
Resistor
Refer to Table 9
PEREFCLKP[3:0]
I
REFCLKM
I
LVTTL
Input
pull-down
MSMBADDR[4:1]
I
LVTTL
STI1
pull-up
MSMBCLK
I/O
STI
MSMBDAT
I/O
STI
SSMBADDR[5,3:1]
I
Notes
pull-up
SSMBCLK
I/O
STI
SSMBDAT
I/O
STI
General Purpose I/O
GPIO[31:0]
I/O
LVTTL
System Pins
CCLKDS
I
LVTTL
CCLKUS
I
pull-up
MSMBSMODE
I
pull-down
P01MERGEN
I
pull-down
P23MERGEN
I
pull-down
P45MERGEN
I
pull-down
P67MERGEN
I
pull-down
P89MERGEN
I
pull-down
P1011MERGEN
I
pull-down
PERSTN
I
RSTHALT
I
pull-down
SWMODE[3:0]
I
pull-down
pull-up
Input
pull-up
Table 8 Pin Characteristics (Part 2 of 3)
12 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Function
Pin Name
Type
Buffer
I/O
Type
Internal
Resistor
EJTAG / JTAG
JTAG_TCK
I
LVTTL
STI
pull-up
STI
pull-up
1.
JTAG_TDI
I
JTAG_TDO
O
JTAG_TMS
I
STI
pull-up
JTAG_TRST_N
I
STI
pull-up
Schmitt Trigger Input (STI).
Notes
External pull-down
Table 8 Pin Characteristics (Part 3 of 3)
13 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Logic Diagram — PES48H12
Reference
Clock
PEREFCLKP[3:0]
PEREFCLKN[3:0]
REFCLKM
4
4
PE0TP[0]
PE0TN[0]
PE0RP[0]
PE0RN[0]
PE0RP[3]
PE0RN[3]
PE0TP[3]
PE0TN[3]
PCI Express
Switch
SerDes Input
Port 1
PE1RP[0]
PE1RN[0]
PE1TP[0]
PE1TN[0]
PE1RP[3]
PE1RN[3]
PE1TP[3]
PE1TN[3]
PCI Express
Switch
SerDes Input
Port 2
PE2RP[0]
PE2RN[0]
PE2TP[0]
PE2TN[0]
PE2RP[3]
PE2RN[3]
PE2TP[3]
PE2TN[3]
PCI Express
Switch
SerDes Input
Port 3
PE3RP[0]
PE3RN[0]
PE3TP[0]
PE3TN[0]
PCI Express
Switch
SerDes Input
Port 11
PE11RP[0]
PE11RN[0]
...
...
...
...
...
...
...
...
PCI Express
Switch
SerDes Input
Port 0
PE3TP[3]
PE3TN[3]
PES48H12
...
PE11TP[0]
PE11TN[0]
...
Master
SMBus Interface
PE11RP[3]
PE11RN[3]
MSMBADDR[4:1]
MSMBCLK
MSMBDAT
PE11TP[3]
PE11TN[3]
4
4
32
System
Pins
MSMBSMODE
CCLKDS
CCLKUS
RSTHALT
PERSTN
SWMODE[3:0]
P01MERGEN
P23MERGEN
P45MERGEN
P67MERGEN
P89MERGEN
P1011MERGEN
PCI Express
Switch
SerDes Output
Port 1
PCI Express
Switch
SerDes Output
Port 2
PCI Express
Switch
SerDes Output
Port 3
...
...
PE3RP[3]
PE3RN[3]
PCI Express
Switch
SerDes Output
Port 0
SSMBADDR[5,3:1]
SSMBCLK
SSMBDAT
GPIO[31:0]
JTAG_TCK
JTAG_TDI
JTAG_TDO
JTAG_TMS
JTAG_TRST_N
4
VDDCORE
VDDIO
VDDPE
VDDAPE
VSS
PCI Express
Switch
SerDes Output
Port 11
Slave
SMBus Interface
General Purpose
I/O
JTAG Pins
Power/Ground
VTTPE
Figure 4 PES48H12 Logic Diagram
14 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
System Clock Parameters
Values based on systems running at recommended supply voltages and operating temperatures, as shown in Tables 13 and 14.
Parameter
Description
Min
Typical
Max
Unit
1251
MHz
60
%
0.2*RCUI
RCUI3
1.6
V
125
ps
PEREFCLK
RefclkFREQ
Input reference clock frequency range
100
RefclkDC2
Duty cycle of input clock
40
TR, TF
Rise/Fall time of input clocks
VSW
Differential input voltage swing4
Tjitter
Input clock jitter (cycle-to-cycle)
RT
Termination Resistor
50
0.6
110
Ohms
Table 9 Input Clock Requirements
1. The input clock frequency will be either 100 or 125 MHz depending on signal REFCLKM.
2. ClkIn must be AC coupled. Use 0.01 — 0.1 µF ceramic capacitors.
3.
RCUI (Reference Clock Unit Interval) refers to the reference clock period.
4. AC coupling required.
AC Timing Characteristics
Parameter
Description
Min1
Typical1
Max1
Units
399.88
400
400.12
ps
0.7
.9
PCIe Transmit
UI
Unit Interval
TTX-EYE
Minimum Tx Eye Width
TTX-EYE-MEDIAN-toMAX-JITTER
Maximum time between the jitter median and maximum
deviation from the median
TTX-RISE, TTX-FALL
D+ / D- Tx output rise/fall time
50
TTX- IDLE-MIN
Minimum time in idle
50
TTX-IDLE-SET-TO-
Maximum time to transition to a valid Idle after sending
an Idle ordered set
20
UI
IDLE
TTX-IDLE-TO-DIFF-
Maximum time to transition from valid idle to diff data
20
UI
500
1300
ps
400
400.12
ps
UI
0.15
90
UI
ps
UI
DATA
TTX-SKEW
Transmitter data skew between any 2 lanes
PCIe Receive
UI
Unit Interval
399.88
TRX-EYE (with jitter)
Minimum Receiver Eye Width (jitter tolerance)
TRX-EYE-MEDIUM TO
Max time between jitter median & max deviation
0.3
UI
Unexpected Idle Enter Detect Threshold Integration Time
10
ms
Lane to lane input skew
20
ns
0.4
UI
MAX JITTER
TRX-IDLE-DET-DIFFENTER TIME
TRX-SKEW
Table 10 PCIe AC Timing Characteristics
15 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
1.
Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.1
Signal
Symbol
Reference
Edge
Min
Tpw_13b2
None
50
Max Unit
Timing
Diagram
Reference
GPIO
GPIO[31:0]1
—
ns
See Figure 5.
Table 11 GPIO AC Timing Characteristics
1. GPIO signals must meet the setup and hold times if they are synchronous or the minimum pulse width if they
are asynchronous.
2.
The values for this symbol were determined by calculation, not by testing.
EXTCLK
Tpw_13b
GPIO (asynchronous input)
Figure 5 GPIO AC Timing Waveform
Signal
Symbol
Reference
Edge
Min
Max
Unit
Timing
Diagram
Reference
Tper_16a
none
50.0
—
ns
See Figure 6.
10.0
25.0
ns
2.4
—
ns
1.0
—
ns
—
20
ns
—
20
ns
25.0
—
ns
JTAG
JTAG_TCK
Thigh_16a,
Tlow_16a
JTAG_TMS1,
JTAG_TDI
JTAG_TDO
Tsu_16b
JTAG_TCK rising
Thld_16b
Tdo_16c
JTAG_TCK falling
Tdz_16c2
JTAG_TRST_N
Tpw_16d2
none
Table 12 JTAG AC Timing Characteristics
1.
The JTAG specification, IEEE 1149.1, recommends that JTAG_TMS should be held at 1 while the signal applied at JTAG_TRST_N changes from 0 to 1. Otherwise, a race may occur if JTAG_TRST_N is deasserted (going from low to high) on a rising edge of JTAG_TCK when
JTAG_TMS is low, because the TAP controller might go to either the Run-Test/Idle state or stay in the Test-Logic-Reset state.
2.
The values for this symbol were determined by calculation, not by testing.
