0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
8V97051NLGI

8V97051NLGI

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    VFQFN-32

  • 描述:

    IC SYNTHESIZER RF 32VFQFN

  • 数据手册
  • 价格&库存
8V97051NLGI 数据手册
8V97051 Low Power Wideband Fractional RF Synthesizer / PLL Description Features The 8V97051 is a high-performance Wideband RF Synthesizer / PLL optimized for use as the local oscillator (LO) in Multi-Carrier, Multi-mode FDD, and TDD Base Station radio card. It is offered in a compact 5 5, 32-VFQFN package. • Dual Differential Outputs Datasheet • Output frequency range: 34.375MHz to 4400MHz (continuous range) • RF Output Divide by 1, 2, 4, 8, 16, 32, 64 The 8V97051 Wideband RF Synthesizer / PLL offers a default Fractional Mode with the option to use it with an Integer mode. It requires an external loop filter. • Open Drain Outputs (see Output Distribution Section) • Fractional-N synthesizer (also supports Integer-N mode) • 16-bit integer and 12-bit fractional  (16-bit fractional when using the extended registers) The 8V97051 has an integrated Voltage Controlled Oscillator (VCO) that supports output frequencies from 34.375MHz to 4400MHz, and maintains superior phase noise and spurious performance. • 3- or 4-wire SPI interface (compatible with 3.3V and 1.8V) • Single 3.3V supply RF_OUT[A:B] output drivers have independently programmable output power ranging from –4dBm to +7dBm. The RF_OUT outputs can be muted. The mute function is accessible via a SPI command or mute pin. • Logic compatibility: 1.8V • Programmable output power level: -4dBm to +5dBm (up to +7 when using the extended registers) The operation of the 8V97051 is controlled by writing to registers through a three-wire SPI interface. The device also has an additional option that allows users to read back values from registers by configuring the MUX_OUT pin as a SDO for the SPI interface. The SPI interface is compatible with 1.8V logic and tolerant to 3.3V. • Mute Function In multi-service base stations, very low noise oscillators are required to generate a large variety of frequencies to the mixers while maintaining excellent phase noise performance and low power. The 8V97051 offers a large tuning range capable of providing multi-band local oscillator (LO) frequency synthesis in multi-mode base stations, thus limiting the use of multiple narrow band RF Synthesizers and reducing the BOM complexity and cost. The device can operate over -40°C to +85°C industrial temperature range. • Power Consumption: 380mW (typical) (RF_OUTB disabled) • Ultra low PN for 1.1GHz LO: -143dBc/Hz at 1MHz Offset, (typical) • Lock Detect Indicators • Input Reference frequency: 5MHz to 310MHz • 32-Lead, 5 5 VFQFN package • Automatic VCO band selection (Autocal feature) • -40°C to +85°C ambient operating temperature • Supports case temperature  105°C operations • Lead-free (RoHS 6) packaging Applications • Wireless Infrastructure • Test Equipment • CATV Equipment • Military and Aerospace • Wireless LAN • Clock Generation ©2018 Integrated Device Technology, Inc. 1 December 5, 2018 8V97051 Datasheet Table of Contents Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 8V97051 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Pin Description and Characteristic Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Table 1. Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Table 2. Pin Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Table 3. Supply Pins and Associated Current Return Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Principles of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Synthesizer Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Reference Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Reference Doubler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Table 4A. Lock Detect Precision (LDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Feedback Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Figure 1. RF Feedback N Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Table 4B. Fractional Spurs Due to the Quantization Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Phase and Frequency Detector (PFD) and Charge Pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Figure 2. Simplified PFD Circuit using D-type Flip-flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 PFD Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 External Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Phase Detector Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Charge Pump High-Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Integrated Low Noise VCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Output Distribution Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Figure 3. Output Clock Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Figure 4. Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Output Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Figure 5. Broadband Matching Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Figure 6. Optimal Matching Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Band Selection Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Phase Adjust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Phase Resync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Figure 7. 12-bit Counter for Fast Lock and Phase Resync . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Fast Lock Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Figure 8. Example of Fast Lock Mode Loop Filter Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 RF Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 MUX_OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Table 4C. MUX_OUT Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Power-Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Default Power-Up Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Program Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Table 4D. Control Bits Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 ©2018 Integrated Device Technology, Inc. 2 December 5, 2018 8V97051 Datasheet Double Buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 9. SPI Write Cycle Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Figure 10. SPI Read Cycle Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Table 4E. SPI Read / Write Cycle Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3- or 4-Wire SPI Interface Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Table 4F. SPI Mode Serial Word Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 5A. Register 0 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 5B. Register 0: 16-Bit Feedback Divider Integer Value (INT). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 5C. Register 0: 12-Bit Feedback Divider Fractional Value (FRAC). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Table 5D. Register 0: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 6A. Register 1 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 6B. Register 1: 1-Bit BAND_SEL_DISABLE. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 6C. Register 1: 12-Bit Phase Value (PHASE). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Table 6D. Register 1: 12-Bit Modulus Value (MOD). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 6E. Register 1: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 7A. Register 2 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 7B. Register 2: 2-Bit NOISE MODE. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Table 7C. Register 2: 3-Bit MUX_OUT. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 7D. Register 2: 1-Bit REF DOUBLER. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 7E. Register 2: 1-Bit REF DIV2. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 7F. Register 2: 10-Bit R COUNTER (R). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 7G. Register 2: 1-Bit DOUBLE BUFFER. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Table 7H. Register 2: 4-Bit Charge Pump Setting (ICP SETTING). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 7I. Register 2: 1-Bit Lock Detect Function (LDF). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 7J. Register 2: 1-Bit Lock Detect Precision. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 7K. Register 2: 1-Bit Phase Detector Polarity. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Table 7L. Register 2: 1-Bit Power Down. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 7M. Register 2: 1-Bit Charge Pump High-Impedance. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 7N. Register 2: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 8A. Register 3 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Table 8B. Register 3: 1-Bit Band Select Clock Mode. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 8C. Register 3: 2-Bit Clock Divider Mode. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 8D. Register 3: 12-Bit Clock Divider Value (CLKDIV). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Table 8E. Register 3: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Register 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 9A. Register 4 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 9B. Register 4: 1-Bit Feedback Select. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 9C. Register 4: 3-Bit RF Output Divider (÷ MO) Select. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Table 9D. Register 4: 8-Bit Band Select Clock Counter. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 9E. Register 4: 1-Bit VCO Power Down. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Table 9F. Register 4: 1-Bit Mute Till Lock Detect. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 ©2018 Integrated Device Technology, Inc. 3 December 5, 2018 8V97051 Datasheet Table 9G. Register 4: 1-Bit RF_OUTB Select. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Table 9H. Register 4: 1-Bit RF_OUTB Enable. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Table 9I. Register 4: 2-Bit RF_OUTB Output Power. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Table 9J. Register 4: 1-Bit RF_OUTA Enable. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Table 9K. Register 4: 2-Bit RF_OUTA Output Power. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Table 9L. Register 4: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Register 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Table 10A. Register 5 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Table 10B. Register 5: 2-Bit LD (Lock Detect) Pin Mode. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Table 10C. Register 5: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Extended Registers, (Registers 6 and 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Register 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Table 11A. Register 6 Bit Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Table 11B. Register 6: 1-Bit Digital Lock Detect. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 11C. Register 6: 1-Bit Band Select Status (Read Only). Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 11D. Register 6: 2-Bit Extra Lock Detect Precision. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 11E. Register 6: 1-Bit Extra Bit of RF_OUTB Power. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Table 11F. Register 6: 1-Bit Extra Bit of RF_OUTA Power. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Table 11G. Register 6: 2-Bit Sigma Delta Modulator Order Configuration. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Table 11H. Register 6: 2-Bit Dither Gain Configuration. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Table 11I. Register 6: 1-Bit Dither Noise Shaping Configuration. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Table 11J. Register 6: 1-Bit Sigma Delta Modulator Type Configuration. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Table 11K. Register 6: 2-Bit VCO Band Selection Accuracy Configuration. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Table 11L. Register 6: 4-Bit Extra Most Significant Bits of Band Select Divider. Function Description . . . . . . . . . . . . . . . . . . . . . . . . .30 Table 11M. Register 6: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Register 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Table 12A. Register 7 Bit Allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Table 12B. Register 7: 1-Bit Loss of Digital Lock. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Table 12C. Register 7: 1-Bit Loss of Analog Lock. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Table 12D. Register 7: 1-Bit SPI Error. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Table 12E. Register 7: 3-Bit Revision ID. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Table 12F. Register 7: 4-Bit Device ID. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Table 12G. Register 7: 1-Bit Resolution Select. Function Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Table 12H. Register 7: 4-Bit Extra Bits of PHASE Value. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Table 12I. Register 7: 4-Bit Extra Bits of MOD Value. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Table 12J. Register 7: 4-Bit Extra Bits of FRAC Value. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Table 12K. Register 7: 1-Bit SCLKE. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Table 12L. Register 7: 1-Bit READBACK_ADDR. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Table 12M. Register 7: 1-Bit SPI_R_WN. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Table 12N. Register 7: 3-Bit Control Bits. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Table 13. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Table 14A. Power Supply DC Characteristics, VDDX = VDDA = 3.3V ± 5%, TA = -40°C to +85°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Table 14B. Output Divider Incremental Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Table 14C. Typical Current by Power Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Table 14D. LVCMOS DC Characteristics, VDDX = VDDA = 3.3V ± 5%, TA = -40°C to 85°C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 ©2018 Integrated Device Technology, Inc. 4 December 5, 2018 8V97051 Datasheet AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Table 15A. AC Characteristics, VDDX = VDDA = 3.3V ± 5%, TA = -40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Table 15B. RF_OUT[A:B] Phase Noise and Jitter Characteristics, VDDX = VDDA = 3.3V ± 5%, TA = -40°C to 85°C . . . . . . . . . . . . . . . . .39 Phase Noise at 156.25MHz (3.3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Phase Noise at 1.76GHz (3.3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Phase Noise Performance (Open Loop) at 1.1GHz (3.3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Phase Noise Performance (Open Loop) at 1.65GHz (3.3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Phase Noise Performance (Open Loop) at 2.3GHz (3.3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Phase Noise Performance (Open Loop) at 3.8GHz (3.3V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Applications Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Loop Filter Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 2nd Order Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Figure 11. Typical 2nd Order Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 3rd Order Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Figure 12. Typical 3rd Order Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Recommendations for Unused Input and Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Schematic Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Figure 13A. An 8V97051 General Application Schematic Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Figure 13B. Schematic Example for Driving Single Ended Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Power Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Table 16. Thermal Resistance JA for 32 Lead VFQFN, Forced Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Case Temperature Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 Reliability Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Table 17A. JA vs. Air Flow Table for a 32 lead VFQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Table 17B. JB vs. Air Flow Table for a 32 lead VFQFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Transistor Count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Table 18. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Table 19. Pin 1 Orientation in Tape and Reel Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 ©2018 Integrated Device Technology, Inc. 5 December 5, 2018 8V97051 Datasheet 8V97051 Block Diagram SDO MUX_OUT Lock Detect x2 REF_IN CP_OUT Charge Pump PFD ÷2 ÷R LD External Loop Filter VTUNE ` 16/12 or 16/ 16 bit Frac-N Divider SCLK SDI CSB FLSW SPI ÷M0 RF_OUTA nRF_OUTA Logic & Registers CE RF_OUTB nRF_OUTB MUTE NOTE: 16-Bit Integer / 16-Bit Fractional feedback divider is available when using extended register. VDD_SD GND_SD MUX_OUT REF_IN VDDD GNDD MUTE LD Pin Assignment 32 31 30 29 28 27 26 25 SCLK 1 24 VREF SDI 2 23 VCOM nCS 3 22 RCP CE 4 21 GNDA_VCO FLSW 5 20 VTUNE V_CP 6 19 VBIAS CP_OUT 7 18 GNDA_VCO GND_CP 8 17 VVCO 10 11 12 13 14 15 16 GNDA_VCO RF_OUTA nRF_OUTA RF_OUTB nRF_OUTB VVCO GNDA 9 VDDA 8V97051 32-Lead 5mm x 5mm VFQFN ©2018 Integrated Device Technology, Inc. 6 December 5, 2018 8V97051 Datasheet Pin Description and Characteristic Tables Table 1. Pin Description1 Pin Name Type Description 1 SCLK LVCMOS Input Pulldown Serial Clock Input. High-Impedance CMOS input. 1.8V logic. 3.3V tolerant. 2 SDI LVCMOS Input Pullup Serial Data Input. High-Impedance CMOS input. 1.8V logic. 3.3V tolerant. 3 nCS LVCMOS Input Pulldown 4 CE LVCMOS Input Pullup 5 FLSW Analog Fast Lock Switch. A connection should be made from the loop filter to this pin when using the fast lock mode. 6 V_CP Power Charge Pump Power Supply. V_CP must have the same value as VDDA. Place decoupling capacitors to the ground plane as close to this pin as possible. 7 CP_OUT Analog Charge Pump Output. When enabled, this output provides ±ICP to the external loop filter. The output of the loop filter is connected to VTUNE to drive the internal VCO. 8 GND_CP Ground Charge Pump Power Supply Ground. 9 GNDA Ground Analog Power Supply Ground. 10 VDDA Power Analog Supply. This pin ranges from 3.3V ± 5%. VDDA must have the same value as VDDD. 11 GNDA_VCO Ground VCO Analog Power Supply Ground. 12 RF_OUTA Output Clock Output pair A. The output level is programmable. 13 nRF_OUTA Output Clock Output pair A. The output level is programmable. 