PCIe Gen1–5 Low-Power
Programmable PhiClock™
Generators
Description
Features
The 9FGV1002C / 9FGV1006C are members of the Renesas
PhiClock™ programmable clock generator family. These devices
are optimized for low phase noise spread-spectrum applications
such as PCIe Express. The 9FGV1002C is a four-output device
while the 9FGV1006C is a smaller two-output version. Four
user-defined configurations may be selected via two hardware
select pins or two I2C bits, allowing easy software selection of the
desired configuration. Any one of the four OTP configurations may
be specified as the default when operating in I2C mode. Four
unique I2C addresses are available, allowing easy I2C access to
multiple components.
▪
▪
▪
▪
1.8V to 3.3V power supplies
Individual 1.8V to 3.3V VDDO for each output pair
Supports HCSL, LVDS and LVCMOS I/O standards
HCSL utilizes Renesas’ LP-HCSL technology for improved
performance, lower power and higher integration:
• Programmable output impedance of 85Ω or 100Ω
▪ Supports LVPECL and CML logic with easy AC coupling – see
application note AN-891 for alternate terminations
▪
▪
▪
▪
Typical Applications
▪
▪
▪
▪
▪
9FGV1002C / 9FGV1006C
Datasheet
High-performance Computing (HPC)
Enterprise Storage including eSSDs
10G / 25G / 100G Ethernet
Fiber Optic Modules
NVLink
On-board OTP supports up to 4 complete configurations
Configuration selected via strapping pins or I2C
Internal crystal load capacitors
< 125mW at 1.8V with LP-HCSL outputs at 100MHz
(9FGV1002C)
▪ < 100mW at 1.8V with LP-HCSL outputs at 100MHz
(9FGV1006C)
▪ 4 programmable I2C addresses: D0, D2, D4, D6
▪ Easily configured with Renesas Timing Commander™ software
or Web Configuration tool
PCIe Clocking Architectures
▪ 4 × 4 mm 24-VFQFPN with integrated crystal option
▪ Common Clocked (CC)
▪ Independent Reference without spread spectrum (SRnS)
▪ Independent Reference with spread spectrum (SRIS)
(9FGV1002CQ)
▪ 3 × 3 mm 16-LGA with integrated crystal option
(9FGV1006CQ)
▪ Programmable spread spectrum modulation frequency and
Output Features
amount
▪ 9FGV1002: 4 programmable output pairs plus 2 LVCMOS REF
Key Specifications
▪ 9FGV1006: 2 programmable output pairs plus 1 LVCMOS REF
▪ 12kHz–20MHz typical phase jitter at 156.25M (SSC off) 276ps
▪ 1 integer, fractional or spread spectrum output frequency per
▪ PCIe Gen4 jitter (CC) < 0.23ps RMS
▪ PCIe Gen5 jitter (CC) < 0.08ps RMS
▪ PCIe Gen5 jitter (SRIS) < 0.07ps RMS
outputs
RMS
output
configuration
▪ 1MHz–325MHz LVDS or LP-HCSL outputs
©2020 Renesas Electronics Corporation
1
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
9FGV1002C / 9FGV1006C Block Diagram
VDDREFp
9FGV1002
REF1
vREF0_SEL_I2C#
Consult factory if design requires REF1.
XIN/CLKIN
XO
OSC
9FGV1002CQ and
9FGV1006CQ integrate the
crystal
FRAC PLL
(SSC)
vSEL0/SCL
vSEL1/SDA
9FGV1002
SMBus
Engine
^OEB
^OEA
INT
DIV
Factory
Configuration
Control
Logic
Prog.
Output
OUT3#
OUT3
VDDO3
Prog.
Output
OUT2#
OUT2
VDDO2
Prog.
Output
OUT1#
OUT1
VDDO1
Prog.