16 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Tlow_16a
Tper_16a
Thigh_16a
JTAG_TCK
Thld_16b
Tsu_16b
JTAG_TDI
Thld_16b
Tsu_16b
JTAG_TMS
Tdo_16c
Tdz_16c
JTAG_TDO
Tpw_16d
JTAG_TRST_N
Figure 6 JTAG AC Timing Waveform
Recommended Operating Supply Voltages
Symbol
Parameter
Minimum
Typical
Maximum
Unit
VDDCORE
Internal logic supply
0.9
1.0
1.1
V
VDDI/O
I/O supply except for SerDes LVPECL/CML
3.0
3.3
3.6
V
VDDPE
PCI Express Digital Power
0.9
1.0
1.1
V
VDDAPE
PCI Express Analog Power
0.9
1.0
1.1
V
VTTPE
PCI Express Serial Data Transmit
Termination Voltage
1.425
1.5
1.575
V
VSS
Common ground
0
0
0
V
Table 13 PES48H12 Operating Voltages
Power-Up Sequence
This section describes the sequence in which various voltages must be applied to the part during power-up to ensure proper functionality. For the
PES48H12, the power-up sequence must be as follows:
1. VDDI/O — 3.3V
2. VDDCore, VDDPE, VDDAPE — 1.0V
3. VTTPE — 1.5V
When powering up, each voltage level must ramp and stabilize prior to applying the next voltage in the sequence to ensure internal latch-up issues
are avoided. There are no maximum time limitations in ramping to valid power levels. The power-down sequence must be in the reverse order of the
power-up sequence.
17 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Recommended Operating Temperature
Grade
Temperature
Commercial
0°C to +70°C Ambient
Industrial
-40°C to +85°C Ambient
Table 14 PES48H12 Operating Temperatures
Power Consumption
Typical power is measured under the following conditions: 25°C Ambient, 35% total link usage on all ports, typical voltages defined in Table 13
(and also listed below).
Maximum power is measured under the following conditions: 70°C Ambient, 85% total link usage on all ports, maximum voltages defined in
Table 13 (and also listed below).
Core Supply
PCIe Digital
Supply
PCIe Analog
Supply
PCIe Termination Supply
Typ
1.0V
Max
1.1V
Typ
1.0V
Max
1.1V
Typ
1.0V
Max
1.1V
Typ
1.5V
Max
1.575V
Typ
3.3V
Max
3.6V
mA
2254
2774
2268
2797
966
1186
1133
1397
4
4
Watts
2.26
3.05
2.27
3.08
0.97
1.31
1.7
2.2
0.01
0.01
Number of active
Lanes per Port
8/8/8/8/8/8
I/O Supply
Total
Typ
Power
Max
Power
7.21W
9.65W
Table 15 PES48H12 Power Consumption
18 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Thermal Considerations
This section describes thermal considerations for the PES48H12 (35mm2 FCBGA1156 package). The data in Table 16 below contains information
that is relevant to the thermal performance of the PES48H12 switch.
Symbol
Parameter
Value
TJ(max)
Junction Temperature
125
o
Maximum
70
o
TA(max)
θJA(effective)
θJB
Ambient Temperature
Effective Thermal Resistance, Junction-to-Ambient
Thermal Resistance, Junction-to-Board
Units
Conditions
C
C
Maximum for commercial-rated products
12.6
o
C/W
Zero air flow
6.4
o
1 m/S air flow
5.4
o
2 m/S air flow
2.1
o
C/W
C/W
C/W
θJC
Thermal Resistance, Junction-to-Case
0.1
oC/W
P
Power Dissipation of the Device
6.82
Watts
Maximum
Table 16 Thermal Specifications for PES48H12, 35x35mm FCBGA1156 Package
Note: It is important for the reliability of this device in any user environment that the junction temperature not exceed the TJ(max) value
specified in Table 16. Consequently, the effective junction to ambient thermal resistance (θJA) for the worst case scenario must be
maintained below the value determined by the formula:
θJA = (TJ(max) - TA(max))/P
Given that the values of TJ(max), TA(max), and P are known, the value of desired θJA becomes a known entity to the system designer. How to
achieve the desired θJA is left up to the board or system designer, but in general, it can be achieved by adding the effects of θJC (value
provided in Table 16), thermal resistance of the chosen adhesive (θCS), that of the heat sink (θSA), amount of airflow, and properties of the
circuit board (number of layers and size of the board). As a general guideline, this device will not need a heat sink if the board has 10 or
more layers AND the board size is larger than 4"x12" AND airflow in excess of 1 m/s is available. It is strongly recommended that users
perform their own thermal analysis for their own board and system design scenarios.
19 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
DC Electrical Characteristics
Values based on systems running at recommended supply voltages, as shown in Table 13.
Note: See Table 8, Pin Characteristics, for a complete I/O listing.
I/O Type
Serial Link
Parameter
Min1
Description
Typ1
Max1
Unit
800
1200
mV
-3
-4
dB
3.7
V
Conditions
PCIe Transmit
VTX-DIFFp-p
VTX-DE-RATIO
Differential peak-to-peak output voltage
De-emphasized differential output voltage
VTX-DC-CM
DC Common mode voltage
VTX-CM-ACP
RMS AC peak common mode output voltage
20
mV
VTX-CM-DC-
Abs delta of DC common mode voltage
between L0 and idle
100
mV
Abs delta of DC common mode voltage
between D+ and D-
25
mV
Electrical idle diff peak output
20
mV
Voltage change during receiver detection
600
mV
active-idle-delta
VTX-CM-DC-linedelta
VTX-Idle-DiffP
VTX-RCV-Detect
-0.1
1
RLTX-DIFF
Transmitter Differential Return loss
12
dB
RLTX-CM
Transmitter Common Mode Return loss
6
dB
ZTX-DEFF-DC
DC Differential TX impedance
80
100
120
Ω
ZOSE
Single ended TX Impedance
40
50
60
Ω
Transmitter Eye
Diagram
TX Eye Height (De-emphasized bits)
505
650
mV
Transmitter Eye
Diagram
TX Eye Height (Transition bits)
800
950
mV
VRX-DIFFp-p
Differential input voltage (peak-to-peak)
175
VRX-CM-AC
Receiver common-mode voltage for AC
coupling
RLRX-DIFF
Receiver Differential Return Loss
15
dB
RLRX-CM
Receiver Common Mode Return Loss
6
dB
Differential input impedance (DC)
80
100
120
Ω
Single-ended input impedance
40
50
60
Ω
200k
350k
PCIe Receive
ZRX-DIFF-DC
ZRX-COMM-DC
ZRX-COMM-HIGH- Powered down input common mode
impedance (DC)
Z-DC
VRX-IDLE-DET-
Electrical idle detect threshold
65
Input Capacitance
1.5
1200
mV
150
mV
Ω
175
mV
DIFFp-p
PCIe REFCLK
CIN
—
pF
Table 17 DC Electrical Characteristics (Part 1 of 2)
20 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
I/O Type
Min1
Typ1
Max1
Unit
Conditions
IOL
—
2.5
—
mA
VOL = 0.4v
IOH
—
-5.5
—
mA
VOH = 1.5V
IOL
—
12.0
—
mA
VOL = 0.4v
IOH
—
-20.0
—
mA
VOH = 1.5V
Parameter
Description
Other I/Os
LOW Drive
Output
High Drive
Output
Schmitt Trigger Input
(STI)
VIL
-0.3
—
0.8
V
—
VIH
2.0
—
VDDIO +
0.5
V
—
Input
VIL
-0.3
—
0.8
V
—
VIH
2.0
—
VDDIO +
0.5
V
—
CIN
—
—
8.5
pF
—
Inputs
—
—
+ 10
μA
VDDI/O (max)
I/OLEAK W/O
Pull-ups/downs
—
—
+ 10
μA
VDDI/O (max)
I/OLEAK WITH
Pull-ups/downs
—
—
+ 80
μA
VDDI/O (max)
Capacitance
Leakage
Table 17 DC Electrical Characteristics (Part 2 of 2)
1.