14 RF_OUTB Output Clock Output pair B. The output level is programmable. 15 nRF_OUTB Output Clock Output pair B. The output level is programmable. 16 VVCO Power VCO Supply. This pin ranges from 3.3V ± 5%. VVCO must have the same value as VDDA. 17 VVCO Power VCO Supply. This pin ranges from 3.3V ± 5%. VVCO must have the same value as VDDA. 18 GNDA_VCO Ground VCO Analog Power Supply Ground. 19 VBIAS Analog Place decoupling capacitors (0.1µF) to ground, as close to this pin as possible. 20 VTUNE 21 GNDA_VCO Ground VCO Analog Power Supply Ground. 22 RCP Analog Sets the charge pump current. Requires external resistor. 23 VCOM Analog Place decoupling capacitors (0.1µF) to ground, as close to this pin as possible. 24 VREF Analog Place decoupling capacitors (0.1µF) to ground, as close to this pin as possible. 25 LD Load Enable. High-Impedance CMOS input. 1.8V logic. 3.3V tolerant. Active Low. Chip Enable. On logic Low, powers down the device and puts the charge pump into High-Impedance mode. Powers up the device on logic High. Control Input to tune the VCO. LVCMOS Output ©2018 Integrated Device Technology, Inc. Lock Detect. Logic High indicates PLL lock. Logic Low indicates loss of PLL lock. 7 December 5, 2018 8V97051 Datasheet Table 1. Pin Description1 (Continued) RF_OUTA and RF_OUTB Power-Down. A logic low on this pin mutes the RF_OUT outputs and puts them in High-Impedance. 26 MUTE LVCMOS Input Pullup 27 GNDD Ground Digital Power Supply Ground. 28 VDDD Power Digital Supply. VDDD must have the same value as VDDA. 29 REF_IN 30 MUX_OUT 31 GND_SD Ground Digital Sigma Delta Modulator Power Supply Ground. 32 VDD_SD Power Digital Sigma Delta Modulator Supply. VDD_SD must have the same value as VDDA. EP Exposed Pad Ground Must be connected to GND. LVCMOS Input Reference Input. This CMOS input has a nominal threshold of VDDA/2 and a DC equivalent input resistance of 100k. This input can be driven from a TTL or CMOS crystal oscillator, or it can be AC-coupled. Analog LVCMOS Output Multiplexed Output and Serial Data Out. Refer to Table 4C, Page 14. NOTE 1. Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. Table 2. Pin Characteristics Symbol Parameter Test Conditions Cin Input Capacitance ROUT LVCMOS Output Impedance RPULLUP RPULLDOWN Minimum Typical Maximum Units 4 pF 38  Input Pullup Resistor 51 k Input Pulldown Resistor 51 k MUX_OUT & LD Table 3. Supply Pins and Associated Current Return Paths Power Supply Pin Number Power Supply Pin Name Associated Ground Pin Number Associated Ground Pin Name 10 VDDA 9 GNDA 28 VDDD 27 GNDD 32 VDD_SD 31 GND_SD 16, 17 VVCO 11, 18, 21 GNDA_VCO 6 V_CP 8 GND_CP ©2018 Integrated Device Technology, Inc. 8 December 5, 2018 8V97051 Datasheet Principles of Operation Synthesizer Programming Reference Doubler The Fractional-N architecture is implemented via a cascaded programmable dual modulus prescaler. The N divider offers a division ratio in the feedback path of the PLL, and is given by programming the value of INT, FRAC and MOD in the following equation: To improve the phase noise performance of the device, the reference doubler can be used. By using the doubler, the PFD frequency is also doubled and the phase noise performance typically improves by 3dB. When operating the device in Fractional mode, the speed of the Sigma Delta modulator of the N counter is limited to 125MHz, which is also the maximum PFD frequency that can be used in the fractional mode. When the part operates in Integer-N mode, the PFD frequency is limited to 310MHz. N = INT + FRAC/MOD (1) INT is the divide ratio of the binary 16-bits counter (refer to Table 5B, Page 17). The user has the possibility to select a higher PFD frequency (up to 310MHz in Integer mode) by doing the following steps using the extended registers (Register 6 and 7): FRAC is the numerator value of the fractional divide ratio. It is programmable from 0 to (MOD – 1). Refer to Table 5C when in 12-bit mode, or Table 12J when in 16-bit mode. 1. The user needs to increase the size of the Band Select Clock Divider (normally 8-bits) by setting the bit [D6:D3] in the Register 6 to divide down to a frequency lower than 500kHz and higher than 125kHz. MOD is the 12-bit or 16-bit modulus. It is programmable from 2 to 4095 in 12-bit mode, and 2 to 65535 in 16-bit mode. Refer to Table 6D when in 12-bit mode, or Table 12I when in 16-bit mode. 2. Use the Bit[D27:D26] to increase the lock detect precision for the faster PFD frequency. The VCO frequency (fVCO) at RF_OUTA or RF_OUTB is given by the following equation: fVCO = fPFD x (INT + FRAC/MOD) The Lock Detect window should be set as large as possible but less than a period of the phase detector. The phase detector frequency should be greater than 500kHz. (2) fPFD is the frequency at the input of the Phase and Frequency Detector (PFD). Table 4A. Lock Detect Precision (LDP) The 8V97051 offers an Integer mode. To enable that mode, the user has to program the FRAC value to 0. LDP_Ext2 (D27 of Register 6) LDP_Ext1 (D26 of Register 6) LDP (D7 of Register 2) LDP value (ns) The device’s VCO features three VCO band-splits to cover the entire range with sufficient margin for process, voltage, and temperature variations. These are automatically selected by invoking the Autocal feature. The charge pump current is also programmable via the ICP SETTING register for maximum flexibility. 0 0 0 10 0 0 1 6 0 1 0 3 Via Register 4, one can enable RF_OUTA or both outputs. Similarly, one can disable RF_OUTB or both outputs. 0 1 1 3 1 0 0 4 Reference Input Stage 1 0 1 4.5 The 8V97051 features one single-ended reference clock input (REF_IN). This single-ended input can be driven by an ac-coupled sine wave or square wave. 1 1 0 1.5 1 1 1 1.5 Use of Extended Register 6 Feedback Divider In Power Down mode this input is set to High-Impedance to prevent loading of the reference source. The feedback divider N supports fractional division capability in the PLL feedback path. It consists in an integer N divider of 16-bits, and a Fractional divider of 12-bits (FRAC) over 12-bits (MOD). FRAC and MOD can be extended to 16-bits when using extended registers. The reference input signal path also includes an optional doubler. To select an integer mode only, the user sets FRAC to 0. ©2018 Integrated Device Technology, Inc. 9 December 5, 2018 8V97051 Datasheet FROM VCO OUTPOUT  or FROM M0 OUTPUT same channelization. Using the doubler may offer better phase noise performance. The high resolution Modulus also allows to use the same input reference frequency to achieve different channelization requirements. Using a unique PFD frequency for several needed channelization requirements allows the user to design a loop filter for the different needed setups and ensure the stability of the loop. TO PFD N counter rd 3 Order ΣΔ  Modulator The channelization is given by In low noise mode (dither disabled), the Sigma Delta modulator can generate some fractional spurs that are due to the quantization noise. 