Output
OUT0#
OUT0
VDDO0
9FGV1002
Table 1. OE Mapping
OE[B:A]
OUT0
OUT1
OUT2
OUT3
REF0
REF1
00
Running
Stopped
Stopped
Stopped
Running
Running
01
Running
Running
Stopped
Stopped
Running
Running
10
Running
Running
Running
Stopped
Running
Running
11
Running
Running
Running
Running
Running
Running
©2020 Renesas Electronics Corporation
2
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Contents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
PCIe Clocking Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Output Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
9FGV1002C / 9FGV1006C Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
9FGV1002C Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
9FGV1006C Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Phase Noise Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
I2C Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Crystal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Marking Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Standard Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
©2020 Renesas Electronics Corporation
3
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Pin Assignments
24 23 22 21 20 19
10 11 12
7
OUT3
OUT3#
VDDO3
VDDAp
8
9
16 OUT2#
15 VDDO1
14 OUT1
13 OUT1#
10 11 12
VDDO0
vSEL1/SDA 5
^OEA 6
OUT0
14 OUT1
13 OUT1#
18 VDDO2
17 OUT2
9FGV1002CQ
Connect
EPAD to GND
OUT0#
OTP_VPP
REF1 3
vSEL0/SCL 4
OTP_VPP
^OEB
16 OUT2#
15 VDDO1
VDDO0
9
OUT0
8
OUT0#
7
VDDDp
vSEL1/SDA 5
^OEA 6
NC 1
NC 2
^OEB
9FGV1002C
Connect
EPAD to GND
REF1 3
vSEL0/SCL 4
24 23 22 21 20 19
18 VDDO2
17 OUT2
VDDDp
XIN/CLKIN 1
XO 2
vREF0_SEL_I2C#
VDDREFp
OUT3
OUT3#
VDDO3
VDDAp
vREF0_SEL_I2C#
VDDREFp
Figure 1. Pin Assignments for 9FGV1002C 4 x 4 mm 24-VFQFPN and 24-LGA Packages – Top View
4 × 4 mm 24-QFN, 0.5mm pitch
4 × 4 mm 24-LGA, 0.5mm pitch
^ prefix indicates internal pull-up
v prefix indicates internal pull-down resistor
Note: The order of OUT3 is reversed from OUT[0:2]
^ prefix indicates internal pull-up resistor
v prefix indicates internal pull-down resistor
Note: The order of OUT3 is reversed from OUT[0:2]
OUT0#
OUT0
vSEL0/SCL 3
vSEL1/SDA 4
VDDO1
5
6
7
8
12 OUT1
11 OUT1#
10 VDDO0
9 VDDO0
16-LGA 3 x 3 mm, 0.5mm pitch
^ prefix indicates internal pull-up resistor
v prefix indicates internal pull-down resistor
16-LGA 3 x 3 mm, 0.5mm pitch
^ prefix indicates internal pull-up resistor
v prefix indicates internal pull-down resistor
©2020 Renesas Electronics Corporation
9FGV1006CQ
EPAD = GND
OUT0
8
10 VDDO0
9 VDDO0
NC 2
OUT0#
7
NC 1
OTP_VPP
6
12 OUT1
11 OUT1#
VDDDp
5
VDDDp
vSEL0/SCL 3
vSEL1/SDA 4
9FGV1006C
EPAD = GND
OTP_VPP
XO 2
VDDAp
16 15 14 13
16 15 14 13
XIN/CLKIN 1
vREF0_SEL_I2C#
VDDREFp
VDDO1
VDDAp
vREF0_SEL_I2C#
VDDREFp
Figure 2. Pin Assignments for 9FGV1006C 3 x 3 mm 16-LGA Package – Top View
4
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
9FGV1002C Pin Descriptions
Note: Unused outputs can be programmed off and left floating. Output supplies VDDREF and VDDO2 have to be connected. If OUT0 is
used, V DDO1 must also be connected.
Table 2. 9FGV1002C Pin Descriptions
Number
1[a]
Name
XIN/CLKIN
Type
Input
Description
Crystal input or reference clock input.
[a]
XO
Output
Crystal output.
3
REF1
Output
LVCMOS reference output.
4
vSEL0/SCL
Input
Select pin for internal frequency configurations/I2C clock pin. Function is determined by state of
SEL_I2C# upon power-up. This pin has an internal pull-down.