Minimum, Typical, and Maximum values meet the requirements under PCI Specification 1.0a.
21 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Package Pinout — 1156-BGA Signal Pinout for PES48H12
The following table lists the pin numbers and signal names for the PES48H12 device.
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
A1
VSS
B1
VSS
C1
GPIO_29
D1
GPIO_28
A2
VSS
B2
VDDIO
C2
GPIO_27
D2
GPIO_26
A3
GPIO_19
B3
GPIO_18
C3
GPIO_21
1
D3
VDDIO
A4
VDDIO
B4
GPIO_17
C4
GPIO_16
1
D4
GPIO_23
A5
VSS
B5
VSS
C5
VSS
D5
VSS
A6
PE9TP03
B6
PE9TN03
C6
VSS
D6
PE9RP03
A7
PE9TP02
B7
PE9TN02
C7
VSS
D7
PE9RP02
A8
VSS
B8
VSS
C8
VSS
D8
VSS
A9
PE9TP01
B9
PE9TN01
C9
VSS
D9
PE9RP01
A10
PE9TP00
B10
PE9TN00
C10
VSS
D10
PE9RP00
A11
VSS
B11
VSS
C11
VSS
D11
VSS
A12
PE8TP03
B12
PE8TN03
C12
VSS
D12
PE8RP03
A13
PE8TP02
B13
PE8TN02
C13
VSS
D13
PE8RP02
A14
VSS
B14
VSS
C14
VSS
D14
VSS
A15
PE8TP01
B15
PE8TN01
C15
VSS
D15
PE8RP01
A16
PE8TP00
B16
PE8TN00
C16
VSS
D16
PE8RP00
A17
VSS
B17
VSS
C17
VSS
D17
VSS
A18
PE3TP03
B18
PE3TN03
C18
VSS
D18
PE3RP03
A19
PE3TP02
B19
PE3TN02
C19
VSS
D19
PE3RP02
A20
VSS
B20
VSS
C20
VSS
D20
VSS
A21
PE3TP01
B21
PE3TN01
C21
VSS
D21
PE3RP01
A22
PE3TP00
B22
PE3TN00
C22
VSS
D22
PE3RP00
A23
VSS
B23
VSS
C23
VSS
D23
VSS
A24
PE2TP03
B24
PE2TN03
C24
VSS
D24
PE2RP03
A25
PE2TP02
B25
PE2TN02
C25
VSS
D25
PE2RP02
A26
VSS
B26
VSS
C26
VSS
D26
VSS
A27
PE2TP01
B27
PE2TN01
C27
VSS
D27
PE2RP01
A28
PE2TP00
B28
PE2TN00
C28
VSS
D28
PE2RP00
A29
VSS
B29
VSS
C29
VSS
D29
VSS
A30
VDDIO
B30
MSMBADDR_3
C30
MSMBADDR_4
D30
JTAG_TMS
A31
MSMBADDR_1
B31
MSMBADDR_2
C31
JTAG_TDI
D31
VDDIO
A32
MSMBSMODE
B32
PERSTN
C32
JTAG_TRST_N
D32
SSMBADDR_5
A33
VSS
B33
VDDIO
C33
SSMBADDR_2
D33
SSMBADDR_3
A34
VSS
B34
VSS
C34
SSMBADDR_1
D34
VDDIO
Alt
1
1
Table 18 PES48H12 1156-pin Signal Pin-Out (Part 1 of 9)
22 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
E1
VDDIO
F1
VSS
G1
PE10TP00
H1
PE10TP01
E2
GPIO_30
F2
VSS
G2
PE10TN00
H2
PE10TN01
E3
GPIO_31
1
F3
VSS
G3
VSS
H3
VSS
E4
GPIO_24
1
F4
VSS
G4
PE10RP00
H4
PE10RP01
E5
VSS
F5
VSS
G5
PE10RN00
H5
PE10RN01
E6
PE9RN03
F6
VSS
G6
VSS
H6
VSS
E7
PE9RN02
F7
VSS
G7
VSS
H7
VSS
E8
VSS
F8
VSS
G8
VSS
H8
GPIO_20
E9
PE9RN01
F9
VSS
G9
VSS
H9
VDDIO
E10
PE9RN00
F10
VSS
G10
VSS
H10
VSS
E11
VSS
F11
VSS
G11
VSS
H11
VSS
E12
PE8RN03
F12
VSS
G12
VSS
H12
VSS
E13
PE8RN02
F13
VSS
G13
VSS
H13
VTTPE
E14
VSS
F14
VSS
G14
VSS
H14
VSS
E15
PE8RN01
F15
VSS
G15
VSS
H15
VDDAPE
E16
PE8RN00
F16
VSS
G16
VSS
H16
VSS
E17
VSS
F17
VSS
G17
PEREFCLKP1
H17
VSS
E18
PE3RN03
F18
VSS
G18
PEREFCLKN1
H18
VSS
E19
PE3RN02
F19
VSS
G19
VSS
H19
VSS
E20
VSS
F20
VSS
G20
VSS
H20
VDDAPE
E21
PE3RN01
F21
VSS
G21
VSS
H21
VSS
E22
PE3RN00
F22
VSS
G22
VSS
H22
VTTPE
E23
VSS
F23
VSS
G23
VSS
H23
VSS
E24
PE2RN03
F24
VSS
G24
VSS
H24
VSS
E25
PE2RN02
F25
VSS
G25
VSS
H25
VSS
E26
VSS
F26
VSS
G26
VSS
H26
MSMBDAT
E27
PE2RN01
F27
VSS
G27
MSMBCLK
H27
VDDIO
E28
PE2RN00
F28
VSS
G28
VSS
H28
SSMBCLK
E29
VSS
F29
VSS
G29
VSS
H29
VSS
E30
VSS
F30
PE1RN03
G30
PE1RN02
H30
VSS
E31
VSS
F31
PE1RP03
G31
PE1RP02
H31
VSS
E32
VSS
F32
VSS
G32
VSS
H32
VSS
E33
VSS
F33
PE1TN03
G33
PE1TN02
H33
VSS
E34
VSS
F34
PE1TP03
G34
PE1TP02
H34
VSS
Alt
Table 18 PES48H12 1156-pin Signal Pin-Out (Part 2 of 9)
23 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
J1
VSS
K1
PE10TP02
L1
PE10TP03
M1
VSS
J2
VSS
K2
PE10TN02
L2
PE10TN03
M2
VSS
J3
VSS
K3
VSS
L3
VSS
M3
VSS
J4
VSS
K4
PE10RP02
L4
PE10RP03
M4
VSS
J5
VSS
K5
PE10RN02
L5
PE10RN03
M5
VSS
J6
VSS
K6
VSS
L6
VSS
M6
VSS
J7
VSS
K7
VSS
L7
VSS
M7
VSS
J8
VSS
K8
VSS
L8
VSS
M8
VSS
J9
GPIO_25
K9
VDDIO
L9
VSS
M9
VSS
J10
VSS
K10
GPIO_22
L10
VSS
M10
VSS
J11
VSS
K11
VSS
L11
VSS
M11
VSS
J12
VSS
K12
VSS
L12
VSS
M12
VSS
J13
VSS
K13
VTTPE
L13
VDDPE
M13
VDDPE
J14
VDDPE
K14
VSS
L14
VDDPE
M14
VSS
J15
VSS
K15
VDDAPE
L15
VDDPE
M15
VDDPE
J16
VSS
K16
VSS
L16
VSS
M16
VSS
J17
VTTPE
K17
VTTPE
L17
VDDPE
M17
VDDPE
J18
VTTPE
K18
VTTPE
L18
VDDPE
M18
VDDPE
J19
VSS
K19
VSS
L19
VSS
M19
VSS
J20
VSS
K20
VDDAPE
L20
VDDPE
M20
VDDPE
J21
VDDPE
K21
VSS
L21
VDDPE
M21
VSS
J22
VSS
K22
VTTPE
L22
VDDPE
M22
VDDPE
J23
VSS
K23
VSS
L23
VSS
M23
VSS
J24
VSS
K24
VSS