12 Bit FRAC 16 Bit INT + The spurs are located at regular intervals equal to fPFD/L where L is the repeat length of the code sequence in the Sigma Delta modulator. That repeat length depends on the MOD value, as described in Table 4B. 12 Bit MOD Figure 1. RF Feedback N Divider The 16 INT bits (Bit[D30:D15] in Register 0) set the integer part of the feedback division ratio. Table 4B. Fractional Spurs Due to the Quantization Noise The 12 FRAC bits (Bit[D14:D3] in Register 0) set the numerator of the fraction that goes into the Sigma Delta modulator. FRAC can be extended to 16-bits using the EXT_FRAC bits in Register 7. The 12 MOD bits (Bit[D14:D3] in Register 1) set the denominator of the fraction that goes into the Sigma Delta modulator. MOD can be extended to 16-bits using the EXT_MOD bits in Register 7. From the relation (2), the VCO minimum step frequency is determined by (1/MOD) * fPFD. FRAC values from 0 to (MOD – 1) cover channels over a frequency range equal to the PFD reference frequency. The PFD frequency is calculated as follows: Use 2R instead of R if the Reference Divide by 2 is used.  REFCLK = the input reference frequency (REF_IN) D = the input reference doubler (0 if not active or 1 if active) R = the 10-Bits programmable input reference pre-divider Condition (Dither Disabled) L Spur intervals MOD can be divided by 2,  but not by 3 2 x MOD fPFD/(2*MOD) MOD can be divided by 3,  but not by 2 3 x MOD fPFD/(3*MOD) MOD can be divided by 6 6 x MOD fPFD/(6*MOD) Other conditions MOD fPFD/MOD (channel step) In order to reduce the spurs, the user can enable the dither function to increase the repeat length of the code sequence in the Sigma Delta modulator. The increased repeat length is 221 cycles so that the resulting quantization error is spread to appear like broadband noise. As a result, the in-band phase noise may be degraded when using the dither function. (3) When the application requires the lowest possible phase noise and when the loop bandwidth is low enough to filter most of the undesirable spurs, or if the spurs won’t affect the system performance, it is recommended to use the low noise mode with dither disabled. The programmable modulus (MOD) is determined based on the input reference frequency (REF_IN) and the desired channelization (or output frequency resolution). The high resolution provided on the R counter and the Modulus allows the user to choose from several configuration (by using the doubler or not) of the PLL to achieve the ©2018 Integrated Device Technology, Inc. (4) 10 December 5, 2018 8V97051 Datasheet Phase and Frequency Detector (PFD) and Charge Pump B.If choosing this second technique, the user must follow the three following steps: The phase detector compares the outputs from the R counter and from the N counter and generates an output corresponding to the phase and frequency difference between the two inputs the PFD. The charge pump current is programmable through the serial port (SPI) to several different levels. 1. Disable the Phase Adjust function by setting the bit D28 In Register 1 to 0, keep the PFD frequency lower than 125MHz, and program the desired VCO frequency. 2. Enable the phase adjust function by setting BAND_SEL_DISABLE (Bit D28 in Register 1) to 1. 3. Set the desired PFD frequency and program the relevant  R divider and N counter values. The PFD offers an anti-backlash function that helps to avoid any dead zone in the PFD transfer function. In either technique, the Lock Detect Precision should be programmed to be lower than the PFD period using the bit [D7] in Register 2 and the bits [D27:D26] in Register 6 (Refer to Table 4A, Page 9). ICP VDD D1 Q1 External Loop Filter REF_IN x (1+D)/R The 8V97051 requires an external loop filter. The design of that filter is application specific. For additional information, refer to the Applications Information section. CP_OUT DELAY Phase Detector Polarity The phase detector polarity is set by bit D6 in Register 2. This bit should be set to 1 when using a passive loop filter or a non-inverting active loop filter. If an inverting active filter is used, this bit should be set to 0. VDD D1 Charge Pump High-Impedance Q1 FB In order to put the charge pump into three-state mode, the user must set the bit D4 [CP HIGHZ] in Register 2 to 1. This bit should be set to 0 for normal operation. ICP Figure 2. Simplified PFD Circuit using D-type Flip-flop Integrated Low Noise VCO The Band Select logic operates between 125kHz and 500kHz. The Band Select clock divider needs to be set to divide down the PFD frequency to between 125kHz to 500kHz (logic maximum frequency). The VCO function of the 8V97051 consists in three separate VCOs. This allows keeping narrow tuning ranges for the VCOs while offering a large frequency tuning range for VCO core. Keeping narrow VCO tuning ranges allows for lower VCO sensitivity (KVCO), which results in the best possible VCO phase noise and spurious performance. PFD Frequency The VCO Band Selection can be used while operating at PFD frequencies up to 310MHz. The user does not have to select the different VCO bands. The VCO band select logic of the 8V97051 will automatically select the most suitable band of operation at power up or when Register 0 is written. If the application requires the PFD frequency to be higher than 125MHz, the user can use one of the following two techniques (Technique A is the recommended procedure): For optimal performance, it is recommended to recalibrate the VCO by re-writing Register 0 when the temperature has varied more than 90°C from the temperature at which the previous calibration occurred. A.The user can use the extended register ExtBndSelDiv[4:1] bits (Bits[D6:D3]) in Register 6. These additional band select divider bits extend the band select divider from 8-bits (available in Register 4) to 12-bits. The four additional band select divider bits in Register 4 are the most significant bits of the divide value. For proper VCO band selection, the PFD frequency divided by the band select divide value must be 500kHz and 125kHz. ©2018 Integrated Device Technology, Inc. Output Distribution Section The 8V97051 device provides two outputs. These two outputs can generate the same frequency (fVCO / M0) or two integer related different frequencies (in this case, RF_OUTB would generate a frequency equal to the VCO frequency and RF_OUTA would generate fVCO / M0). 