3.3V PCIe Gen1–5 Clock
Generator Family
9FGL02x1/04x1/06x1/08x1
Datasheet
Description
Features
The 9FGL02x1/04x1/06x1/08x1 devices comprise a family of 3.3V
PCIe Gen1–5 clock generators. There are 2, 4, 6 and 8 outputs
versions available and each differential output has a dedicated
OE# pin supporting PCIe CLKREQ# functionality.
▪ Integrated terminations for 100Ω and 85Ω systems save 4
resistors per output
▪ 112–206 mW typical power consumption (at 3.3V)
▪ VDDIO rail allows 35% power savings at optional 1.05V
PCIe Clocking Architectures
(9FGL06 and 9FGL08 only)
▪ Devices contain default configuration; SMBus not required
▪ SMBus-selectable features allows optimization to customer
▪ Common Clocked (CC)
▪ Independent Reference (IR) with and without spread spectrum
requirements:
(SRIS, SRNS)
Typical Applications
▪
▪
▪
▪
▪
Servers/High-Performance Computing
nVME Storage
Networking
Accelerators
Industrial Control
▪
▪
▪
▪
▪
▪
▪
▪
▪
Output Features
▪ 2, 4, 6, or 8 100MHz PCIe output pairs
▪ One 3.3V LVCMOS REF output with Wake-On-LAN (WOL)
support
▪ See AN-891 for easy AC-coupling to other logic families
Key Specifications
▪
▪
▪
▪
90fs RMS typical jitter (PCIe Gen5 CC)
< 50ps cycle-to-cycle jitter on differential outputs
< 50ps output-to-output skew on differential outputs
±0ppm synthesis error on differential outputs
• Input polarity and pull-up/pull-downs
• Output slew rate and amplitude
• Output impedance (33Ω, 85Ω or 100Ω) for each output
Contact factory for customized default configurations
25MHz input frequency
OE# pins support PCIe CLKREQ# function
Pin-selectable SRnS 0%, CC 0% and CC/SRIS -0.5% spread
SMBus-selectable CC/SRIS -0.25% spread
Clean switching between the CC/SRIS spread settings
DIF outputs blocked until PLL is locked; clean system start-up
2 selectable SMBus addresses
Space saving packages:
• 4 × 4 mm 24-VFQFPN (9FGL02x1)
• 5 × 5 mm 32-VFQFPN (9FGL04x1)
• 5 × 5 mm 40-VFQFPN (9FGL06x1)
• 6 × 6 mm 48-VFQFPN (9FGL08x1)
Block Diagram
VDDA
vOE(n:0)#
VDDREF
VDDXTAL VDDDIG
VDDO/
VDDIO
n+1
REF3.3
XIN/CLKIN_25
DIFn#
DIFn
X2
vSADR
^vSS_EN_tri
^CKPWRGD_PD#
SDATA_3.3
SCLK_3.3
SSC
Capable
PLL
Control
Logic
GNDXTAL
GNDREF
©2020 Renesas Electronics Corporation
2 to 8
outputs
DIF0#
DIF0
GNDDIG
1
GND
EPAD
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Contents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
PCIe Clocking Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Output Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
9FGL02x1 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
9FGL04x1 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
9FGL06x1 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
9FGL08x1 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Alternate Terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Crystal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
General SMBus Serial Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
How to Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
How to Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Marking Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9FGL02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9FGL04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9FGL06 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9FGL08 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
©2020 Renesas Electronics Corporation
2
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Pin Assignments
9FGL02x1 Pin Assignment
vOE1#
VDD3.3
GND
^CKPWRGD_PD#
^vSS_EN_tri
GNDXTAL
Figure 1. Pin Assignments for 4 × 4 mm 24-VFQFPN Package – Top View
24 23 22 21 20 19
XIN/CLKIN_25 1
X2 2
18 DIF1#
17 DIF1
9FGL0241C
9FGL0251C
EPAD is GND
SCLK_3.3
16 VDDA3.3
15 GNDA
14 DIF0#
13 DIF0
9 10 11 12
vOE0#
8
VDD3.3
7
VDDDIG3.3
GNDREF 5
GNDDIG 6
GND
vSADR/REF3.3 4
SDATA_3.3
VDDXTAL3.3 3
24-VFQFPN, 4 x 4 mm, 0.5mm pitch
^ prefix indicates internal 120kOhm pull-up resistor
v prefix indicates internal 120kOhm pull-down resistor
^v prefix indicates internal 120kOhm pull-up and pull-down resistors
©2020 Renesas Electronics Corporation
3
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
9FGL04x1 Pin Assignment
VDDO3.3
GND
DIF3
DIF3#
vOE3#
GND
^CKPWRGD_PD#
^vSS_EN_tri
Figure 2. Pin Assignments for 5 × 5 mm 32-VFQFPN Package – Top View
32 31 30 29 28 27 26 25
GNDXTAL 1
24 vOE2#
23 DIF2#
XIN/CLKIN_25 2
X2 3
22 DIF2
21 VDDA3.3
9FGL0441C
9FGL0451C
EPAD is GND
VDDXTAL3.3 4
VDDREF3.3 5
vSADR/REF3.3 6
20 GNDA
19 DIF1#
GNDREF 7
GNDDIG 8
18 DIF1
17 vOE1#
VDDO3.3
GND
DIF0#
DIF0
vOE0#
SDATA_3.3
SCLK_3.3
VDDDIG3.3
9 10 11 12 13 14 15 16
32-VFQFPN, 5 x 5 mm, 0.5mm pitch
^ prefix indicates internal 120kOhm pull-up resistor
v prefix indicates internal 120kOhm pull-down resistor
^v prefix indicates internal 120kOhm pull-up and pull-down resistors
©2020 Renesas Electronics Corporation
4
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
9FGL06x1 Pin Assignment
VDD3.3
VDDIO
DIF4
DIF4#
vOE4#
DIF5
DIF5#
vOE5#
VDDIO
^CKPWRGD_PD#
Figure 3. Pin Assignments for 5 × 5 mm 40-VFQFPN Package – Top View
40 39 38 37 36 35 34 33 32 31
^vSS_EN_tri 1
30 vOE3#
XIN/CLKIN_25 2
29 DIF3#
X2 3
28 DIF3
VDDXTAL3.3 4
27 VDDIO
9FGL0641C
9FGL0651C
EPAD is GND
VDDREF3.3 5
vSADR/REF3.3 6
NC 7
26 VDDA3.3
25 NC
24 vOE2#
GNDDIG 8
23 DIF2#
SCLK_3.3 9
22 DIF2
SDATA_3.3 10
21 vOE1#
NC
DIF1#
DIF1
VDDIO
VDD3.3
DIF0#
DIF0
vOE0#
VDDIO
VDDDIG3.3
11 12 13 14 15 16 17 18 19 20
40-VFQFPN, 5 x 5 mm, 0.4mm pitch
^ prefix indicates internal 120kOhm pull-up resistor
v prefix indicates internal 120kOhm pull-down resistor
^v prefix indicates internal 120kOhm pull-up and pull-down resistors
©2020 Renesas Electronics Corporation
5
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
9FGL08x1 Pin Assignment
vOE5#
VDD3.3
VDDIO
GND
DIF6
DIF6#
vOE6#
DIF7
DIF7#
vOE7#
VDDIO
^CKPWRGD_PD#
Figure 4. Pin Assignments for 6 × 6 mm 48-VFQFPN Package – Top View
48 47 46 45 44 43 42 41 40 39 38 37
^vSS_EN_tri 1
36 DIF5#
GNDXTAL 2
XIN/CLKIN_25 3
35 DIF5
34 vOE4#
X2 4
VDDXTAL3.3 5
33 DIF4#
32 DIF4
9FGL0841C
9FGL0851C
EPAD is GND
VDDREF3.3 6
vSADR/REF3.3 7
GNDREF 8
GNDDIG 9
31 VDDIO
30 VDDA3.3
29 GNDA
28 vOE3#
SCLK_3.3 10
SDATA_3.3 11
27 DIF3#
26 DIF3
VDDDIG3.3 12
25 vOE2#
DIF2#
DIF2
GND
VDDIO
VDD3.3
DIF1#
DIF1
vOE1#
DIF0#
DIF0
vOE0#
VDDIO
13 14 15 16 17 18 19 20 21 22 23 24
48-VFQFPN, 6 x 6 mm, 0.4mm pitch
^ prefix indicates internal pull-up resistor
v prefix indicates internal pull-down resistor
^v prefix indicates internal pull-up and pull-down resistors
Pin Descriptions
Table 1. Pin Descriptions
Name
Type
Description
9FGL08x1 9FGL06x1 9FGL04x1 9FGL02x1
Pin No.