5
vSEL1/SDA
I/O
Select pin for internal frequency configurations/I2C data pin. Function is determined by state of
SEL_I2C# upon power-up. This pin has an internal pull-down.
6
^OEA
Input
Active high input for enabling outputs. This pin has an internal pull-up resistor.
0 = disable outputs, 1 = enable outputs.
7
VDDDp
Power
Digital power. Connect to 1.8V, 2.5V or 3.3V.
8
^OEB
Input
Active high input for enabling outputs. This pin has an internal pull-up resistor.
0 = disable outputs, 1 = enable outputs.
9
OTP_VPP
Power
Voltage for programming OTP. During normal operation, this pin should be connected to the
same power rail as VDDD.
10
OUT0#
Output
Complementary output clock 0.
11
OUT0
Output
Output clock 0.
12
VDDO0
Power
Power supply for output 0.
13
OUT1#
Output
Complementary output clock 1.
14
OUT1
Output
Output clock 1.
15
VDDO1
Power
Power supply for output 1.
16
OUT2#
Output
Complementary output clock 2.
17
OUT2
Output
Output clock 2.
18
VDDO2
Power
Power supply for output 2.
19
OUT3
Output
Output clock 3.
20
OUT3#
Output
Complementary output clock 3.
21
VDDO3
Power
Power supply for output 3.
22
VDDAp
Power
Analog power. Connect to same voltage as VDDDp, with proper filtering.
2
Latched
I/O
Latched input/LVCMOS output. At power-up, the state of this pin is latched to select the state of
the I2C pins. After power-up, the pin acts as an LVCMOS reference output. This pin has an
internal pull-down.
1 = SEL0/SEL1.
0 = SCL/SDA.
23
vREF0_SEL_I2C#
24
VDDREFp
Power
Power supply for REF outputs and the internal XO. Nominal voltages are 1.8V, 2.5V or 3.3V.
25
EPAD
GND
Connect to ground.
[a] These pins are 'No Connect' on 9FGV1002Q integrated quartz versions and should have no stubs.
©2020 Renesas Electronics Corporation
5
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
9FGV1006C Pin Descriptions
Note: Unused outputs can be programmed off and left floating. Output supplies VDDREF and VDDO1 have to be connected. This means that if
only one output is to be used, it must be OUT1. If OUT0 is used, both pins 9 and 10 must be connected. They may share the same power filter.
Table 3. 9FGV1006C Pin Descriptions
Number
1[a]
2
[a]
Name
XIN/CLKIN
XO
Type
Input
Output
Description
Crystal input or reference clock input.
Crystal output.
vSEL0/SCL
Input
Select pin for internal frequency configurations/I2C Clock pin. Function is determined by
state of SEL_I2C# upon power-up. This pin has an internal pull-down.
4
vSEL1/SDA
I/O
Select pin for internal frequency configurations/I2C Data pin. Function is determined by
state of SEL_I2C# upon power-up. This pin has an internal pull-down.
5
VDDDp
Power
Digital power. Connect to 1.8V, 2.5V or 3.3V.
OTP_VPP
Power
Voltage for programming OTP. During normal operation, this pin should be connected to the
same power rail as VDDD.
7
OUT0#
Output
Complementary output clock 0.
8
OUT0
Output
Output clock 0.
9
VDDO0
Power
Power supply for output 0.
10
VDDO0
Power
Power supply for output 0.
11
OUT1#
Output
Complementary output clock 1.
12
OUT1
Output
Output clock 1.
13
VDDO1
Power
Power supply for output 1.
14
VDDAp
Power
Analog power. Connect to same voltage as VDDDp, with proper filtering.
3
6
Latched
I/O
Latched input/LVCMOS output. At power-up, the state of this pin is latched to select the
state of the I2C pins. After power-up, the pin acts as an LVCMOS reference output. This pin
has an internal pull-down.
1 = SEL0/SEL1.
0 = SCL/SDA.
15
vREF0_SEL_I2C#
16
VDDREFp
Power
Power supply for REF outputs and the internal XO. Nominal voltages are 1.8V, 2.5V or
3.3V.