11 December 5, 2018 8V97051 Datasheet Figure 5. Broadband Matching Termination This termination scheme allows to provide one of the selected output power on the differential pair when connected to a 50 load. (See the RF Output Power section for more information about the output power selection). Figure 3. Output Clock Distribution RF_OUT and nRF_OUT are derived from the drain of an NMOS differential pair driven by the VCO output (or by the M0 Divider), as shown in Figure 4, Output Stage. RF_OUT The 50 resistor connected to VDDA can also be replaced by a choke, for better performance and optimal power transmission. nRF_OUT The pull up inductor value is frequency dependent. For impedance  of 50 pull-up, the inductance value can be calculated as  L = 50/(2*3.14*F), where F is operating frequency. In this example,  L = 3.9nH is for an operating frequency of approximately 2GHz. ÷ M0 Figure 4. Output Stage Figure 6. Optimal Matching Termination Eight programmable output power levels can be programmed from -4dBm to +7dBm (see RF Output Power section). See Applications Information section for more recommendations on the termination scheme. The 8V97051 offers an auxiliary output (RF_OUTB). If the auxiliary output stage is not used, it can be powered down by using the RF_OutB_En bit in Register 4. Band Selection Disable For a given frequency, the output phase can be adjusted when using the Band_Sel_Disable bit (Bit D28 in Register 1). When this bit is enabled (Bit D28 set to 1), the part does not do a VCO band selection or phase resync after an update to Register 0. The supply current to the output stage can be shut down until the part achieves lock. To enable this mode, the user will set the MTLD bit in Register 4. The MUTE pin can be used to mute all outputs and be used as a similar function. When the Band_Sel_Disable bit is set to 0, and when Register 0 is updated, the part proceeds to a VCO band selection, and to a phase resync if phase_resync is also enabled in Register 3 (Bits[D16:D15] set to D16 = 1 and D15 = 0). Output Matching The “Band_Sel_Disable” bit is useful when the user wants to make small changes in the output frequency ( 4 is recommended. fp is frequency at pole. Figure 11. Typical 2nd Order Loop Filter 1. Determine desired loop bandwidth fc. 2. Calculate Rz: Rz  5. 2 *  * fc * N Icp * Kvco Where, Where, b  1 Icp is charge pump current. Icp is programmable from 310µA to 5mA. N is effective feedback divider. N must be programmed into the following value. N Cz Cp The phase margin (PM) should be greater than 50°. A spreadsheet for calculating the loop filter component values is available at www.IDT.com. To use the spreadsheet, the user simply enters the following parameters: Fvco Fpd fc, F_ref, PV, Icp, FVCO,  and . FVCO is VCO frequency.  VCO frequency range: 2200MHz to 4400MHz The spreadsheet will provide the component values, Rz, Cz and Cp as the result. The spreadsheet also calculates the maximum phase margin for verification. Fpd is phase detector input frequency. Fpd  Verify Phase Margin (PM) F _ ref Pv F_ref is reference clock (REF_IN) input frequency. Pv is overall pre-divider setting. Kvco is VCO gain. Kvco = 40MHz/V ©2018 Integrated Device Technology, Inc. 44 December 5, 2018 8V97051 Datasheet 3rd Order Loop Filter This section helps design a 3rd order loop filter for the 8V97051. A general 3rd order loop filter is shown in Figure 12, Typical 3rd Order Loop Filter. The Rz, Cz and Cp can be calculated as 2nd order loop filter.  The following equation help determine the 3rd order loop filter Rp2 and Cp2. Pick an Rp2 value. Rp2 ~ 1.5xRz is suggested. RP2 Rp2 Rz RZ CCp P CCp2 P2 CCz Z Where,  is ratio between the 1st pole frequency and the 2nd pole frequency. > 4 is recommended. Figure 12. Typical 3rd Order Loop Filter Recommendations for Unused Input and Output Pins Inputs: Outputs: LVCMOS Control Pins Output Pins All control pins have internal pullup and pulldown resistors; additional resistance is not required but can be added for additional protection. A 1k resistor can be used. For any unused output, it can be left floating and disabled. ©2018 Integrated Device Technology, Inc. 45 December 5, 2018 8V97051 Datasheet Schematic Example Figure 13A and Figure 13B show general application schematic examples for the 8V97051. setting = 1111 or 16 times the normal charge pump current). The combination of the R4 and R5 in parallel is 1/4 * Rs. For power rails, bypass capacitors must be provided to all power supply pins. Suggest at least one bypass capacitor per power pin. Value can be ranged from 0.01uF or 0.1uF. Mix values of bypass capacitor can help filtering wider range of power supply noise. Fast Lock Loop Filter Option 2 is Series Resistor Configuration.  For normal operating mode, both R6 and R7 are active and  R6 + R7 = Rs. For fast lock mode, only R6 is active. For example, in normal operation mode, if the charge pump current is set at 0000 (ICP = 310uA), then, in fast lock mode, the loop bandwidth is set larger by increasing the charge pump current to ICP~5mA (ICP setting = 1111 or 16 times the normal charge pump current).  The sum of R6 and R7 equals to Rs, i.e. R6 + R7 = Rs.  