Pin No.
Pin No.
Pin No.
^CKPWRGD_PD#
Input
Input notifies device to sample latched inputs and start up
on first high assertion. Low enters Power Down Mode,
subsequent high assertions exit Power Down Mode. This
pin has internal pull-up resistor.
^vSS_EN_tri
Latched In
Latched select input to select spread spectrum amount at
initial power up. See Spread Selection table.
1
1
32
23
DIF0
Output
Differential true clock output.
15
14
13
13
DIF0#
Output
Differential complementary clock output.
16
15
14
14
DIF1
Output
Differential true clock output.
18
18
18
17
©2020 Renesas Electronics Corporation
6
48
40
31
22
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 1. Pin Descriptions (Cont.)
Description
9FGL08x1 9FGL06x1 9FGL04x1 9FGL02x1
Pin No.
Pin No.
Pin No.
Pin No.
Name
Type
DIF1#
Output
Differential complementary clock output.
19
19
19
18
DIF2
Output
Differential true clock output.
23
22
22
—
DIF2#
Output
Differential complementary clock output.
24
23
23
—
DIF3
Output
Differential true clock output.
26
28
27
—
DIF3#
Output
Differential complementary clock output.
27
29
28
—
DIF4
Output
Differential true clock output.
32
33
—
—
DIF4#
Output
Differential complementary clock output.
33
34
—
—
DIF5
Output
Differential true clock output.
35
36
—
—
DIF5#
Output
Differential complementary clock output.
36
37
—
—
DIF6
Output
Differential true clock output.
41
—
—
—
DIF6#
Output
Differential complementary clock output.
42
—
—
—
DIF7
Output
Differential true clock output.
44
—
—
—
DIF7#
Output
Differential complementary clock output.
45
—
—
—
EPAD
GND
Connect to ground.
49
41
33
25
GND
GND
Ground pin.
22
EPAD
15
10
GND
GND
Ground pin.
40
EPAD
26, 30
21
GNDA
GND
Ground pin for the PLL core.
29
EPAD
20
15
GNDDIG
GND
Ground pin for digital circuitry.
9
8
8
6
GNDREF
GND
Ground pin for the REF outputs.
8
—
7
5
GNDXTAL
GND
GND for XTAL.
2
EPAD
1
24
NC
—
No connect.
—
7, 25
—
—
SCLK_3.3
Input
Clock pin of SMBus circuitry, 3.3V tolerant.
10
9
10
8
SDATA_3.3
I/O
Data pin for SMBus circuitry, 3.3V tolerant.
11
10
11
9
VDD3.3
Power
Power supply, nominally 3.3V.
20
16
16
11
VDD3.3
Power
Power supply, nominally 3.3V.
38
31
25
20
VDDA3.3
Power
3.3V power for the PLL core.
30
26
21
16
VDDDIG3.3
Power
3.3V digital power (dirty power).
12
11
9
7
VDDIO
Power
Power supply for differential outputs.
13
12
—
—
VDDIO
Power
Power supply for differential outputs.
21
17
—
—
VDDIO
Power
Power supply for differential outputs.
31
27
—
—
VDDIO
Power
Power supply for differential outputs.
39
32
—
—
VDDIO
Power
Power supply for differential outputs.
47
39
—
—
VDDREF3.3
Power
Power supply for REF output, nominally 3.3V.
6
5
5
—
VDDXTAL3.3
Power
Power supply for XTAL, nominally 3.3V.
5
4
4
3
©2020 Renesas Electronics Corporation
7
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 1. Pin Descriptions (Cont.)
Name
Type
9FGL08x1 9FGL06x1 9FGL04x1 9FGL02x1
Pin No.
Pin No.
Pin No.
Pin No.
Description
Input
Active low input for enabling output 0. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
14
13
12
12
Input
Active low input for enabling output 1. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
17
21
17
19
Input
Active low input for enabling output 2. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
25
24
24
—
Input
Active low input for enabling output 3. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
28
30
29
—
Input
Active low input for enabling output 4. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
34
35
—
—
Input
Active low input for enabling output 5. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
37
38
—
—
Input
Active low input for enabling output 6. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
43
—
—
—
vOE7#
Input
Active low input for enabling output 7. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
46
—
—
—
vSADR/REF3.3
Latched I/O
Latch to select SMBus Address/3.3V LVCMOS copy of
X1/REFIN pin.
7
6
6
4
X2
Output
Crystal output.
4
3
3
2
XIN/CLKIN_25
Input
Crystal input or Reference Clock input, nominally 25MHz.
3
2
2
1
vOE0#
vOE1#
vOE2#
vOE3#
vOE4#
vOE5#
vOE6#
Table 2. Spread Selection
^vSS_EN_tri Pin
B1[4:3]
Spread%
Note
0
00
0
—
01
-0.25
PCIe Common Clock or SRIS mode.
M (VDD/2)
10
0
PCIe Common Clock or SRIS mode.
1
11
-0.50
PCIe Common Clock or SRIS mode.
PCIe SRNS mode.
If SRnS mode is desired, power up with ^vSS_EN_tri = '0'. Do not attempt to switch to the other modes via SMBus control in Byte 1 or a
system reset will be required. If Common Clock (CC) or SRIS mode is desired, power up with ^vSS_EN_tri at either 'M' or '1'. The desired
spread spectrum amount can then be selected via Byte 1 without a requiring a system reset. Once 'M' or '1' is latched at power up, do not
attempt to enter SRnS mode or a system reset will be required.
©2020 Renesas Electronics Corporation
8
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Absolute Maximum Ratings
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the
device. Functional operation of the 9FGL02x1/04x1/06x1/08x1 at absolute maximum ratings is not implied. Exposure to absolute
maximum rating conditions may affect device reliability.
Table 3. Absolute Maximum Ratings
Parameter
Symbol
Supply Voltage
Minimum
Maximum
Units
Notes
VDDx
-0.5
4.6
V
1,2
Input Voltage
VIN
-0.5
VDD + 0.5
V
1,3
Input High Voltage, SMBus
VIHSMB
3.9
V
1
Storage Temperature
Ts
150
°C
1
Junction Temperature
Tj
125
°C
1
Input ESD Protection
ESD prot
V
1
1 Guaranteed
2
3
Conditions
SMBus clock and data pins.
-65
Human Body Model.