17
EPAD
GND
Connect to ground.
[a] These pins are 'No Connect' on 9FGV1006Q integrated quartz version and should have no stubs.
©2020 Renesas Electronics Corporation
6
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Phase Noise Plots
Figure 3. 9FGV1002C Phase Noise Plot1, 3.3V, 25°C.
1
See Test Frequencies for Jitter Measurements table for details.
©2020 Renesas Electronics Corporation
7
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Figure 4. 9FGV1006C Phase Noise Plot1, 3.3V, 25°C.
1 See
Test Frequencies for Jitter Measurements table for details.
©2020 Renesas Electronics Corporation
8
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Absolute Maximum Ratings
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the
device. Functional operation of the 9FGV1002C / 9FGV1006C at absolute maximum ratings is not implied. Exposure to absolute
maximum rating conditions may affect device reliability.
Table 4. Absolute Maximum Ratings
Parameter
Rating
Supply Voltage, V DDA, VDDD, VDDO
3.9V
Storage Temperature, T STG
-65°C to 150°C
ESD Human Body Model
2000V
Junction Temperature
125°C
Inputs
XIN/CLKIN
0V to 1.2V voltage swing
Other Inputs
-0.5V to VDDD
Outputs
Outputs, VDDO (LVCMOS)
-0.5V to VDDO + 0.5V
Outputs, IO (SDA)
10mA
Thermal Characteristics
Table 5. Thermal Characteristics for 24-pin Devices
Parameter
Thermal Resistance
(devices with external crystal)
Thermal Resistance
Q-series (devices with internal
crystal)
1
Symbol
Conditions
Package
Typical Values
Units
Notes
θJC
Junction to case.
52
°C/W
1
θJb
Junction to base.
2.3
°C/W
1
θJA0
Junction to air, still air.
44
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
37
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
33
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
32
°C/W
1
θJC
Junction to case.
57.3
°C/W
1
θJb
Junction to base.
24.3
°C/W
1
θJA0
Junction to air, still air.
79.8
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
73.9
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
69.9
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
67.3
°C/W
1
NBG24
LTG24
EPAD soldered to board.
©2020 Renesas Electronics Corporation
9
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Table 6. Thermal Characteristics for 16-pin devices
Parameter
Thermal Resistance
(devices with external crystal)
Thermal Resistance
Q-series (devices with internal
crystal)
1
Symbol
Conditions
Package
Typical Values
Units
Notes
θJC
Junction to case.
66
°C/W
1
θJb
Junction to base.
5.1
°C/W
1
θJA0
Junction to air, still air.
63
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
56
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
51
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
49
°C/W
1
θJC
Junction to case.
82.1
°C/W
1
θJb
Junction to base.
42.3
°C/W
1
θJA0
Junction to air, still air.
93.6
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
87.1
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
83.3
°C/W
1
LTG16
LTG16
EPAD soldered to board.
Recommended Operating Conditions
Table 7. Recommended Operating Conditions
Symbol
Minimum
Typical
Maximum
Units
Power supply voltage for supporting 1.8V outputs.
1.71
1.8
1.89
V
Power supply voltage for supporting 2.5V outputs.
2.375
2.5
2.625
V
Power supply voltage for supporting 3.3V outputs.
3.135
3.3
3.465
V
VDDD
Power supply voltage for core logic functions.
1.71
3.465
V
VDDA
Analog power supply voltage. Use filtered analog power supply if
available.
1.71
3.465
V
TA
Operating temperature, ambient.
-40
85
°C
CL
Maximum load capacitance (3.3V LVCMOS only).
15
pF
tPU
Power-up time for all VDDs to reach minimum specified voltage (power
ramps must be monotonic).
5
ms
VDDOx
Parameter
©2020 Renesas Electronics Corporation
10
0.05
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Electrical Characteristics
VDDx = 3.3V ±5%, 2.5V ±5%, 1.8V ±5%, TA = -40°C to +85°C unless stated otherwise.