L24
VSS
M24
VSS
J25
JTAG_TDO
K25
CCLKDS
L25
VSS
M25
VSS
J26
VDDIO
K26
JTAG_TCK
L26
VSS
M26
VSS
J27
SSMBDAT
K27
VSS
L27
VSS
M27
VSS
J28
VSS
K28
VSS
L28
VSS
M28
VSS
J29
VSS
K29
VSS
L29
VSS
M29
VSS
J30
PE1RN01
K30
PE1RN00
L30
VSS
M30
PE0RN03
J31
PE1RP01
K31
PE1RP00
L31
VSS
M31
PE0RP03
J32
VSS
K32
VSS
L32
VSS
M32
VSS
J33
PE1TN01
K33
PE1TN00
L33
VSS
M33
PE0TN03
J34
PE1TP01
K34
PE1TP00
L34
VSS
M34
PE0TP03
1
1
Alt
Table 18 PES48H12 1156-pin Signal Pin-Out (Part 3 of 9)
24 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
N1
PE11TP00
P1
PE11TP01
R1
VSS
T1
PE11TP02
N2
PE11TN00
P2
PE11TN01
R2
VSS
T2
PE11TN02
N3
VSS
P3
VSS
R3
VSS
T3
VSS
N4
PE11RP00
P4
PE11RP01
R4
VSS
T4
PE11RP02
N5
PE11RN00
P5
PE11RN01
R5
VSS
T5
PE11RN02
N6
VSS
P6
VSS
R6
VSS
T6
VSS
N7
VSS
P7
VSS
R7
VSS
T7
VSS
N8
VTTPE
P8
VSS
R8
VDDAPE
T8
VSS
N9
VSS
P9
VDDPE
R9
VSS
T9
VSS
N10
VTTPE
P10
VSS
R10
VDDAPE
T10
VSS
N11
VDDPE
P11
VDDPE
R11
VDDPE
T11
VSS
N12
VDDPE
P12
VSS
R12
VDDPE
T12
VSS
N13
VDDCORE
P13
VDDCORE
R13
VDDCORE
T13
VSS
N14
VDDCORE
P14
VSS
R14
VDDCORE
T14
VSS
N15
VDDCORE
P15
VDDCORE
R15
VSS
T15
VDDCORE
N16
VSS
P16
VSS
R16
VDDCORE
T16
VSS
N17
VDDCORE
P17
VDDCORE
R17
VSS
T17
VDDCORE
N18
VSS
P18
VSS
R18
VDDCORE
T18
VSS
N19
VDDCORE
P19
VDDCORE
R19
VSS
T19
VDDCORE
N20
VDDCORE
P20
VSS
R20
VDDCORE
T20
VSS
N21
VDDCORE
P21
VDDCORE
R21
VSS
T21
VDDCORE
N22
VDDCORE
P22
VDDCORE
R22
VDDCORE
T22
VDDCORE
N23
VDDPE
P23
VSS
R23
VDDPE
T23
VSS
N24
VDDPE
P24
VDDPE
R24
VDDPE
T24
VSS
N25
VTTPE
P25
VSS
R25
VDDAPE
T25
VSS
N26
VSS
P26
VDDPE
R26
VSS
T26
VSS
N27
VTTPE
P27
VSS
R27
VDDAPE
T27
VSS
N28
VSS
P28
VSS
R28
VSS
T28
VSS
N29
VSS
P29
VSS
R29
VSS
T29
VSS
N30
PE0RN02
P30
VSS
R30
PE0RN01
T30
PE0RN00
N31
PE0RP02
P31
VSS
R31
PE0RP01
T31
PE0RP00
N32
VSS
P32
VSS
R32
VSS
T32
VSS
N33
PE0TN02
P33
VSS
R33
PE0TN01
T33
PE0TN00
N34
PE0TP02
P34
VSS
R34
PE0TP01
T34
PE0TP00
Alt
Table 18 PES48H12 1156-pin Signal Pin-Out (Part 4 of 9)
25 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
U1
PE11TP03
V1
VSS
W1
PE4TP00
Y1
PE4TP01
U2
PE11TN03
V2
VSS
W2
PE4TN00
Y2
PE4TN01
U3
VSS
V3
VSS
W3
VSS
Y3
VSS
U4
PE11RP03
V4
VSS
W4
PE4RP00
Y4
PE4RP01
U5
PE11RN03
V5
VSS
W5
PE4RN00
Y5
PE4RN01
U6
VSS
V6
VSS
W6
VSS
Y6
VSS
U7
PEREFCLKN2
V7
PEREFCLKP2
W7
VSS
Y7
VSS
U8
VSS
V8
VSS
W8
VSS
Y8
VDDAPE
U9
VTTPE
V9
VTTPE
W9
VSS
Y9
VSS
U10
VTTPE
V10
VTTPE
W10
VSS
Y10
VDDAPE
U11
VDDPE
V11
VDDPE
W11
VSS
Y11
VDDPE
U12
VDDPE
V12
VDDPE
W12
VSS
Y12
VDDPE
U13
VDDCORE
V13
VSS
W13
VDDCORE
Y13
VDDCORE
U14
VDDCORE
V14
VSS
W14
VDDCORE
Y14
VSS
U15
VSS
V15
VDDCORE
W15
VSS
Y15
VDDCORE
U16
VDDCORE
V16
VSS
W16
VDDCORE
Y16
VSS
U17
VSS
V17
VDDCORE
W17
VSS
Y17
VDDCORE
U18
VDDCORE
V18
VSS
W18
VDDCORE
Y18
VSS
U19
VSS
V19
VDDCORE
W19
VSS
Y19
VDDCORE
U20
VDDCORE
V20
VSS
W20
VDDCORE
Y20
VSS
U21
VSS
V21
VDDCORE
W21
VSS
Y21
VDDCORE
U22
VSS
V22
VDDCORE
W22
VSS
Y22
VDDCORE
U23
VDDPE
V23
VDDPE
W23
VSS
Y23
VDDPE
U24
VDDPE
V24
VDDPE
W24
VSS
Y24
VDDPE
U25
VTTPE
V25
VTTPE
W25
VSS
Y25
VDDAPE
U26
VTTPE
V26
VTTPE
W26
VSS
Y26
VSS
U27
VSS
V27
VSS
W27
VSS
Y27
VDDAPE
U28
PEREFCLKP0
V28
PEREFCLKN0
W28
VSS
Y28
VSS
U29
VSS
V29
VSS
W29
VSS
Y29
VSS
U30
VSS
V30
NC
W30
NC
Y30
VSS
U31
VSS
V31
NC
W31
NC
Y31
VSS
U32
VSS
V32
VSS
W32
VSS
Y32
VSS
U33
VSS
V33
NC
W33
NC
Y33
VSS
U34
VSS
V34
NC
W34
NC
Y34
VSS
Alt
Table 18 PES48H12 1156-pin Signal Pin-Out (Part 5 of 9)
26 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
AA1
VSS
AB1
PE4TP02
AC1
PE4TP03
AD1
VSS
AA2
VSS
AB2
PE4TN02
AC2
PE4TN03
AD2
VSS
AA3
VSS
AB3
VSS
AC3
VSS
AD3
VSS
AA4
VSS
AB4
PE4RP02
AC4
PE4RP03
AD4
VSS
AA5
VSS
AB5
PE4RN02
AC5
PE4RN03
AD5
VSS
AA6
VSS
AB6
VSS
AC6
VSS
AD6
VSS
AA7
VSS
AB7
VSS
AC7
VSS
AD7
VSS
AA8
VSS
AB8
VTTPE
AC8
VSS
AD8
VSS
AA9
VDDPE
AB9
VSS
AC9
VSS
AD9
VSS
AA10
VSS
AB10
VTTPE
AC10
VSS
AD10
VSS
AA11
VDDPE
AB11
VDDPE
AC11
VSS
AD11
VSS
AA12
VSS
AB12
VDDPE
AC12
VSS
AD12
VSS
AA13
VDDCORE
AB13
VDDCORE
AC13
VDDPE
AD13
VDDPE
AA14
VDDCORE
AB14
VDDCORE
AC14
VSS
AD14
VDDPE
AA15
VSS
AB15
VDDCORE
AC15
VDDPE
AD15
VDDPE
AA16
VDDCORE
AB16
VDDCORE
AC16
VSS
AD16
VSS
AA17
VSS
AB17
VSS
AC17
VDDPE
AD17
VDDPE
AA18
VDDCORE
AB18
VDDCORE
AC18
VDDPE
AD18