2500
by design and characterization, not 100% tested in production.
Operation under these conditions is neither implied nor guaranteed.
Not to exceed 4.6V.
Thermal Characteristics
Table 4. Thermal Characteristics
Parameter
9FGL02 Thermal
Resistance
9FGL04 Thermal
Resistance
9FGL06 Thermal
Resistance
Symbol
Conditions
Package
Typical Values
Units
Notes
θJC
Junction to case.
62
°C/W
1
θJb
Junction to base.
5.4
°C/W
1
θJA0
Junction to air, still air.
50
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
43
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
39
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
38
°C/W
1
θJC
Junction to case.
42
°C/W
1
θJb
Junction to base.
2.4
°C/W
1
θJA0
Junction to air, still air.
39
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
33
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
28
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
27
°C/W
1
θJC
Junction to case.
42
°C/W
1
θJb
Junction to base.
2.4
°C/W
1
θJA0
Junction to air, still air.
39
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
33
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
28
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
27
°C/W
1
©2020 Renesas Electronics Corporation
NLG24
NLG32
NDG40
9
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 4. Thermal Characteristics (Cont.)
Parameter
9FGL08 Thermal
Resistance
1 EPAD
Symbol
Conditions
Package
Typical Values
Units
Notes
θJC
Junction to case.
33
°C/W
1
θJb
Junction to base.
2.1
°C/W
1
θJA0
Junction to air, still air.
37
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
30
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
27
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
26
°C/W
1
NDG48
soldered to board.
Electrical Characteristics
TA = TAMB. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Table 5. SMBus Parameters
Parameter
Symbol
SMBus Input Low Voltage
VILSMB
VDDSMB = 3.3V.
SMBus Input High Voltage
VIHSMB
VDDSMB = 3.3V.
SMBus Output Low Voltage
VOLSMB
At IPULLUP.
SMBus Sink Current
IPULLUP
At VOL.
Nominal Bus Voltage
VDDSMB
SCLK/SDATA Rise Time
tRSMB
SCLK/SDATA Fall Time
SMBus Operating Frequency
1
2
Conditions
Minimum
Typical
2.1
Maximum
Units
0.8
V
3.6
V
0.4
V
4
Notes
mA
2.7
3.6
V
(Max. VIL - 0.15V) to (Min. V IH + 0.15V).
1000
ns
1
tFSMB
(Min. VIH + 0.15V) to (Max. VIL - 0.15V).
300
ns
1
fSMB
SMBus operating frequency.
500
kHz
2
Notes
Guaranteed by design and characterization, not 100% tested in production.
The device must be powered up for the SMBus to function.
Table 6. Input/Supply/Common Parameters – Normal Operating Conditions
Parameter
Symbol
Conditions
Minimum
Typical
Maximum
Units
Supply Voltage
VDDxxx
Supply voltage for core, analog and single-ended
LVCMOS outputs.
3.135
3.3
3.465
V
IO Supply Voltage
VDDIO
Supply voltage for differential low power outputs.
0.9975
1.05–3.3
3.465
V
Ambient Operating
Temperature
TAMB
Industrial range.
-40
25
85
°C
Input High Voltage
VIH
0.75 x VDDx
VDDx + 0.3
V
Input Low Voltage
VIL
-0.3
0.25 x VDDx
V
Input High Voltage
VIHtri
0.8 x VDDx
VDDx + 0.3
V
Input Mid Voltage
VIMtri
0.6 x VDDx
V
Input Low Voltage
VILtri
0.20 x VDDx
V
Single-ended inputs, except SMBus.
Single-ended tri-level inputs
('_tri' suffix).
©2020 Renesas Electronics Corporation
0.4 x VDDx
-0.3
10
0.5 x VDDx
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 6. Input/Supply/Common Parameters – Normal Operating Conditions (Cont.)
Parameter
Symbol
Conditions
Minimum
Typical
Maximum
Units
IIN
Single-ended inputs, VIN = GND, VIN = V DD.
-5
-0.05
5
μA
IINP
Single-ended inputs.
VIN = 0V; inputs with internal pull-up resistors.
VIN = VDD; inputs with internal pull-down
resistors.
-50
7
50
μA
Input Frequency
FIN
XTAL or X1 input.
Pin Inductance
Lpin
Input Current
CIN
Capacitance
25
Logic inputs, except DIF_IN.
Notes
MHz
4
7
nH
1
5
pF
1
6
pF
1
0.3
1.8
ms
1,2
1.5
COUT
Output pin capacitance.
CLK Stabilization
tSTAB
From VDD power-up and after input clock
stabilization or deassertion of PD# to 1st clock.
SS Modulation
Frequency
fMOD
Triangular modulation.
30
31.6
33
kHz
1
OE# Latency
tLATOE#
DIF start after OE# assertion.
DIF stop after OE# deassertion.
1
2
3
clocks
1,3
Tdrive_PD#
tDRVPD DIF output enable after PD# de-assertion.
300
μs
1,3
1
2
3
4
Fall Time
tF
Fall time of single-ended control inputs.
5
ns
1,2
Rise Time
tR
Rise time of single-ended control inputs.
5
ns
1,2
Guaranteed by design and characterization, not 100% tested in production.
Control input must be monotonic from 20% to 80% of input swing.
Time from deassertion until outputs are > 200mV.
Contact the factory for other frequencies.
Table 7. Differential Low-Power HCSL Outputs
Parameter
Symbol
Slew Rate
Trf
Crossing Voltage (abs)
Vcross_abs
Scope averaging off.
Crossing Voltage (var)
Δ-Vcross
Scope averaging off.
Avg. Clock Period Accuracy
Conditions
Minimum
Typical
Maximum
Units
Notes
Scope averaging on, fast setting.
2
2.7
4
V/ns
2,3
Scope averaging, slow setting.
1
1.9
3
V/ns
2,3
250
409
550
mV
1,4,5
14
140
mV
1,4,9
0
0
+2500
ppm
2,10,12,13
9.95
10
10.0503
ns
2,6
16
50
ps
2
660
761
850
mV
1
-150
-7
150
mV
1
9FGL0xxx devices have 0 ppm
TPERIOD_AVG synthesis error. The maximum occurs
with -0.5% SSC.
Absolute Period
TPERIOD_ABS
Jitter, Cycle to Cycle
tjcyc-cyc
Voltage High
VHIGH
Voltage Low
VLOW
©2020 Renesas Electronics Corporation
Includes jitter and spread spectrum
modulation.
Statistical measurement on
single-ended signal using
oscilloscope math function (scope
averaging on).
11
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 7. Differential Low-Power HCSL Outputs (Cont.)
Parameter
Symbol
Conditions
Absolute Maximum Voltage
VMIN
Absolute Minimum Voltage
VMAX
Measurement on single-ended signal
using absolute value (scope
averaging off).
Duty Cycle
tDC
Slew Rate Matching
ΔTrf
Skew, Output to Output
tsk3
1 Measured
2
Minimum
Typical
Maximum
Units
Notes
819
1150
mV
1,7,15
-300
-46
1,8,15
45
49
55
%
2
Single-ended measurement.
6
20
%
1,14
Averaging on, VT = 50%.
12
50
ps
2
from single-ended waveform.
Measured from differential waveform.
3 Measured from -150 mV to +150 mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through
4
5
the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing.
Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.
Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this
measurement.
6 Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative ppm tolerance, and spread spectrum
7
8
9
modulation.
Defined as the maximum instantaneous voltage including overshoot.
Defined as the minimum instantaneous voltage including undershoot.
Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in VCROSS
for any particular system.
10
11
12
Refer to Section 8.6.2 of the PCI Express Base Specification, Revision 5.0 for information regarding PPM considerations.
System board compliance measurements must use the test load. REFCLK+ and REFCLK- are to be measured at the load capacitors CL.
Single-ended probes must be used for measurements requiring single ended measurements. Either single-ended probes with math or differential
probe can be used for differential measurements. Test load CL = 2pF.
PCIe Gen1 through Gen4 specify ±300ppm frequency tolerances. PCIe Gen5 reduces the allowable tolerance to ±100ppm without spread
spectrum.
13 “ppm” refers to
14
15
parts per million and is a DC absolute period accuracy specification. 1ppm is 1/1,000,000th of 100.000000MHz exactly or 100Hz.
For 100ppm, then we have an error budget of 100Hz/ppm × 100ppm = 10kHz. The period is to be measured with a frequency counter with
measurement window set to 100ms or greater. The ±100ppm applies to systems that do not employ Spread Spectrum clocking, or that use
common clock source. For systems employing Spread Spectrum clocking, there is an additional 2,500ppm nominal shift in maximum period
resulting from the 0.5% down spread resulting in a maximum average period specification of +2,600ppm for Common Clock architectures.
Separate Reference Clock architectures may have a lower allowed spread percentage.
Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75 mV window centered on the
median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the
oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-;
the maximum allowed difference should not exceed 20% of the slowest edge rate.
At default SMBus amplitude settings.
Table 8. 12kHz–20MHz Phase Jitter of Differential Outputs
Parameter
Symbol
Phase Jitter, 12kHz–20MHz
tjph12k20M
©2020 Renesas Electronics Corporation
Conditions
Differential outputs when device is set to PCIe
SRnS mode (Byte1[4:3] = 00).
12
Minimum
Typical
Maximum
Units
1.9
2
ps (rms)
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 9. Current Consumption – 9FGL02
Parameter
Symbol
Operating Supply
Current
IDDAOP
VDDA, all outputs active at 100MHz.
13
17
mA
IDDOP
All VDD, except V DDA, all outputs active at100MHz.
18
23
mA
Wake-on-LAN Current
(Power down state and
Byte 3, bit 5 = '1')
IDDAPD
VDDA, DIF outputs off, REF output running.
0.9
1.5
mA
1
IDDPD
All VDD, except V DDA, DIF outputs off, REF output
running.
5.7
8
mA
1
Power Down Current
(Power down state and
Byte 3, bit 5 = '0')
IDDAPD
VDDA, all outputs off.
0.9
1.5
mA
IDDPD
All VDD, except V DDA, all outputs off.
1.7
2.5
mA
1
Conditions
Minimum Typical Maximum Units Notes
This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1).
Table 10. Current Consumption – 9FGL04
Parameter
Symbol
Conditions
Minimum Typical Maximum Units Notes
IDDAOP
VDDA, all outputs active at 100MHz.
13
17
mA
IDDOP
All other VDD, except V DDA, all outputs active
at100MHz.
30
39
mA
Wake-on-LAN Current
(Power down state and
Byte 3, bit 5 = '1')
IDDAPD
VDDA, DIF outputs off, REF output running.
0.9
1.5
mA
1
IDDPD
All other VDD, except V DDA, DIF outputs off, REF
output running.
5.9
8.0
mA
1
Power Down Current
(Power down state and
Byte 3, bit 5 = '0')
IDDAPD
VDDA, all outputs off.
0.9
1.5
mA
IDDPD
All other VDD, except V DDA, all outputs off.
1.5
2.5
mA
Operating Supply
Current
1
This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1).
Table 11. Current Consumption – 9FGL06
Parameter
Operating Supply
Current
Wake-on-LAN Current
(Power down state and
Byte 3, bit 5 = '1')
Symbol
Conditions
Minimum Typical Maximum Units Notes
IDDAOP
VDDA, all outputs active at 100MHz.
14
17
mA
IDDOP
All VDD, except V DDA and VDDIO, all outputs active
at100MHz.
16
20
mA
IDDIOOP
VDDIO, all outputs active at100MHz.
27
32
mA
IDDAPD
VDDA, DIF outputs off, REF output running.
0.9
1.5
mA
1
IDDPD
All VDD, except V DDA and VDDIO, DIF outputs off, REF
output running.
6
8
mA
1
0.04
0.05
mA
1
IDDIOOP
VDDIO, DIF outputs off, REF output running.
©2020 Renesas Electronics Corporation
13
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 11. Current Consumption – 9FGL06
Parameter
Power Down Current
(Power down state and
Byte 3, bit 5 = '0')
1
Symbol
Conditions
Minimum Typical Maximum Units Notes
IDDAPD
VDDA, all outputs off.
0.9
1.5
mA
IDDPD
All VDD, except V DDA and VDDIO, all outputs off.
1.8
2.5
mA
VDDIO, all outputs off.
0.04
0.08
mA
IDDIOOP
This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1).
Table 12. Current Consumption – 9FGL08
Parameter
Operating Supply
Current
Wake-on-LAN Current
(Power down state and
Byte 3, bit 5 = '1')
Power Down Current
(Power down state and
Byte 3, bit 5 = '0')
1
Symbol
Conditions
Minimum Typical Maximum Units Notes
IDDAOP
VDDA, all outputs active at 100MHz.
14
19
mA
IDDOP
All VDD, except V DDA and VDDIO, all outputs active
at100MHz.
18
24
mA
IDDIOOP
VDDIO, all outputs active at100MHz.
30
37
mA
IDDAPD
VDDA, DIF outputs off, REF output running.
0.9
1.5
mA
1
IDDPD
All VDD, except V DDA and VDDIO, DIF outputs off, REF
output running.
5.2
8
mA
1
IDDIOOP
VDDIO, DIF outputs off, REF output running.
0.04
0.1
mA
1
IDDAPD
VDDA, all outputs off.
0.9
1.5
mA
IDDPD
All VDD, except V DDA and VDDIO, all outputs off.
1.7
2.3
mA
VDDIO, all outputs off.
0.04
0.1
mA
IDDIOOP
This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1).
Table 13. PCIe Phase Jitter of Differential Outputs
TAMB = over the specified operating range. Supply voltages per normal operation conditions. See Test Loads for loading conditions.
Parameter
PCIe Phase Jitter
(Common Clocked
Architecture)
PCIe Phase Jitter
(SRIS Architecture)
Symbol
Conditions
Units
Notes
tjphPCIeG1-CC
PCIe Gen1 (2.5 GT/s)
18
28
86
ps (p-p)
1,2,7
PCIe Gen2 Hi Band (5.0 GT/s)
0.9
1.6
3
ps (RMS)
1,2,7
PCIe Gen2 Lo Band (5.0 GT/s)
0.4
0.6
3.1
ps (RMS)
1,2,
tjphPCIeG3-CC
PCIe Gen3 (8.0 GT/s)
0.25
0.4
1
ps (RMS)
1,2,3,7
tjphPCIeG4-CC
PCIe Gen4 (16.0 GT/s)
0.25
0.4
0.5
ps (RMS)
1,2,3,4,7
tjphPCIeG5-CC
PCIe Gen5 (32.0 GT/s)
0.09
0.11
0.15
ps (RMS)
1,2,3,5,7
tjphPCIeG1-SRIS
PCIe Gen1 (2.5 GT/s)
4
6
ps (RMS)
1,2,6,8
tjphPCIeG2-SRIS
PCIe Gen2 (5.0 GT/s)
0.8
1.1
ps (RMS)
1,2,6,8
tjphPCIeG3-SRIS
PCIe Gen3 (8.0 GT/s)
0.3
0.4
ps (RMS)
1,2,6,8
tjphPCIeG4-SRIS
PCIe Gen4 (16.0 GT/s)
0.3
0.35
ps (RMS)
1,2,6,8
tjphPCIeG5-SRIS
PCIe Gen5 (32.0 GT/s)
0.15
0.19
ps (RMS)
1,2,6,8
tjphPCIeG2-CC
©2020 Renesas Electronics Corporation
Minimum
14
Typical
Maximum Limit
N/A
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
1
2
3
4
5
6
7
8
The REFCLK jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads
section of the data sheet for the exact measurement setup. Values for the Common Clock architecture are calculated for CC/SRIS spread off and
spread on at -0.5%. SRIS values are calculated for CC/SRIS spread off and spread on at ≤-0.3%. If oscilloscope data is used, equipment noise is
removed from all results.
Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate
of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for
RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding
the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency.
For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak to peak jitter using a multiplication factor of 8.83. In the case
where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used.
SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC
content.
Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.
Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.
While the PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, it does not provide
specification limits, hence the N/A in the “Limit” column. SRIS values are informative only. In general, a clock operating in an SRIS system must be
twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by √2. An
additional consideration is the value for which to divide by √2. The conservative approach is to divide the ref clock jitter limit, and the case can be
made for dividing the channel simulation values by √2, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A
“rule-of-thumb” SRIS limit would be either 0.5ps RMS/√2 = 0.35ps RMS, or 0.7ps RMS/√2 = 0.5ps RMS.
Calculated for Byte1[4:3] spread settings of 01, 10 and 11.
Calculated for Byte1[4:3] spread settings of 01, and 10.
©2020 Renesas Electronics Corporation
15
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 14. REF Output
Parameter
Symbol
Long Accuracy
ppm
Clock Period
Conditions
Minimum
Typical
Maximum
Units
Notes
See Tperiod min-max values.
0
ppm
1,2
Tperiod
REF output.
40
ns
2
High Output Voltage
VHIGH
IOH = -2mA.
Low Output Voltage
VLOW
IOL = 2mA.
0.8 x VDDREF
V
0.2 x VDDREF
V
trf1
Byte 3 = 1F, VOH = 0.8 × VDD,
VOL = 0.2 × VDD.
0.5
0.9
1.5
V/ns
1
trf1
Byte 3 = 5F, VOH = 0.8 × VDD,
VOL = 0.2 × VDD.
1.0
1.5
2.5
V/ns
1,3
trf1
Byte 3 = 9F, VOH = 0.8 × VDD,
VOL = 0.2 × VDD.
1.5
2.1
3.1
V/ns
1
trf1
Byte 3 = DF, VOH = 0.8 × VDD,
VOL = 0.2 × VDD.
2.0
2.7
3.8
V/ns
1
Duty Cycle
dt1X
VT = VDD/2 V.
45
49.7
55
%
1,4
Jitter, Cycle to Cycle
tjcyc-cyc
VT = VDD/2 V.
35
125
ps
1,4
tjdBc1k
1kHz offset.
-145
-135
dBc
1,4
tjdBc10k
10kHz offset to Nyquist.
-150
-140
dBc
1,4
12kHz to 5MHz, DIF SSC off.
0.13
0.3
ps (rms)
1,4
12kHz to 5MHz, DIF SSC on.
1.4
1.5
ps (rms)
1,4,5
Rise/Fall Slew Rate
Noise Floor
Jitter, Phase
1 Guaranteed
2 All
3
4
5
tjphREF
by design and characterization, not 100% tested in production.
Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is trimmed to 25.00MHz.
Default SMBus value.
When driven by a crystal.
Does not apply to the 9FGL06x1 devices.
©2020 Renesas Electronics Corporation
16
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Power Management
Table 15. Power Management
3
Differential Output
CKPWRGD_PD#
SMBus OE bit
OEx# Pin
True O/P
Comp. O/P
REF
0
X
X
Low 1
Low 1
Hi-Z 2
1
1
0
Running
1
1
1 The
2 REF
3
1
1
0
X
Running
Disabled
1
Disabled
1
Running
Disabled
1
Running
Disabled
1
Disabled 4
output state is set by B11[1:0] (Low/Low default).
is Hi-Z until the 1st assertion of CKPWRGD_PD# high. After this, when CKPWRG_PD# is low, REF is disabled unless Byte3[5] = 1, in which
case REF is running.
Input polarities defined at default values.
4 See
SMBus description for Byte 3, bit 4.
Table 16. SMBus Address Selection
SADR
Address
+ Read/Write Bit
0
1101000
X
1
1101010
X
State of SADR on first
application of CKPWRGD_PD#
Test Loads
Figure 5. Single-ended Output Test Load
Test
Point
L
DUT
REFCLK
Zo
Rs
CL
Table 17. Terminations for Single-ended Output
Clock Source
Device Under Test (DUT)
Rs (Ω)
Zo (Ω)
L (cm)
CL (pF)
N/A
9FGL0nxx
33
50
12.7
4.7
©2020 Renesas Electronics Corporation
17
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Figure 6. Test Load for AC/DC Measurements
CL
CK+
L
Test Points for
High Impedance
Probe
Zo (differential)
DUT
CK-
CL
Table 18. Terminations for AC/DC Measurements
Clock Source
Device Under Test (DUT)
Rs (Ω)
Zo (Ω)
L (cm)
CL (pF)
N/A
9FGL0x41
Internal
100
12.7
2
N/A
9FGL0x51
Internal
85
12.7
2
Figure 7. Test Setup for PCIe Clock Phase Jitter Measurements
Oscillocope
(≥20GS/s)
L
CKIN+
CK+
Zo (differential)
DUT
CKIN-
Coax
Cables
0.1uF
CK-
50
SMA
Connectors
50
Table 19. Terminations for PCIe Clock Phase Jitter Measurements
Clock Source
Device Under Test (DUT)
Rs (Ω)
Zo (Ω)
L (cm)
CL (pF)
N/A
9FGL0x41
Internal
100
12.7
N/A
N/A
9FGL0x51
Internal
85
12.7
N/A
Alternate Terminations
The 9FGL family can easily drive LVPECL, LVDS, and CML logic. See “AN-891 Driving LVPECL, LVDS, and CML Logic with IDT's
“Universal” Low-Power HCSL Outputs” for details.
©2020 Renesas Electronics Corporation
18
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Crystal Characteristics
Table 20. Recommended Crystal Characteristics
1
Parameter
Value
Units
Frequency1
25
MHz
Resonance Mode
Fundamental
—
Frequency Tolerance @ 25°C
±20
ppm maximum
Frequency Stability, reference at 25°C over operating temperature range
±20
ppm maximum
Temperature Range (industrial)
-40 to +85
°C
Temperature Range (commercial)
0 to +70
°C
Equivalent Series Resistance (ESR)
50
Ω maximum
Shunt Capacitance (CO)
7
pF maximum
Load Capacitance (CL)
8
pF maximum
Drive Level
0.1
mW maximum
Aging per year
±5
ppm maximum
When driven by an external oscillator via the XIN/CLKIN_25 pin, X2 should be floating.