R6 = 1/4 * Rs and R7 = 3/4 * Rs. The 8V97051 input is high impedance. The input termination depends on the driver type termination requirements. In these examples, the 8V97051 REF_IN input is terminated with a matched load termination. For transmission line with characteristic impedance Zo = 50, the termination resistor R8 is 50. The input is self biased to proper DC offset after the AC coupling. The 8V97051 output pull-up loading can be resistors or inductors. The pull up resistor value is typically 50. Resistor pull up loading covers wide range of output frequencies. For inductor pull up loading, the inductor value is frequency dependent. One inductor value cannot cover all the output frequency range. This example shows the L = 3.9nH that is suitable for approximately 2GHz operating frequency. The output can also drive single ended LO input. Figure 13B shows an example of the 8V97051 output driving single ended LO input of the mixer through an LC balun. The LC balun component values are frequency dependent. These values can be adjusted to optimize the performance. Single ended LO receiver input also can tap to one side of the differential driver using resistor loading or inductor loading. For single ended LO input, both sides of the differential driver still need to be loaded with pull up. The output power level can also be adjusted further through programming. The loop filter values can be calculated to meet the loop bandwidth requirement. Please refer to the section, "Loop Filter Calculations" for detailed calculations. For fast lock mode, the loop filter can be configured as Fast Lock Loop Filter Option 1 or Fast Lock Loop Filter Option 2 shown in Figure 13A. Fast Lock Loop Filter Option 1 is Parallel Resistor Configuration. For normal operating mode, only R5 is active and R5 = Rs, where Rs is the resistor value for normal operating mode loop bandwidth. In fast lock mode, the combination of R4 in parallel with R5 is active. For example, in normal operation mode, if the charge pump current is set at 0000 (ICP = 310uA), then, in fast lock mode, the loop bandwidth is set larger by increasing the charge pump current to ICP~5mA (ICP ©2018 Integrated Device Technology, Inc. 46 December 5, 2018 VTUNE 8V97051 Datasheet C3 C6 0.1u 1u C4 C5 0.1u 10u C1 C2 10u 0.1u V_v co VDD Resistor Loading L2 3.9n VDD nREF_OUTA VDD RF IN C8 1n R8 50 LD MUTE GNDD VDDD REF_IN MUX_OUT GND_SD VDD_SD 33 E_PAD VVCO nRF_OUTB RF_OUTB nRF_OUTA RF_OUTA GNDA_VCO VDDA GNDA 16 15 14 13 12 11 10 9 R2 50 VDD R1 50 nREF_OUTA REF_OUTA C9 1n Zdiff=100 Zo = 50 C10 1n RF Mixer Zo = 50 LO input 1 2 3 4 5 6 7 8 U1 L1 3.9n REF_OUTA SCLK SDI nCS CE FLSW V_CP CP_OUT GND_CP C7 1n 25 26 27 28 29 30 31 32 VREF VCOM RCP GNDA_VCO VTUNE VBIAS GNDA_VCO VVCO 24 23 22 21 20 19 18 17 R1 4.7k Inductor Loading VDD CP_OUT VTUNE FLSW SPI Compatible Serial Bus C11 R5 Loop Filter without Fast Lock All power supply pins require Bypass capacitors R3 C12 C13 Fast Lock Loop Filter Options 2 Fast Lock Loop Filter Options 1 R3 CP_OUT FLSW R4 R3 CP_OUT C11 VTUNE C11 R5 VTUNE R6 C12 FLSW C13 R7 C12 C13 Figure 13A. An 8V97051 General Application Schematic Example ©2018 Integrated Device Technology, Inc. 47 December 5, 2018 8V97051 Datasheet Inductor Loading VDD VDD VTUNE Resistor Loading C3 C6 0.1u 1u C4 C5 0.1u 10u C1 C2 10u 0.1u R8 50 25 26 27 28 29 30 31 32 LD MUTE GNDD VDDD REF_IN MUX_OUT GND_SD VDD_SD REF_OUTA L1 3.9n C9 RF to IF Dual Down converter Mixer VVCO nRF_OUTB RF_OUTB nRF_OUTA RF_OUTA GNDA_VCO VDDA GNDA L2 16 15 14 13 12 11 10 9 L1 RFin_A VDD C9 Zo = 50 LO input C14 IFout_A IDT F1100 IDT F1102 IDT F1150 L3 IDT F1152 IDT F1160 IDT F1178 C15 1 2 3 4 5 6 7 8 33 E_PAD U1 nREF_OUTA C9 REF_OUTA SCLK SDI nCS CE FLSW V_CP CP_OUT GND_CP RF IN C8 1n nREF_OUTA L2 3.9n VDD VREF VCOM RCP GNDA_VCO VTUNE VBIAS GNDA_VCO VVCO VDD C7 1n R1 50 V_v co 24 23 22 21 20 19 18 17 R1 4.7k R2 50 RFin_B IFout_B VDD R3 SPI Compatible Serial Bus R4 Optional All power supply pins require Bypass capacitors VTUNE C11 C12 R5 C13 Figure 13B. Schematic Example for Driving Single Ended Mixer ©2018 Integrated Device Technology, Inc. 48 December 5, 2018 8V97051 Datasheet Power Considerations The 8V97051 device was designed and characterized to operate within the ambient industrial temperature range of -40°C to +85°C. The ambient temperature represents the temperature around the device, not the junction temperature. When using the device in extreme cases, such as maximum operating frequency and high ambient temperature, external air flow may be required in order to ensure a safe and reliable junction temperature. Extreme care must be taken to avoid exceeding 125°C junction temperature. The power calculation example below was generated using a typical configuration. For many applications, the power consumption can vary depending on configuration. Please contact IDT technical support for any concerns on calculating the power dissipation for your own specific configuration. 1. Power Dissipation. The total power dissipation for the 8V97051 is the sum of the core power plus the power dissipation in the output driver.  The following is the power dissipation for VDD = 3.465V, which gives worse case results. • Power (core)MAX = VDD_MAX * (IDDA + IVCO + ICP + IDD_SD + IDDD)MAX = VDD_MAX * (IDDA + IDDX)MAX  = 3.465V * (94mA + 97mA) = 661.8mW Total Power (with two outputs active at 2dBm output power level) = 661.8mW 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C. The equation for Tj is as follows: Tj = JA * Pd_total + TA Tj = Junction Temperature JA = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) TA = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow and a multi-layer board, the appropriate value is 34.34°C/W per Table 16 below. Therefore, Tj for an ambient temperature of 85°C with all outputs active is: 85°C + 0.662W * 34.34°C/W = 107.7°C. This is below the limit of 125°C. This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer). Table 16. Thermal Resistance JA for 32 Lead VFQFN, Forced Convection JA by Velocity Meters per Second Multi-Layer PCB, JEDEC Standard Test Boards ©2018 Integrated Device Technology, Inc. 0 1 2 34.34°C/W 30.7°C/W 29.12°C/W 49 December 5, 2018 8V97051 Datasheet Case Temperature Considerations This device supports applications in a natural convection environment which does not have any thermal conductivity through ambient air. The printed circuit board (PCB) is