VDDPE
AA19
VSS
AB19
VSS
AC19
VSS
AD19
VSS
AA20
VDDCORE
AB20
VDDCORE
AC20
VDDPE
AD20
VDDPE
AA21
VSS
AB21
VDDCORE
AC21
VSS
AD21
VDDPE
AA22
VDDCORE
AB22
VDDCORE
AC22
VDDPE
AD22
VDDPE
AA23
VSS
AB23
VDDPE
AC23
VSS
AD23
VSS
AA24
VDDPE
AB24
VDDPE
AC24
VSS
AD24
VSS
AA25
VSS
AB25
VTTPE
AC25
VSS
AD25
VSS
AA26
VDDPE
AB26
VSS
AC26
VSS
AD26
VSS
AA27
VSS
AB27
VTTPE
AC27
VSS
AD27
VSS
AA28
VSS
AB28
VSS
AC28
VSS
AD28
VSS
AA29
VSS
AB29
VSS
AC29
VSS
AD29
VSS
AA30
NC
AB30
NC
AC30
VSS
AD30
NC
AA31
NC
AB31
NC
AC31
VSS
AD31
NC
AA32
VSS
AB32
VSS
AC32
VSS
AD32
VSS
AA33
NC
AB33
NC
AC33
VSS
AD33
NC
AA34
NC
AB34
NC
AC34
VSS
AD34
NC
Alt
Table 18 PES48H12 1156-pin Signal Pin-Out (Part 6 of 9)
27 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
AE1
PE5TP00
AF1
PE5TP01
AG1
VSS
AH1
PE5TP02
AE2
PE5TN00
AF2
PE5TN01
AG2
VSS
AH2
PE5TN02
AE3
VSS
AF3
VSS
AG3
VSS
AH3
VSS
AE4
PE5RP00
AF4
PE5RP01
AG4
VSS
AH4
PE5RP02
AE5
PE5RN00
AF5
PE5RN01
AG5
VSS
AH5
PE5RN02
AE6
VSS
AF6
VSS
AG6
VSS
AH6
VSS
AE7
VSS
AF7
VSS
AG7
CCLKUS
AH7
VSS
AE8
VSS
AF8
VSS
AG8
VDDIO
AH8
REFCLKM
AE9
VDDIO
AF9
VDDIO
AG9
VDDIO
AH9
VSS
AE10
VSS
AF10
VDDIO
AG10
VSS
AH10
VSS
AE11
VSS
AF11
VSS
AG11
VSS
AH11
VSS
AE12
VSS
AF12
VSS
AG12
VSS
AH12
VSS
AE13
VTTPE
AF13
VSS
AG13
VTTPE
AH13
VSS
AE14
VSS
AF14
VDDPE
AG14
VSS
AH14
VSS
AE15
VDDAPE
AF15
VSS
AG15
VDDAPE
AH15
VSS
AE16
VSS
AF16
VSS
AG16
VSS
AH16
VSS
AE17
VTTPE
AF17
VTTPE
AG17
VSS
AH17
PEREFCLKN3
AE18
VTTPE
AF18
VTTPE
AG18
VSS
AH18
PEREFCLKP3
AE19
VSS
AF19
VSS
AG19
VSS
AH19
VSS
AE20
VDDAPE
AF20
VSS
AG20
VDDAPE
AH20
VSS
AE21
VSS
AF21
VDDPE
AG21
VSS
AH21
VSS
AE22
VTTPE
AF22
VSS
AG22
VTTPE
AH22
VSS
AE23
VSS
AF23
VSS
AG23
VSS
AH23
VSS
AE24
VSS
AF24
VSS
AG24
VSS
AH24
VSS
AE25
GPIO_06
AF25
VSS
AG25
VSS
AH25
VSS
AE26
VDDIO
AF26
GPIO_09
AG26
VDDIO
AH26
VSS
AE27
VSS
AF27
VSS
AG27
GPIO_04
AH27
VSS
AE28
VSS
AF28
VSS
AG28
VSS
AH28
VSS
AE29
VSS
AF29
VSS
AG29
VSS
AH29
VSS
AE30
NC
AF30
VSS
AG30
NC
AH30
NC
AE31
NC
AF31
VSS
AG31
NC
AH31
NC
AE32
VSS
AF32
VSS
AG32
VSS
AH32
VSS
AE33
NC
AF33
VSS
AG33
NC
AH33
NC
AE34
NC
AF34
VSS
AG34
NC
AH34
NC
1
1
Alt
Table 18 PES48H12 1156-pin Signal Pin-Out (Part 7 of 9)
28 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
AJ1
PE5TP03
AK1
VSS
AL1
VDDIO
AM1
P23MERGEN
AJ2
PE5TN03
AK2
VSS
AL2
P01MERGEN
AM2
P67MERGEN
AJ3
VSS
AK3
VSS
AL3
P45MERGEN
AM3
VSS
AJ4
PE5RP03
AK4
VSS
AL4
VDDIO
AM4
P1011MERGEN
AJ5
PE5RN03
AK5
VSS
AL5
P89MERGEN
AM5
SWMODE_3
AJ6
VSS
AK6
VSS
AL6
VSS
AM6
VSS
AJ7
VSS
AK7
PE6RN00
AL7
PE06RP00
AM7
VSS
AJ8
VSS
AK8
PE6RN01
AL8
PE06RP01
AM8
VSS
AJ9
VSS
AK9
VSS
AL9
VSS
AM9
VSS
AJ10
VSS
AK10
PE6RN02
AL10
PE6RP02
AM10 VSS
AJ11
VSS
AK11
PE6RN03
AL11
PE6RP03
AM11 VSS
AJ12
VSS
AK12
VSS
AL12
VSS
AM12 VSS
AJ13
VSS
AK13
PE7RN00
AL13
PE7RP00
AM13 VSS
AJ14
VSS
AK14
PE7RN01
AL14
PE7RP01
AM14 VSS
AJ15
VSS
AK15
VSS
AL15
VSS
AM15 VSS
AJ16
VSS
AK16
PE7RN02
AL16
PE7RP02
AM16 VSS
AJ17
VSS
AK17
PE7RN03
AL17
PE7RP03
AM17 VSS
AJ18
VSS
AK18
VSS
AL18
VSS
AM18 VSS
AJ19
VSS
AK19
NC
AL19
NC
AM19 VSS
AJ20
VSS
AK20
NC
AL20
NC
AM20 VSS
AJ21
VSS
AK21
VSS
AL21
VSS
AM21 VSS
AJ22
VSS
AK22
NC
AL22
NC
AM22 VSS
AJ23
VSS
AK23
NC
AL23
NC
AM23 VSS
AJ24
VSS
AK24
VSS
AL24
VSS
AM24 VSS
AJ25
VSS
AK25
NC
AL25
NC
AM25 VSS
AJ26
VSS
AK26
NC
AL26
NC
AM26 VSS
AJ27
VSS
AK27
VSS
AL27
VSS
AM27 VSS
AJ28
VSS
AK28
NC
AL28
NC
AM28 VSS
AJ29
VSS
AK29
NC
AL29
NC
AM29 VSS
AJ30
VSS
AK30
VSS
AL30
VSS
AM30 VSS
AJ31
VSS
AK31
GPIO_08
1
AL31
GPIO_07
AJ32
VSS
AK32
GPIO_15
1
AL32
VDDIO
AJ33
VSS
AK33
GPIO_14
1
AL33
GPIO_10
AJ34
VSS
AK34
VDDIO
AL34
GPIO_12
1
Alt
AM31 GPIO_00
AM32 GPIO_05
1
1
AM33 GPIO_11
1
1
AM34 GPIO_13
1
Table 18 PES48H12 1156-pin Signal Pin-Out (Part 8 of 9)
29 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
Alt
Pin
Function
AN1
VSS
AN18
VSS
AP1
VSS
AP18
VSS
AN2
VDDIO
AN19
NC
AP2
VSS
AP19
NC
AN3
VSS
AN20
NC
AP3
RSTHALT
AP20
NC
AN4
SWMODE_0
AN21
VSS
AP4
SWMODE_1
AP21
VSS
AN5
SWMODE_2
AN22
NC
AP5
VDDIO
AP22
NC
AN6
VSS
AN23
NC
AP6
VSS
AP23
NC
AN7
PE6TN00
AN24
VSS
AP7
PE6TP00
AP24
VSS
AN8
PE6TN01
AN25
NC
AP8
PE6TP01
AP25
NC
AN9
VSS
AN26
NC
AP9
VSS
AP26
NC
AN10
PE6TN02
AN27
VSS
AP10
PE6TP02
AP27
VSS