©2020 Renesas Electronics Corporation
19
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
General SMBus Serial Interface Information
How to Write
How to Read
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
Controller (host) sends a start bit
Controller (host) sends the write address
Renesas clock will acknowledge
Controller (host) sends the beginning byte location = N
Renesas clock will acknowledge
Controller (host) sends the byte count = X
Renesas clock will acknowledge
Controller (host) starts sending Byte N through Byte N+X-1
Renesas clock will acknowledge each byte one at a time
Controller (host) sends a stop bit
Index Block Write Operation
Controller (Host)
Renesas (Slave/Receiver)
Controller (host) will send a start bit
Controller (host) sends the write address
Renesas clock will acknowledge
Controller (host) sends the beginning byte location = N
Renesas clock will acknowledge
Controller (host) will send a separate start bit
Controller (host) sends the read address
Renesas clock will acknowledge
Renesas clock will send the data byte count = X
Renesas clock sends Byte N+X-1
Renesas clock sends Byte 0 through Byte X (if X(H) was
written to Byte 8)
▪ Controller (host) will need to acknowledge each byte
▪ Controller (host) will send a not acknowledge bit
▪ Controller (host) will send a stop bit
T
starT bit
Slave Address
WR
WRite
Index Block Read Operation
ACK
Beginning Byte = N
ACK
Controller (Host)
starT bit
Slave Address
WR
WRite
ACK
Beginning Byte = N
ACK
Data Byte Count = X
Beginning Byte N
X Byte
O
O
O
Renesas
T
ACK
ACK
O
O
O
RT
RD
Byte N + X - 1
Repeat starT
Slave Address
ReaD
ACK
ACK
P
stoP bit
Data Byte Count=X
ACK
Note: Address is latched on SADR pin.
Beginning Byte N
O
O
O
X Byte
ACK
O
O
O
Byte N + X - 1
N
P
©2020 Renesas Electronics Corporation
20
Not acknowledge
stoP bit
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 21. Byte 0: Output Enable Register
Byte 01
Control
Function
Type
Bit7
Bit6
Output Enable Output Enable
RW
RW
Bit5
Bit4
Output Enable
Output Enable
RW
RW
Bit3
Bit2
Bit1
Bit0
Output Enable Output Enable Output Enable
RW
0
See B11[1:0]
1
OE# Pin Controls Output
Output Enable
RW
RW
RW
9FGL08
Name
OE7
OE6
OE5
OE4
OE3
OE2
OE1
OE0
9FGL08
Default
1
1
1
1
1
1
1
1
9FGL06
Name
OE5
OE4
Reserved
OE3
OE2
OE1
Reserved
OE0
9FGL06
Default
1
1
x
1
1
1
x
1
9FGL04
Name
Reserved
Reserved
Reserved
Reserved
OE3
OE2
OE1
OE0
9FGL04
Default
x
x
x
x
1
1
1
1
9FGL02
Name
Reserved
Reserved
Reserved
Reserved
Reserved
OE1
OE0
Reserved
9FGL02
Default
x
x
x
x
x
1
1
x
1A
low on these bits will override the OE# pin and force the differential output to the state indicated by B11[1:0] (Low/Low default)
Table 22. Byte 1: Spread Spectrum with VHIGH Control Register
Byte 1
Bit7
Control
Function
Type
Bit6
SS Enable
SS Enable
Readback Bit1 Readback Bit0
R
R
0
See Spread Selection table
1
Bit5
Bit4
Bit3
Enable software
control of spread
spectrum
SS Software
Control Bit1
SS Software
Control Bit0
Controls
Output
Amplitude
RW
RW1
RW1
RW
RW
00 = 0.6V
10 = 0.75V
01 = 0.68V
11 = 0.85V
SS controlled by
latch (B1[7:6])
Values in B1[4:3]
control SS amount
Reserved
Bit1
Bit0
See Spread Selection table
Name
SSENRB1
SSENRB1
SSEN_SWCNTRL
SSENSW1
SSENSW0
Default
Latch
Latch
0
0
0
1 See
Bit2
AMPLITUDE 1 AMPLITUDE 0
x
1
0
notes on Spread Selection table. B1[5] must be set to a 1 in order to use B1[4:3].
©2020 Renesas Electronics Corporation
21
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 23. Byte 2: DIF Slew Selection Register
Byte 2
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Control
Function
Select fast or
slow slew rate
Select fast or
slow slew rate
Select fast or
slow slew rate
Select fast or
slow slew rate
Select fast or
slow slew rate
Select fast or
slow slew rate
Select fast or
slow slew rate
Select fast or
slow slew rate
Type
RW
RW
RW
RW
RW
RW
RW
RW
0
Slow Slew Rate
1
Fast Setting
9FGL08
Name
DIF7_slew
DIF6_slew
DIF5_slew
DIF4_slew
DIF3_slew
DIF2_slew
DIF1_slew
DIF0_slew
9FGL08
Default
1
1
1
1
1
1
1
1
9FGL06
Name
DIF5_slew
DIF4_slew
Reserved
DIF3_slew
DIF2_slew
DIF1_slew
Reserved
DIF0_slew
9FGL06
Default
1
1
x
1
1
1
x
1
9FGL04
Name
Reserved
Reserved
Reserved
Reserved
DIF3_slew
DIF2_slew
DIF1_slew
DIF0_slew
9FGL04
Default
x
x
x
x
1
1
1
1
9FGL02
Name
Reserved
Reserved
Reserved
Reserved
Reserved
DIF1_slew
DIF0_slew
Reserved
9FGL02
Default
x
x
x
x
x
1
1
x
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Wake-on-Lan
Enable for REF
REF Output
Enable
Reserved
Reserved
Reserved
Reserved
x
x
x
x
1 See
Differential Low-Power HCSL Outputs table for slew rates.
Table 24. Byte 3: REF Slew Rate Control Register
Byte 3
Bit7
Control
Function
Bit6
Slew Rate Control
Type
RW
RW
RW
RW
0
00 = Slowest
10 = Fast
REF disabled
in Power Down
Disabled1
1
01 = Slow
11 = Fastest
REF runs in
Power Down
Enabled
REF Power
Down Function
REF OE
0
1
Name
REF Slew Rate [1:0]
Default
1 The
0
1
disabled state depends on Byte11[1:0]. '00' = Low, '01'= HiZ, '10' = Low, '11' = High.
Byte 4 is Reserved
©2020 Renesas Electronics Corporation
22
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 25. Byte 5: Revision and Vendor ID Register
Byte 5
Bit7
Bit6
Control
Function
Type
Bit4
Bit3
Bit2
Revision ID
R
R
R
R
R
C rev = 0010
1
RID3
RID2
Bit1
Bit0
R
R
VENDOR ID
R
0
Name
Bit5
0001 = Renesas
RID1
RID0
VID3
VID2
VID1
VID0
Bit4
Bit3
Bit2
Bit1
Bit0
R
R
R
Table 26. Byte 6: Device Type/Device ID Register
Byte 6
Bit7
Control
Function
Type
Bit6
Bit5
Device Type
R
Device ID
R
R
R
9FGL08 = 0b00100
9FGL06 = 0b00110
9FGL04 = 0b00100
9FGL02 = 0b00010
0
00 = FGL
1
Name
Device Type1
R
Device Type0
Device ID5
Device ID4
Device ID3
Device ID2
Device ID1
Device ID0
Bit4
Bit3
Bit2
Bit1
Bit0
RW
RW
Table 27. Byte 7: Byte Count Register
Byte 7
Bit7
Bit6
Bit5
Control
Function
Type
0
Byte Count Programming
Reserved
Reserved
Reserved
RW
RW
RW
Writing to this register will configure how many bytes will be read back.