Table 8. Common Electrical Characteristics
Parameter
Input Frequency
Symbol
fIN
Conditions
Minimum
Typical
Maximum
Units Notes
Crystal input frequency.
8
50
MHz
1
CLKIN input frequency.
1
240
MHz
5
Differential clock output (LVDS/LP-HCSL).
1
325
MHz
Single-ended clock output (LVCMOS).
1
200
MHz
2600
MHz
Output Frequency
fOUT
VCO Frequency
fVCO
VCO operating frequency range.
2400
Loop Bandwidth
fBW
Input frequency = 25MHz.
0.06
0.9
MHz
Input High Voltage
VIH
SEL[1:0].
0.7 x VDDD
VDDD + 0.3
V
Input Low Voltage
VIL
SEL[1:0].
GND - 0.3
0.8
V
Input High Voltage
VIH
REF/SEL_I2C#.
0.65 x VDDREF
VDDREF + 0.3
V
Input Low Voltage
VIL
REF/SEL_I2C#.
-0.3
0.4
V
Input High Voltage
VIH
XIN/CLKIN.
0.8
1.2
V
Input Low Voltage
VIL
XIN/CLKIN.
-0.3
0.4
V
Input Rise/Fall Time
TR/TF
Input Capacitance
CIN
Internal Pull-up Resistor
RUP
RDOWN
Internal Pull-down
Resistor
2500
OEA, OEB (when present)
10
SEL1/SDA, SEL0/SCL
300
SEL[1:0].
ns
3
7
pF
200
237
300
kΩ
200
237
300
kΩ
8
pF
Programmable
Capacitance at XIN and
XO (XIN in parallel with
XO)
CL
XIN/CLKIN, XO.
0
Input Duty Cycle
t2
CLKIN, measured at VDDREF/2.
40
50
60
%
LVCMOS, fOUT > 156.25MHz.
40
50
60
%
LVCMOS, fOUT < 156.25MHz.
45
50
55
%
LVDS, LP-HCSL outputs.
45
50.2
55
%
Output Duty Cycle
Clock Jitter
t3
t6
Cycle-to-cycle jitter (Peak-to-Peak), See
Test Frequencies for Jitter Measurements
for configurations.
24
ps
4
Reference clock RMS phase jitter (12kHz to
20MHz integration range). See Test
Frequencies for Jitter Measurements for
configurations.
245
fs rms
4
OUTx RMS phase jitter(12kHz to 20MHz
integration range) differential output. See
Test Frequencies for Jitter Measurements
for configurations.
276
fs rms
4
©2020 Renesas Electronics Corporation
11
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Table 8. Common Electrical Characteristics (Cont.)
Parameter
Output Skew
Lock Time
1
2
3
Typical
Maximum
All outputs using the same driver format
same VDDO voltage. (9FGV1006C).
38
60
All outputs using the same driver format and
same VDDO voltage. (9FGV1002C).
62
100
t8a
PLL outputs valid from VDDs reaching 1.5V.
5
10
ms
2,3
t8b
REF outputs valid from VDDs reaching 1.5V.
5
11
ms
2,3
Units
Notes
t7
Conditions
Minimum
Units Notes
ps
Practical lower frequency is determined by loop filter settings.
Includes loading the configuration bits from OTP to registers.
Actual PLL lock time depends on the loop configuration.
4 Actual
5
Symbol
jitter is configuration dependent. These values are representative of what the device can achieve.
Input doubler off. Maximum input frequency with input doubler on is 160MHz.
Table 9. Test Frequencies for Jitter Measurements
VDDx = 3.3V±5%, 2.5V±5%, 1.8V±5%, TA = -40°C to +85°C unless stated otherwise
XIN/CLKIN
OUT0
OUT1
50
1
4
OUT3
Unit
Notes
156.25
MHZ
3,4
100
MHZ
1,2,3
This configuration is used for 12kHz–20MHz REF phase jitter measurement, SSC off.
2 This
3
OUT2
configuration is used for PCIe filtered phase jitter measurements with SSC on and off.
Outputs configured as LP-HCSL or LVDS with REF output off, unless noted.