AN11
PE6TN03
AN28
NC
AP11
PE6TP03
AP28
NC
AN12
VSS
AN29
NC
AP12
VSS
AP29
NC
AN13
PE7TN00
AN30
VSS
AP13
PE7TP00
AP30
VSS
AN14
PE7TN01
AN31
GPIO_01
AP14
PE7TP01
AP31
VDDIO
AN15
VSS
AN32
GPIO_02
AP15
VSS
AP32
GPIO_03
AN16
PE7TN02
AN33
VDDIO
AP16
PE7TP02
AP33
VSS
AN17
PE7TN03
AN34
VSS
AP17
PE7TP03
AP34
VSS
Alt
Table 18 PES48H12 1156-pin Signal Pin-Out (Part 9 of 9)
Alternate Signal Functions
Pin
GPIO
Alternate
Pin
GPIO
Alternate
AM32
GPIO_05
GPEN
AK32
GPIO_15
P10RSTN
AE25
GPIO_06
P1RSTN
C4
GPIO_16
P11RSTN
AL31
GPIO_07
P2RSTN
C3
GPIO_21
IOEXPINTN0
AK31
GPIO_08
P3RSTN
K10
GPIO_22
IOEXPINTN1
AF26
GPIO_09
P4RSTN
D4
GPIO_23
IOEXPINTN2
AL33
GPIO_10
P5RSTN
E4
GPIO_24
IOEXPINTN3
AM33
GPIO_11
P6RSTN
J9
GPIO_25
IOEXPINTN4
AL34
GPIO_12
P7RSTN
D2
GPIO_26
IOEXPINTN5
AM34
GPIO_13
P8RSTN
E3
GPIO_31
IOEXPINTN10
AK33
GPIO_14
P9RSTN
Table 19 PES48H12 Alternate Signal Functions
30 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Power Pins
VDDCore
VDDCore
VDDIO
VDDPE
VDDPE
VDDAPE
VTTPE
N13
V19
A4
J14
V11
H15
H13
N14
V21
A30
J21
V12
H20
H22
N15
V22
B2
L13
V23
K15
J17
N17
W13
B33
L14
V24
K20
J18
N19
W14
D3
L15
Y11
R8
K13
N20
W16
D31
L17
Y12
R10
K17
N21
W18
D34
L18
Y23
R25
K18
N22
W20
E1
L20
Y24
R27
K22
P13
Y13
H9
L21
AA9
Y8
N8
P15
Y15
H27
L22
AA11
Y10
N10
P17
Y17
J26
M13
AA24
Y25
N25
P19
Y19
K9
M15
AA26
Y27
N27
P21
Y21
AE9
M17
AB11
AE15
U9
P22
Y22
AE26
M18
AB12
AE20
U10
R13
AA13
AF9
M20
AB23
AG15
U25
R14
AA14
AF10
M22
AB24
AG20
U26
R16
AA16
AG8
N11
AC13
V9
R18
AA18
AG9
N12
AC15
V10
R20
AA20
AG26
N23
AC17
V25
R22
AA22
AK34
N24
AC18
V26
T15
AB13
AL1
P9
AC20
AB8
T17
AB14
AL4
P11
AC22
AB10
T19
AB15
AL32
P24
AD13
AB25
T21
AB16
AN2
P26
AD14
AB27
T22
AB18
AN33
R11
AD15
AE13
U13
AB20
AP5
R12
AD17
AE17
U14
AB21
AP31
R23
AD18
AE18
U16
AB22
R24
AD20
AE22
U18
U11
AD21
AF17
U20
U12
AD22
AF18
V15
U23
AF14
AG13
V17
U24
AF21
AG22
Table 20 PES48H12 Power Pins
31 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Ground Pins
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
A1
C16
E33
G8
H29
K16
M5
P12
A2
C17
E34
G9
H30
K19
M6
P14
A5
C18
F1
G10
H31
K21
M7
P16
A8
C19
F2
G11
H32
K23
M8
P18
A11
C20
F3
G12
H33
K24
M9
P20
A14
C21
F4
G13
H34
K27
M10
P23
A17
C22
F5
G14
J1
K28
M11
P25
A20
C23
F6
G15
J2
K29
M12
P27
A23
C24
F7
G16
J3
K32
M14
P28
A26
C25
F8
G19
J4
L3
M16
P29
A29
C26
F9
G20
J5
L6
M19
P30
A33
C27
F10
G21
J6
L7
M21
P31
A34
C28
F11
G22
J7
L8
M23
P32
B1
C29
F12
G23
J8
L9
M24
P33
B5
D5
F13
G24
J10
L10
M25
P34
B8
D8
F14
G25
J11
L11
M26
R1
B11
D11
F15
G26
J12
L12
M27
R2
B14
D14
F16
G28
J13
L16
M28
R3
B17
D17
F17
G29
J15
L19
M29
R4
B20
D20
F18
G32
J16
L23
M32
R5
B23
D23
F19
H3
J19
L24
N3
R6
B26
D26
F20
H6
J20
L25
N6
R7
B29
D29
F21
H7
J22
L26
N7
R9
B34
E5
F22
H10
J23
L27
N9
R15
C5
E8
F23
H11
J24
L28
N16
R17
C6
E11
F24
H12
J28
L29
N18
R19
C7
E14
F25
H14
J29
L30
N26
R21
C8
E17
F26
H16
J32
L31
N28
R26
C9
E20
F27
H17
K3
L32
N29
R28
C10
E23
F28
H18
K6
L33
N32
R29
C11
E26
F29
H19
K7
L34
P3
R32
C12
E29
F32
H21
K8
M1
P6
T3
C13
E30
G3
H23
K11
M2
P7
T6
C14
E31
G6
H24
K12
M3
P8
T7
C15
E32
G7
H25
K14
M4
P10
T8
Table 21 PES48H12 Ground Pins (Part 1 of 3)
32 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
T9
V6
Y18
AB28
AD11
AF16
AH6
AJ20
T10
V8
Y20
AB29
AD12
AF19
AH7
AJ21
T11
V13
Y26
AB32
AD16
AF20
AH9
AJ22
T12
V14
Y28
AC3
AD19
AF22
AH10
AJ23
T13
V16
Y29
AC6
AD23
AF23
AH11
AJ24
T14
V18
Y30
AC7
AD24
AF24
AH12
AJ25
T16
V20
Y31
AC8
AD25
AF25
AH13
AJ26
T18
V27
Y32
AC9
AD26
AF27
AH14
AJ27
T20
V29
Y33
AC10
AD27
AF28
AH15
AJ28
T23
V32
Y34
AC11
AD28
AF29
AH16
AJ29
T24
W3
AA1
AC12
AD29
AF30
AH19
AJ30
T25
W6
AA2
AC14
AD32
AF31
AH20
AJ31
T26
W7
AA3
AC16
AE3
AF32
AH21
AJ32
T27
W8
AA4
AC19
AE6
AF33
AH22
AJ33
T28
W9
AA5
AC21
AE7
AF34
AH23
AJ34
T29
W10
AA6
AC23
AE8
AG1
AH24
AK1
T32
W11
AA7
AC24
AE10
AG2
AH25
AK2
U3
W12
AA8
AC25
AE11
AG3
AH26
AK3
U6
W15
AA10
AC26
AE12
AG4
AH27
AK4
U8
W17
AA12
AC27
AE14
AG5
AH28
AK5
U15
W19
AA15
AC28
AE16
AG6
AH29
AK6
U17
W21
AA17
AC29
AE19
AG10
AH32
AK9
U19
W22
AA19
AC30
AE21
AG11
AJ3
AK12
U21
W23
AA21
AC31
AE23
AG12
AJ6
AK15
U22
W24
AA23
AC32
AE24
AG14
AJ7
AK18
U27
W25
AA25
AC33