1
Name
Default
x
x
x
BC4
BC3
BC2
BC1
BC0
0
1
0
0
0
Bytes 8 and 9 are Reserved
©2020 Renesas Electronics Corporation
23
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 28. Byte 10: PLL MN Enable, PD_Restore Register
Byte 10
Bit7
Bit6
Control
Function
M/N Programming
Enable
Restore Default
Config. In PD
Type
RW
RW
0
M/N Prog. Disabled Clear Config in PD
1
M/N Prog. Enabled Keep Config in PD
Name
PLL M/N En
Power-Down (PD)
Restore
Default
0
1
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
x
x
x
x
x
x
Table 29. Byte 11: Stop State Control Register
Byte 11
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Control
Function
Type
0
Bit0
True/Complement DIF Output
Disable State
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
1
RW
RW
00 = Low/Low
01 = HiZ/HiZ
10 = High/Low 11 = Low/High
Name
Default
Bit1
x
x
x
STP[1]
STP[0]
x
x
x
0
0
Bit4
Bit3
Bit2
Bit1
Bit0
Table 30. Byte 12: Impedance Control Register 1
Byte 12
Control
Function
Type
Bit7
Bit6
Output impedance
control [1:0]
RW
RW
0
Output impedance
control [1:0]
RW
RW
DIF3_imp[1]
DIF3_imp[0]
DIF2_imp[1]
DIF2_imp[1]
DIF2_imp[0]
DIF1_imp[1]
RW
RW
RW
DIF2_imp[0]
DIF1_imp[1]
DIF1_imp[0]
DIF0_imp[1]
DIF0_imp[0]
DIF1_imp[0]
Reserved
Reserved
DIF0_imp[1]
DIF0_imp[0]
DIF0_imp[0]
Reserved
Reserved
9FGL0641 defaults to 0b1010xx10
9FGL0651 defaults to 0b0101xx01
9FGL06
Default
9FGL04
Name
RW
Output impedance
control [1:0]
9FGL0841 defaults to 0b10101010
9FGL0851 defaults to 0b01010101
9FGL08
Default
9FGL06
Name
Output impedance
control [1:0]
00 = 33ohm DIF Zout, 01 = 85ohm DIF Zout
10 = 100ohm DIF Zout, 11 = Reserved
1
9FGL08
Name
Bit5
DIF1_imp[1]
DIF1_imp[0]
©2020 Renesas Electronics Corporation
Reserved
Reserved
24
DIF0_imp[1]
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 30. Byte 12: Impedance Control Register 1 (Cont.)
Byte 12
Bit7
Bit6
Bit5
Bit4
Bit2
Bit1
Bit0
Reserved
Reserved
Reserved
Bit2
Bit1
Bit0
9FGL0441 defaults to 0b10xx10xx
9FGL0451 defaults to 0b01xx01xx
9FGL04
Default
9FGL02
Name
Bit3
DIF0_imp[1]
DIF0_imp[0]
Reserved
Reserved
Reserved
9FGL0241 defaults to 0b10xxxxxx
9FGL0251 defaults to 0b01xxxxxx
9FGL02
Default
Table 31. Byte 13: Impedance Control Register 2
Byte 13
Control
Function
Type
Bit7
Bit6
Output impedance
control [1:0]
RW
RW
0
Bit4
Output impedance
control [1:0]
RW
RW
DIF7_imp[1]
DIF7_imp[0]
DIF6_imp[1]
DIF5_imp[1]
DIF5_imp[0]
DIF4_imp[1]
Reserved
Reserved
DIF3_imp[1]
RW
RW
RW
DIF6_imp[0]
DIF5_imp[1]
DIF5_imp[0]
DIF4_imp[1]
DIF4_imp[0]
DIF4_imp[0]
Reserved
Reserved
DIF3 Zout
DIF3 Zout
DIF3_imp[0]
DIF2_imp[1]
DIF2_imp[0]
Reserved
Reserved
DIF1_imp[0]
Reserved
Reserved
9FGL0441 defaults to 0bxx1010xx
9FGL0451 defaults to 0bxx0101xx
9FGL04
Default
9FGL02
Name
RW
Output impedance
control [1:0]
9FGL0641 defaults to 0b1010xx10
9FGL0651 defaults to 0b0101xx01
9FGL06
Default
9FGL04
Name
Output impedance
control [1:0]
9FGL0841 defaults to 0hAA
9FGL0851 defaults to 0h55
9FGL08
Default
9FGL06
Name
Bit3
00 = 33ohm DIF Zout, 01 = 85ohm DIF Zout
10 = 100ohm DIF Zout, 11 = Reserved
1
9FGL08
Name
Bit5
Reserved
Reserved
9FGL02
Default
©2020 Renesas Electronics Corporation
Reserved
Reserved
DIF1_imp[1]
9FGL0241 defaults to 0bxxxx10xx
9FGL0251 defaults to 0bxxxx01xx
25
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 32. Byte 14: Pull-up Pull-down Control Register 1
Byte 14
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Control
Function
Pull-up(pu)/
Pull-down(pd) control
Pull-up(pd)/
Pull-down(pd) control
Pull-up(pd)/
Pull-down(pd) control
Pull-up(pd)/
Pull-down(pd) control
Type
RW
RW
RW
RW
RW
RW
RW
RW
0
00 = None
01 = pd
00 = None
01 = pd
00 = None
01 = pd
00 = None
01 = pd
1
10 = pu
11 = pu+pd
10 = pu
11 = pu+pd
10 = pu
11 = pu+pd
10 = pu
11 = pu+pd
9FGL08
Name
OE3_pu/pd[1]
OE3_pu/pd[0]
OE2_pu/pd[1]
OE2_pu/pd[0]
OE1_pu/pd[1]
OE1_pu/pd[0]
OE0_pu/pd[1]
OE0_pu/pd[0]
9FGL08
Default
0
1
0
1
0
1
0
1
9FGL06
Name
OE2_pu/pd[1]
OE2_pu/pd[0]
OE1_pu/pd[1]
OE1_pu/pd[0]
Reserved
Reserved
OE0_pu/pd[1]
OE0_pu/pd[0]
9FGL06
Default
0
1
0
1
x
x
0
1
9FGL04
Name
OE1_pu/pd[1]
OE1_pu/pd[0]
Reserved
Reserved
OE0_pu/pd[1]
OE0_pu/pd[0]
Reserved
Reserved
9FGL04
Default
0
1
x
x
0
1
x
x
9FGL02
Name
OE0_pu/pd[1]
OE0_pu/pd[0]
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
9FGL02
Default
0
1
x
x
x
x
x
x
Bit3
Bit2
Bit1
Bit0
Table 33. Byte 15: Pull-up Pull-down Control Register 2
Byte 15
Bit7
Bit6
Control
Function
Pull-up(pd)/
Pull-down(pd) control
Pull-up(pd)/
Pull-down(pd) control
Pull-up(pd)/
Pull-down(pd) control
Pull-up(pd)/
Pull-down(pd) control
Type
RW
RW
RW
RW
RW
RW
RW
RW
0
00 = None
01 = pd
00 = None
01 = pd
00 = None
01 = pd
00 = None
01 = pd
1
10 = pu
11 = pu+pd
10 = pu
11 = pu+pd
10 = pu
11 = pu+pd
10 = pu
11 = pu+pd
9FGL08
Name
OE7_pu/pd[1]
OE7_pu/pd0]
OE6_pu/pd[1]
OE6_pu/pd[0]
OE5_pu/pd[1]
OE5_pu/pd[0]
OE4_pu/pd[1]
OE4_pu/pd[0]
9FGL08
Default
0
1
0
1
0
1
0
1
9FGL06
Name
OE5_pu/pd[1]
OE5_pu/pd[0]
OE4_pu/pd[1]
OE4_pu/pd[0]
Reserved
Reserved
OE3_pu/pd[1]
OE3_pu/pd[0]
9FGL06
Default
0
1
0
1
0
1
0
1
9FGL04
Name
Reserved
Reserved
OE3_pu/pd[1]
OE3_pu/pd[0]
OE2_pu/pd[1]
OE2_pu/pd[0]
Reserved
Reserved
©2020 Renesas Electronics Corporation
Bit5
Bit4
26
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 33. Byte 15: Pull-up Pull-down Control Register 2 (Cont.)