This configuration is used for 12kHz–20MHz OUT phase jitter measurement. REF off, SSC off.
Table 10. LVCMOS Output Electrical Characteristics
Parameter
Slew Rate
Symbol
SR
Conditions
Minimum
Typical
Maximum
3.3V ±5%, 20% to 80% of VDDO
(output load = 4.7pF).
2.6
3.7
4.7
2.5V ±5%, 20% to 80% of VDDO
(output load = 4.7pF).
1.5
2.4
4.7
1.8V ±5%, 20% to 80% of VDDO
(output load = 4.7pF).
1.0
1.7
3.2
V/ns
IOH = -15mA at 3.3V.
Output High Voltage
VOH
IOH = -12mA at 2.5V.
0.8 x VDDO
VDDO
V
IOH = -8mA at 1.8V.
©2020 Renesas Electronics Corporation
12
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Table 10. LVCMOS Output Electrical Characteristics (Cont.)
Parameter
Symbol
Conditions
Minimum
Typical
Maximum
Units
0.22
0.4
V
5
μA
Notes
IOL = 15mA at 3.3V.
Output Low Voltage
VOL
IOL = 12mA at 2.5V.
IOL = 8mA at 1.8V.
Output Leakage Current
IOZDD
Outputs, tri-stated,
VDDO, VDDREF = 3.465V.
0
CMOS Output Driver Impedance
ROUT
TA = 25°C.
17
Ω
Table 11. LVDS Output Electrical Characteristics
Parameter
Symbol
Minimum Typical
Maximum
Units
Differential Output Voltage for the TRUE Binary State
VOT (+)
247
328
454
mV
Differential Output Voltage for the FALSE Binary State
VOT (-)
-454
-332
-247
mV
Change in VOT between Complementary Output States
ΔV OT
50
mV
Output Common Mode Voltage (Offset Voltage) at 3.3V +5% and 2.5V +5%
VOS
1.125
1.19
1.55
V
Output Common Mode Voltage (Offset Voltage) at 1.8V +5%
VOS
0.8
0.86
0.95
V
Change in VOS between Complementary Output States
ΔVOS
0
50
mV
Outputs Short Circuit Current, VOUT+ or VOUT- = 0V or V DD
IOS
6
12
mA
Differential Outputs Short Circuit Current, VOUT+ = VOUT-
IOSD
3
12
mA
Rise Times Tested at 20%–80%
TR
257
375
ps
Fall Times Tested at 80%–20%
TF
287
375
ps
©2020 Renesas Electronics Corporation
13
Notes
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Table 12. Low-Power (LP) Push-Pull HCSL Differential Outputs
VDDO = 3.3V ±5%, 2.5V ±5%, 1.8V ±5%, TA = -40°C to +85°C unless stated otherwise.
Parameter
Symbol
Slew Rate
TR/F
Slew Rate Matching
ΔTR/F
Conditions
Scope averaging on.
Crossing Voltage (abs)
VCROSS
Scope averaging off.
Crossing Voltage (var)
ΔVCROSS
Scope averaging off.
Average Clock Period
Accuracy
TPERIOD_AVG
Absolute Period
TPERIOD_ABS Includes jitter and spread modulation.
Minimum
Typical
Maximum
Units
Notes
1.25
2.5
4
V/ns
2,3,16
9
20
%
1,14,16
424
550
mV
1,4,5,16
16
140
mV
1,4,9,16
-100
0
+2600
2,10,12,13
9.949
10
10.101
2,6
250
Outputs set to 100MHz for PCIe
applications.
Absolute Maximum Voltage
VMAX
Includes 300mV of overshoot (Vovs).
660
808
1150
mV
1,7,15
Absolute Minimum Voltage
VMIN
Includes -300mV of undershoot (Vuds).
-300
-54
150
mV
1,8,15
1 Measured
2 Measured
3 Measured
4
5
6
7
8
from single-ended waveform.
from differential waveform.
from -150mV to +150mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through
the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing.
Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.
Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this
measurement.