AE27
AG16
AJ8
AK21
U29
W26
AA27
AC34
AE28
AG17
AJ9
AK24
U30
W27
AA28
AD1
AE29
AG18
AJ10
AK27
U31
W28
AA29
AD2
AE32
AG19
AJ11
AK30
U32
W29
AA32
AD3
AF3
AG21
AJ12
AL6
U33
W32
AB3
AD4
AF6
AG23
AJ13
AL9
U34
Y3
AB6
AD5
AF7
AG24
AJ14
AL12
V1
Y6
AB7
AD6
AF8
AG25
AJ15
AL15
V2
Y7
AB9
AD7
AF11
AG28
AJ16
AL18
V3
Y9
AB17
AD8
AF12
AG29
AJ17
AL21
V4
Y14
AB19
AD9
AF13
AG32
AJ18
AL24
V5
Y16
AB26
AD10
AF15
AH3
AJ19
AL27
Table 21 PES48H12 Ground Pins (Part 2 of 3)
33 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
AL30
AM11
AM18
AM25
AN3
AN24
AP9
AP30
AM3
AM12
AM19
AM26
AN6
AN27
AP12
AP33
AM6
AM13
AM20
AM27
AN9
AN30
AP15
AP34
AM7
AM14
AM21
AM28
AN12
AN34
AP18
AM8
AM15
AM22
AM29
AN15
AP1
AP21
AM9
AM16
AM23
AM30
AN18
AP2
AP24
AM10
AM17
AM24
AN1
AN21
AP6
AP27
Table 21 PES48H12 Ground Pins (Part 3 of 3)
No Connect Pins
NC
NC
NC
NC
NC
NC
NC
NC
V30
AA31
AD33
AG34
AK25
AL26
AN28
AP29
V31
AA33
AD34
AH30
AK26
AL28
AN29
V33
AA34
AE30
AH31
AK28
AL29
AP19
V34
AB30
AE31
AH33
AK29
AN19
AP20
W30
AB31
AE33
AH34
AL19
AN20
AP22
W31
AB33
AE34
AK19
AL20
AN22
AP23
W33
AB34
AG30
AK20
AL22
AN23
AP25
W34
AD30
AG31
AK22
AL23
AN25
AP26
AA30
AD31
AG33
AK23
AL25
AN26
AP28
Table 22 PES48H12 No Connect Pins
Signals Listed Alphabetically
Signal Name
I/O Type
Location
Signal Category
CCLKDS
I
K25
System
CCLKUS
I
AG7
Table 23 89PES48H12 Alphabetical Signal List (Part 1 of 10)
34 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal Name
I/O Type
Location
Signal Category
GPIO_00
I/O
AM31
General Purpose I/O
GPIO_01
I/O
AN31
GPIO_02
I/O
AN32
GPIO_03
I/O
AP32
GPIO_04
I/O
AG27
GPIO_05
I/O
AM32
GPIO_06
I/O
AE25
GPIO_07
I/O
AL31
GPIO_08
I/O
AK31
GPIO_09
I/O
AF26
GPIO_10
I/O
AL33
GPIO_11
I/O
AM33
GPIO_12
I/O
AL34
GPIO_13
I/O
AM34
GPIO_14
I/O
AK33
GPIO_15
I/O
AK32
GPIO_16
I/O
C4
GPIO_17
I/O
B4
GPIO_18
I/O
B3
GPIO_19
I/O
A3
GPIO_20
I/O
H8
GPIO_21
I/O
C3
GPIO_22
I/O
K10
GPIO_23
I/O
D4
GPIO_24
I/O
E4
GPIO_25
I/O
J9
GPIO_26
I/O
D2
GPIO_27
I/O
C2
GPIO_28
I/O
D1
GPIO_29
I/O
C1
GPIO_30
I/O
E2
GPIO_31
I/O
E3
General Purpose I/O (cont.)
Table 23 89PES48H12 Alphabetical Signal List (Part 2 of 10)
35 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal Name
I/O Type
Location
Signal Category
JTAG_TCK
I
K26
Test
JTAG_TDI
I
C31
JTAG_TDO
O
J25
JTAG_TMS
I
D30
JTAG_TRST_N
I
C32
MSMBADDR_1
I
A31
MSMBADDR_2
I
B31
MSMBADDR_3
I
B30
MSMBADDR_4
I
C30
MSMBCLK
I/O
G27
MSMBDAT
I/O
H26
I
A32
MSMBSMODE
NC
SMBus Interface
System
See Table 22 for a listing of no connect pins.
P01MERGEN
I
AL2
P23MERGEN
I
AM1
P45MERGEN
I
AL3
P67MERGEN
I
AM2
P89MERGEN
I
AL5
P1011MERGEN
I
AM4
System
Table 23 89PES48H12 Alphabetical Signal List (Part 3 of 10)
36 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal Name
I/O Type
Location
Signal Category
PE0RN00
I
T30
PCI Express Interface
PE0RN01
I
R30
PE0RN02
I
N30
PE0RN03
I
M30
PE0RP00
I
T31
PE0RP01
I
R31
PE0RP02
I
N31
PE0RP03
I
M31
PE0TN00
O
T33
PE0TN01
O
R33
PE0TN02
O
N33
PE0TN03
O
M33
PE0TP00
O
T34
PE0TP01
O
R34
PE0TP02
O
N34
PE0TP03
O
M34
PE1RN00
I
K30
PE1RN01
I
J30
PE1RN02
I
G30
PE1RN03
I
F30
PE1RP00
I
K31
PE1RP01
I
J31
PE1RP02
I
G31
PE1RP03
I
F31
PE1TN00
O
K33
PE1TN01
O
J33
PE1TN02
O
G33
PE1TN03
O
F33
PE1TP00
O
K34
Table 23 89PES48H12 Alphabetical Signal List (Part 4 of 10)
37 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal Name
I/O Type
Location
Signal Category
PE1TP01
O
J34
PCI Express Interface (cont.)
PE1TP02
O
G34
PE1TP03
O
F34
PE2RN00
I
E28
PE2RN01
I
E27
PE2RN02
I
E25
PE2RN03
I
E24
PE2RP00
I
D28
PE2RP01
I
D27
PE2RP02
I
D25
PE2RP03
I
D24
PE2TN00
O
B28
PE2TN01
O
B27
PE2TN02
O
B25
PE2TN03
O
B24
PE2TP00
O
A28
PE2TP01
O
A27
PE2TP02
O
A25
PE2TP03
O
A24
PE3RN00
I
E22
PE3RN01
I
E21
PE3RN02
I
E19
PE3RN03
I
E18
PE3RP00
I
D22
PE3RP01
I
D21
PE3RP02
I
D19
PE3RP03
I
D18
PE3TN00
O
B22
PE3TN01
O
B21
PE3TN02
O
B19
PE3TN03
O
B18
PE3TP00
O
A22
PE3TP01
O
A21
PE3TP02
O
A19
PE3TP03
O
A18
PE4RN00
I
W5
Table 23 89PES48H12 Alphabetical Signal List (Part 5 of 10)
38 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal Name
I/O Type
Location
Signal Category
PE4RN01
I
Y5
PCI Express Interface (cont.)