Byte 15
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
9FGL04
Default
0
1
0
1
0
1
0
1
9FGL02
Name
Reserved
Reserved
Reserved
Reserved
OE1_pu/pd[1]
OE1_pu/pd[0]
Reserved
Reserved
9FGL02
Default
0
1
0
1
0
1
0
1
Bit3
Bit2
Bit1
Bit0
Table 34. Byte 16: Pull-up Pull-down Control Register 3
Byte 16
Bit7
Bit6
Bit5
Bit4
Pull-up(pd)/
Pull-down(pd) control
Control
Function
Type
RW
RW
00 = None
01 = pd
1
10 = pu
11 = pu+pd
Name
CKPWRGD_
PD_pu/pd[1]
CKPWRGD_
PD_pu/pd[0]
1
0
0
Default
Reserved
0
Reserved
0
Reserved
1
Reserved
0
Reserved
0
Reserved
1
Byte 17 is Reserved
©2020 Renesas Electronics Corporation
27
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Table 35. Byte 18: Polarity Control Register 2
Byte 18
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
Control
Function
Sets OE pin
polarity
Sets OE pin
polarity
Sets OE pin
polarity
Sets OE pin
polarity
Sets OE pin
polarity
Sets OE pin
polarity
Sets OE pin
polarity
Sets OE pin
polarity
Type
RW
RW
RW
RW
RW
RW
RW
RW
0
Output enabled when OE pin is low
1
Output enabled when OE pin is high
9FGL08
Name
OE7_polarity
OE6_polarity
OE5_polarity
OE4_polarity
OE3_polarity
OE2_polarity
OE1_polarity
OE0_polarity
9FGL08
Default
0
0
0
0
0
0
0
0
9FGL06
Name
OE5_polarity
OE4_polarity
Reserved
OE3_polarity
OE2_polarity
OE1_polarity
Reserved
OE0_polarity
9FGL06
Default
0
0
0
0
0
0
0
0
9FGL04
Name
Reserved
OE3_polarity
OE2_polarity
Reserved
OE1_polarity
Reserved
OE0_polarity
Reserved
9FGL04
Default
0
0
0
0
0
0
0
0
9FGL02
Name
Reserved
Reserved
OE1_polarity
Reserved
OE0_polarity
Reserved
Reserved
Reserved
9FGL02
Default
0
0
0
0
0
0
0
0
Bit4
Bit3
Bit2
Bit1
Bit0
Table 36. Byte 19: Polarity Control Register 1
Byte 19
Bit7
Bit6
Bit5
Control
Function
Sets
CKPWRGD_
PD polarity
Type
RW
0
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Power Down
when Low
1
Power Down
when High
Name
CKPWRGD_
PD_polarity
Default
0
0
©2020 Renesas Electronics Corporation
0
0
28
0
0
0
0
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Package Outline Drawings
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information
is the most current data available.
9FGL02:
www.idt.com/document/psc/nlnlg24p1-package-outline-40-x-40-mm-body-05-mm-pitch-qfn-epad-size-245-x-245-mm
9FGL04:
www.idt.com/document/psc/32-vfqfpn-package-outline-drawing-50-x-50-x-090-mm-body-epad-315-x-315-mm-nlg32p1
9FGL06:
www.idt.com/document/psc/ndndg40-package-outline-50-x-50-mm-bodyepad-350mm-sq-040-mm-pitch-qfn
9FGL08:
www.idt.com/document/psc/48-vfqfpn-package-outline-drawing-60-x-60-x-090-mm-body-epad-42-x-42-mm-040mm-pitch-ndg48p2
Marking Diagrams
9FGL02
▪ Line 1:“LOT” denotes the lot number.
▪ Line 2: truncated part number.
▪ Line 3: “YYWW” is the last two digits of the year and the work week the part was assembled.
9FGL04
▪
▪
▪
▪
©2020 Renesas Electronics Corporation
Lines 1 and 2: truncated part number
Line 3: “YYWW” is the last two digits of the year and the work week the part was assembled.
Line 4: “COO” denotes country of origin.
Line 5: “LOT” denotes the lot number.
29
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
9FGL06
9FGL08
▪
▪
▪
▪
Lines 1 and 2: truncated part number
Line 3: “YYWW” is the last two digits of the year and the work week the part was assembled.
Line 4: “COO” denotes country of origin.
Line 5: “LOT” denotes the lot number.
▪
▪
▪
▪
Lines 1 and 2: truncated part number
Line 3: “YYWW” is the last two digits of the year and the work week the part was assembled.
Line 4: “COO” denotes country of origin.
Line 5: “LOT” denotes the lot number.
©2020 Renesas Electronics Corporation
30
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Ordering Information
Table 37. Ordering Information
Number of
Output
Clock Outputs Impedance
100
2
85
100
4
85
100
6
85
100
8
85
Orderable Part
Number
Temperature
Range
Package
Part Number Suffix and Shipping Method
9FGL0241CKILF
9FGL0241CKILFT
9FGL0251CKILF
24-VFQFPN
9FGL0251CKILFT
9FGL0441CKILF
9FGL0441CKILFT
9FGL0451CKILF
32-VFQFPN
None = Trays
9FGL0451CKILFT
-40°C to +85°C
9FGL0641CKILF
9FGL0641CKILFT
9FGL0651CKILF
40-VFQFPN
“T” = Tape and Reel, Pin 1 Orientation: EIA-481C
(see Table 38 for more details)
9FGL0651CKILFT
9FGL0841CKILF
9FGL0841CKILFT
9FGL0851CKILF
48-VFQFPN
9FGL0851CKILFT
“C” is the device revision designator (will not correlate with the datasheet revision).
“LF” denotes Pb-free configuration, RoHS compliant.
Table 38. Pin 1 Orientation in Tape and Reel Packaging
Part Number Suffix
Pin 1 Orientation
Illustration
Correct Pin 1 ORIENTATION
T
CARRIER TAPE TOPSIDE
(Round Sprocket Holes)
Quadrant 1 (EIA-481-C)
USER DIRECTION OF FEED
©2020 Renesas Electronics Corporation
31
November 17, 2020
9FGL02x1/04x1/06x1/08x1 Datasheet
Revision History
Revision Date
Description of Change
November 17, 2020
▪ Updated DIF5# pin numbers for 9FGL06x1.
▪ Rebranded to Renesas.
October 10, 2019
Initial release.
©2020 Renesas Electronics Corporation
32
November 17, 2020
IMPORTANT NOTICE AND DISCLAIMER
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)
Corporate Headquarters
Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:
www.renesas.com/contact/
Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.
© 2020 Renesas Electronics Corporation. All rights reserved.