typically in a sealed enclosure without any natural or forced air flow and is kept at or below a specific temperature. The device package design incorporates an exposed pad (ePad) with enhanced thermal parameters which is soldered to the PCB where most of the heat escapes from the bottom exposed pad. For this type of application, it is recommended to use the junction-to-board thermal characterization parameter JB (Psi-JB) to calculate the junction temperature (TJ) and ensure it does not exceed the maximum allowed junction temperature in the Absolute Maximum Rating table. The junction-to-board thermal characterization parameter, JB, is calculated using the following equation: TJ = TCB + JB x Pd, Where TJ = Junction temperature at steady state condition in (oC). TCB = Case temperature (Bottom) at steady state condition in (oC). JB = Thermal characterization parameter to report the difference between junction temperature and the temperature of the board measured at the top surface of the board. Pd = power dissipation (W) in desired operating configuration. The ePad provides a low thermal resistance path for heat transfer to the PCB and represents the key pathway to transfer heat away from the IC to the PCB. It’s critical that the connection of the exposed pad to the PCB is properly constructed to maintain the desired IC case temperature (TCB). A good connection ensures that temperature at the exposed pad (TCB) and the board temperature (TB) are relatively the same. An improper connection can lead to increased junction temperature, increased power consumption and decreased electrical performance. In addition, there could be long-term reliability issues and increased failure rate. Example Calculation for Junction Temperature (TJ): TJ = TCB + JB x Pd Package type: Body size: ePad size: Thermal Via: JB TCB Pd 32-Lead VFQFN 3mm x 3mm x0.9mm 3.15mm x 3.15mm 4 x 4 matrix 0.34oC/W 105oC 0.6618 W For the variables above, the junction temperature is equal to 105.2oC. Since this is below the maximum junction temperature of 125oC, there are no long term reliability concerns. In addition, since the junction temperature at which the device was characterized using forced convection is 107.7oC, this device can function without the degradation of the specified AC or DC parameters. ©2018 Integrated Device Technology, Inc. 50 December 5, 2018 8V97051 Datasheet Reliability Information Table 17A. JA vs. Air Flow Table for a 32 lead VFQFN JA vs. Air Flow Meters per Second Multi-Layer PCB, JEDEC Standard Test Boards 0 1 2 34.34°C/W 30.7°C/W 29.12°C/W Table 17B. JB vs. Air Flow Table for a 32 lead VFQFN JB vs. Air Flow Meters per Second Multi-Layer PCB, JEDEC Standard Test Boards 0 0.472°C/W NOTE: JB is independent of airflow. Transistor Count The 8V97051 transistor count is: 409,546 Package Outline Drawings The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available. www.idt.com/document/psc/32-vfqfpn-package-outline-drawing-50-x-50-x-090-mm-body-epad-315-x-315-mm-nlg32p1 ©2018 Integrated Device Technology, Inc. 51 December 5, 2018 8V97051 Datasheet Ordering Information Table 18. Ordering Information Part/Order Number Marking 8V97051NLGI IDT8V97051NLGI 8V97051NLGI8 IDT8V97051NLGI 8V97051NLGI/W IDT8V97051NLGI Package Shipping Packaging Temperature 32-lead VFQFN, Lead-free Tray -40°C to +85°C Tape & Reel -40°C to +85°C Tape & Reel -40°C to +85°C 32-lead VFQFN, Lead-free Quadrant 1 (EIA-481-C) 32-lead VFQFN, Lead-free Quadrant 2 (EIA-481-D) Table 19. Pin 1 Orientation in Tape and Reel Packaging Part Number Suffix Pin 1 Orientation Illustration Correct Pin 1 ORIENTATION NLGI8 CARRIER TAPE TOPSIDE (Round Sprocket Holes) Quadrant 1 (EIA-481-C) USER DIRECTION OF FEED Correct Pin 1 ORIENTATION NLGI/W CARRIER TAPE TOPSIDE (Round Sprocket Holes) Quadrant 2 (EIA-481-D) USER DIRECTION OF FEED ©2018 Integrated Device Technology, Inc. 52 December 5, 2018 8V97051 Datasheet Revision History Revision Date December 5, 2019 Description of Change * Added the sentence starting with "For optimal performance...” to Integrated Low Noise VCO. This information was inadvertently removed from the datasheet during the previous release. * Removed the sentence starting with “For optimal performance...” from Integrated Low Noise VCO August 8, 2018 * Changed incorrect measurement unit nF to nH in Output Matching and Schematic Example * Updated the Package Outline Drawings; however, no mechanical changes November 19, 2017 * Updated Note 3 in Table 15B * Completed other minor changes * Integrated Low Noise VCO - added sentence February 10, 2017 * Updated Package Outline Drawings * Ordering Information - updated table package column * Updated datasheet footer * Description update September 22, 2016 * Updated schematic examples * Updated datasheet header/footers July 30, 2015 June 30, 2015 * Features - added case temperature bullet * Added case temperature consideration section * Power Considerations - corrected Power Dissipation section and Tj equation Corporate Headquarters Sales Tech Support 6024 Silver Creek Valley Road San Jose, CA 95138 USA www.IDT.com 1-800-345-7015 or 408-284-8200 Fax: 408-284-2775 www.IDT.com/go/sales www.IDT.com/go/support DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products and/or specifications described herein at any time, without notice, at IDT’s sole discretion. Performance specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. Integrated Device Technology, Inc. All rights reserved. ©2018 Integrated Device Technology, Inc. 53 December 5, 2018 32-VFQFPN, Package Outline Drawing 5.0 x 5.0 x 0.90 mm Body, Epad 3.15 x 3.15 mm. NLG32P1, PSC-4171-01, Rev 02, Page 1 32-VFQFPN, Package Outline Drawing 5.0 x 5.0 x 0.90 mm Body, Epad 3.15 x 3.15 mm. NLG32P1, PSC-4171-01, Rev 02, Page 2 Package Revision History Description Date Created Rev No. April 12, 2018 Rev 02 New Format Feb 8, 2016 Rev 01 Added "k: Value IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved.
8V97051NLGI 价格&库存

很抱歉,暂时无法提供与“8V97051NLGI”相匹配的价格&库存,您可以联系我们找货

免费人工找货
8V97051NLGI
  •  国内价格 香港价格
  • 1+81.582201+10.19960
  • 10+75.4614010+9.43440
  • 25+64.6812025+8.08660
  • 100+61.83040100+7.73020
  • 250+61.74660250+7.71970
  • 490+58.72810490+7.34230
  • 980+57.86570980+7.23450

库存:245