PE4RN02
I
AB5
PE4RN03
I
AC5
PE4RP00
I
W4
PE4RP01
I
Y4
PE4RP02
I
AB4
PE4RP03
I
AC4
PE4TN00
O
W2
PE4TN01
O
Y2
PE4TN02
O
AB2
PE4TN03
O
AC2
PE4TP00
O
W1
PE4TP01
O
Y1
PE4TP02
O
AB1
PE4TP03
O
AC1
PE5RN00
I
AE5
PE5RN01
I
AF5
PE5RN02
I
AH5
PE5RN03
I
AJ5
PE5RP00
I
AE4
PE5RP01
I
AF4
PE5RP02
I
AH4
PE5RP03
I
AJ4
PE5TN00
O
AE2
PE5TN01
O
AF2
PE5TN02
O
AH2
PE5TN03
O
AJ2
PE5TP00
O
AE1
PE5TP01
O
AF1
PE5TP02
O
AH1
PE5TP03
O
AJ1
PE6RN00
I
AK7
PE6RN01
I
AK8
PE6RN02
I
AK10
PE6RN03
I
AK11
PE6RP00
I
AL7
Table 23 89PES48H12 Alphabetical Signal List (Part 6 of 10)
39 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal Name
I/O Type
Location
Signal Category
PE6RP01
I
AL8
PCI Express Interface (cont.)
PE6RP02
I
AL10
PE6RP03
I
AL11
PE6TN00
O
AN7
PE6TN01
O
AN8
PE6TN02
O
AN10
PE6TN03
O
AN11
PE6TP00
O
AP7
PE6TP01
O
AP8
PE6TP02
O
AP10
PE6TP03
O
AP11
PE7RN00
I
AK13
PE7RN01
I
AK14
PE7RN02
I
AK16
PE7RN03
I
AK17
PE7RP00
I
AL13
PE7RP01
I
AL14
PE7RP02
I
AL16
PE7RP03
I
AL17
PE7TN00
O
AN13
PE7TN01
O
AN14
PE7TN02
O
AN16
PE7TN03
O
AN17
PE7TP00
O
AP13
PE7TP01
O
AP14
PE7TP02
O
AP16
PE7TP03
O
AP17
PE8RN00
I
E16
PE8RN01
I
E15
PE8RN02
I
E13
PE8RN03
I
E12
PE8RP00
I
D16
PE8RP01
I
D15
PE8RP02
I
D13
PE8RP03
I
D12
PE8TN00
O
B16
Table 23 89PES48H12 Alphabetical Signal List (Part 7 of 10)
40 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal Name
I/O Type
Location
Signal Category
PE8TN01
O
B15
PCI Express Interface (cont.)
PE8TN02
O
B13
PE8TN03
O
B12
PE8TP00
O
A16
PE8TP01
O
A15
PE8TP02
O
A13
PE8TP03
O
A12
PE9RN00
I
E10
PE9RN01
I
E9
PE9RN02
I
E7
PE9RN03
I
E6
PE9RP00
I
D10
PE9RP01
I
D9
PE9RP02
I
D7
PE9RP03
I
D6
PE9TN00
O
B10
PE9TN01
O
B9
PE9TN02
O
B7
PE9TN03
O
B6
PE9TP00
O
A10
PE9TP01
O
A9
PE9TP02
O
A7
PE9TP03
O
A6
PE10RN00
I
G5
PE10RN01
I
H5
PE10RN02
I
K5
PE10RN03
I
L5
PE10RP00
I
G4
PE10RP01
I
H4
PE10RP02
I
K4
PE10RP03
I
L4
PE10TN00
O
G2
PE10TN01
O
H2
PE10TN02
O
K2
PE10TN03
O
L2
PE10TP00
O
G1
Table 23 89PES48H12 Alphabetical Signal List (Part 8 of 10)
41 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal Name
I/O Type
Location
Signal Category
PE10TP01
O
H1
PCI Express Interface (cont.)
PE10TP02
O
K1
PE10TP03
O
L1
PE11RN00
I
N5
PE11RN01
I
P5
PE11RN02
I
T5
PE11RN03
I
U5
PE11RP00
I
N4
PE11RP01
I
P4
PE11RP02
I
T4
PE11RP03
I
U4
PE11TN00
O
N2
PE11TN01
O
P2
PE11TN02
O
T2
PE11TN03
O
U2
PE11TP00
O
N1
PE11TP01
O
P1
PE11TP02
O
T1
PE11TP03
O
U1
PEREFCLKN0
I
V28
PEREFCLKN1
I
G18
PEREFCLKN2
I
U7
PEREFCLKN3
I
AH17
PEREFCLKP0
I
U28
PEREFCLKP1
I
G17
PEREFCLKP2
I
V7
PEREFCLKP3
I
AH18
PERSTN
I
B32
System
REFCLKM
I
AH8
PCI Express Interface
RSTHALT
I
AP3
System
SSMBADDR_1
I
C34
SMBus Interface
SSMBADDR_2
I
C33
SSMBADDR_3
I
D33
SSMBADDR_5
I
D32
SSMBCLK
I/0
H28
SSMBDAT
I/O
J27
Table 23 89PES48H12 Alphabetical Signal List (Part 9 of 10)
42 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Signal Name
I/O Type
Location
Signal Category
SWMODE_0
I
AN4
System
SWMODE_1
I
AP4
SWMODE_2
I
AN5
SWMODE_3
I
AM5
VDDCORE,
VDDAPE, VDDIO,
VDDPE, VTTPE
See Table 20 for a listing of power pins.
VSS
See Table 21 for a listing of ground pins.
Table 23 89PES48H12 Alphabetical Signal List (Part 10 of 10)
43 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
PES48H12 Pinout — Top View
1
2 3 4
5
6 7 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
A
A
B
B
C
C
D
D
E
E
F
F
G
G
X
H
J
X
K
X
X X
X X
H
J
X
K
L
L
M
M
X
X
N
X
X
N
P
P
R
R
T
T
XX
XX
U
V
XX
XX
XX X X
XX XX
W
Y
X
X
X
V
W
Y
X X X X AA
X X X X AB
AA
AB
U
X
AC
AC
X X X X AD
X X X X AE
AD
X
AE
AF
X X
X X
X
X
AG
XX X X
XX XX
X
AH
AJ
X X XX XX XX
X X XX XX XX
AK
AL
AM
1
2 3 4
5
6 7 8
AG
AH
AJ
AK
AL
AM
X X XX XX XX
X X XX XX XX
AN
AP
AF
AN
AP
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
VDDCore (Power)
VDDAPE (Power)
VDDI/O (Power)
VDDPE (Power)
VTTPE (Power)
Signals
Vss (Ground)
X
44 of 48
No connect
October 7, 2008
IDT 89HPES48H12 Data Sheet
PES48H12 Package Drawing — 1156-Pin BL1156/BR1156
45 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
PES48H12 Package Drawing — Page Two
46 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Revision History
July 19, 2007: Initial publication of data sheet.
November 14, 2007: Added new parameter, Termination Resistor, to Table 9, Input Clock Requirements.
April 16, 2008: In Table 16, Thermal Specifications, revised values for θJA, θJB, and θJC.
October 7, 2008: In Table 5, revised description of PxxMERGEN pins.
47 of 48
October 7, 2008
IDT 89HPES48H12 Data Sheet
Ordering Information
NN
A
AAA
NNAN
AA
Product
Family
Operating
Voltage
Device
Family
Product
Detail
Device
Revision
AA
Legend
A = Alpha Character
N = Numeric Character
A
Package Temp Range
Blank
Commercial Temperature
(0°C to +70°C Ambient)
I
Industrial Temperature
(-40° C to +85° C Ambient)
BL
1156-ball FCBGA
BR
1156-ball FCBGA, RoHS
ZA
ZA revision
48H12
48-lane, 12-port
PES
PCI Express Switch
H
1.0V +/- 0.1V Core Voltage
89
Serial Switching Product
Valid Combinations
89HPES48H12ZABL
1156-ball FCBGA package, Commercial Temperature
89HPES48H12ZABR
1156-ball RoHS FCBGA package, Commercial Temperature
89HPES48H12ZABLI
1156-ball FCBGA package, Industrial Temperature
89HPES48H12ZABRI
1156-ball RoHS FCBGA package, Industrial Temperature
®
CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
48 of 48
for Tech Support:
email: ssdhelp@idt.com
phone: 408-284-8208
October 7, 2008