Defined as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative ppm tolerance, and spread spectrum
modulation.
Defined as the maximum instantaneous voltage including overshoot.
Defined as the minimum instantaneous voltage including undershoot.
9 Defined as
the total variation of all crossing voltages of rising REFCLK+ and falling REFCLK-. This is the maximum allowed variance in VCROSS for
any particular system.
10
11
12
Refer to Section 8.6 of the PCI Express Base Specification, Revision 4.0 for information regarding PPM considerations.
System board compliance measurements must use the test load. REFCLK+ and REFCLK- are to be measured at the load capacitors CL. Single
ended probes must be used for measurements requiring single ended measurements. Either single ended probes with math or differential probe
can be used for differential measurements. Test load CL = 2pF.
PCIe Gen1 through Gen4 specify ±300ppm frequency tolerances. The PhiClock devices already meet the tighter ±100ppm frequency tolerances
proposed for PCIe Gen5 and required by most servers.
13 “ppm” refers to
14
15
16
parts per million and is a DC absolute period accuracy specification. 1ppm is 1/1,000,000th of 100.000000MHz exactly or 100Hz.
For 100ppm, then we have an error budget of 100Hz/ppm × 100ppm = 10kHz. The period is to be measured with a frequency counter with
measurement window set to 100ms or greater. The ±100ppm applies to systems that do not employ Spread Spectrum clocking, or that use
common clock source. For systems employing Spread Spectrum Clocking, there is an additional 2,500ppm nominal shift in maximum period
resulting from the 0.5% down spread resulting in a maximum average period specification of +2,600ppm for Common Clock architectures.
Separate Reference Clock architectures may have a lower allowed spread percentage.
Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75mV window centered on the
median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the
oscilloscope is to use for the edge rate calculations. The rise edge rate of REFCLK+ should be compared to the fall edge rate of REFCLK-; the
maximum allowed difference should not exceed 20% of the slowest edge rate.
At default amplitude settings.
Guaranteed by design and characterization.
©2020 Renesas Electronics Corporation
14
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Table 13. Filtered PCIe Phase Jitter Parameters
TAMB = over the specified operating range. Supply Voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
PCIe Phase Jitter7
(Common Clocked
Architecture)
7
PCIe Phase Jitter
(SRIS Architecture)
1
2
3
4
5
6
7
Specification
Units
Limits
Symbol
Conditions
Minimum
Typical
Maximum
tjphPCIeG1-CC
PCIe Gen1 (2.5 GT/s)
SSC ≤ -0.5%
0.28
6.80
24
86
ps
(p-p)
1,2
PCIe Gen2 Hi Band (5.0 GT/s)
SSC ≤ -0.5%
0.11
0.36
0.64
3
ps
(rms)
1,2
PCIe Gen2 Lo Band (5.0 GT/s)
SSC ≤ -0.5%
0.00
0.02
0.07
3.1
ps
(rms)
1,2
tjphPCIeG3-CC
PCIe Gen3 (8.0 GT/s)
SSC ≤ -0.5%
0.03
0.13
0.23
1
ps
(rms)
1,2
tjphPCIeG4-CC
PCIe Gen4 (16.0 GT/s)
SSC ≤ -0.5%
0.03
0.13
0.23
0.5
ps
1,2,3,4
(rms)
tjphPCIeG5-CC
PCIe Gen5 (32.0 GT/s)
SSC ≤ -0.5%
0.01
0.04
0.083
0.15
ps
1,2,3,5
(rms)
tjphPCIeG2-SRIS
PCIe Gen2 (5.0 GT/s)
SSC ≤ -0.3%
0.29
0.39
0.505
ps
(rms)
1,2,6
tjphPCIeG3-SRIS
PCIe Gen3 (8.0 GT/s)
SSC ≤ -0.3%
0.09
0.19
0.273
ps
(rms)
1,2,6
tjphPCIeG4-SRIS
PCIe Gen4 (16.0 GT/s)
SSC ≤ -0.3%
0.10
0.14
0.184
ps
(rms)
1,2,6
tjphPCIeG5-SRIS
PCIe Gen5 (32.0 GT/s)
SSC ≤ -0.3%
0.03
0.05
0.071
ps
(rms)
1,2,6
tjphPCIeG2-CC
N/A
Notes
The REFCLK jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads
section of the data sheet for the exact measurement setup. The worst case results for each data rate are summarized in this table. Equipment noise
is removed from all measurements.
Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate
of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for
RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding
the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency.
For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak to peak jitter using a multiplication factor of 8.83. In the case
where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used.
SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC
content.
Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.
Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.
While the PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, it does not provide
specification limits, hence the n/a in the Limit column. SRIS values are informative only. SRIS is not defined for PCIe Gen1.
9FGV1002C or 9FGV1006C with 001/015 or Q505/Q515 configurations. See the 9FGV1002C/9FGV1006C Standard Configurations table for details
and a selection of off-the-shelf configurations supporting PCIe Gen5.
©2020 Renesas Electronics Corporation
15
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Table 14. 9FGV1002C Current Consumption
VDDO = 3.3V ±5%, 2.5V ±5%, 1.8V ±5%, TA = -40°C to +85°C unless stated otherwise.
Parameter
Symbol
Conditions
Minimum
Typical
Maximum
Units
Notes
VDDREF Supply Current
IDDREF
50MHz REFCL, subtract 3mA for
25MHz REFCLK.
7
11
mA
Core Supply Current
IDDCORE
2400MHz VCO.
37
49
mA
3
LVDS, 325MHz.
7
9
mA
2
LP-HCSL, 100MHz.
6
7
mA
2
LVCMOS, 50MHz.
4
6
mA
1,2
LVCMOS, 200MHz.
12
21
mA
1,2
LVDS, 325MHz.
19
24
mA
2
LP-HCSL, 100MHz.
16
20
mA
2
LVCMOS, 50MHz.
14
18
mA
1,2
LVCMOS, 200MHz.
23
35
mA
1,2
LVDS, 325MHz.
7
10
mA
2
LP-HCSL, 100MHz.
7
10
mA
2
LVCMOS, 50MHz.
8
14
mA
1,2
LVCMOS, 200MHz.
9
15
mA
1,2
LVDS, 325MHz.
6
9
mA
2
LP-HCSL, 100MHz.
5
7
mA
2
LVCMOS, 50MHz.
3
6
mA
1,2
LVCMOS, 200MHz.
12
22
mA
1,2
Programmable outputs in HCSL
mode, B37[0] = 0.
20
27
mA
2
Programmable outputs in LVDS
mode, B37[0] = 0.
33
45
mA
2
Programmable outputs in
LVCMOS1 mode, B37[0] = 0.
16
22
mA
2
Output Buffer Supply Current
VDDO3
Output Buffer Supply Current
VDDO2 (includes output divider)
IDDOx
Output Buffer Supply Current
VDDO1 (this pin must be
connected if OUT0 is used)
Output Buffer Supply Current
VDDO0
Total Power Down Current
1
2
3
IDDPD
Single CMOS driver active for each output pair.
See Test Loads for details.
IDDCORE = IDDA + IDDD. For integer, fractional or spread spectrum PLL.
©2020 Renesas Electronics Corporation
16
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Table 15. 9FGV1006C Current Consumption
VDDO = 3.3V ±5%, 2.5V ±5%, 1.8V ±5%, TA = -40°C to +85°C unless stated otherwise.
Parameter
Symbol
Conditions
Minimum
Typical
Maximum
Units
Notes
VDDREF Supply Current
IDDREF
50MHz REFCLK.
3
7
mA
Core Supply Current
IDDCORE
2400MHz VCO.
37
48
mA
3
LVDS, 350MHz.
19
24
mA
2
LP-HCSL, 100MHz.
16
20
mA
2
LVCMOS, 50MHz.
14
19
mA
1,2
LVCMOS, 200MHz.
22
34
mA
1,2
LVDS, 350MHz.
7
11
mA
2
LP-HCSL, 100MHz.
8
10
mA
2
LVCMOS, 50MHz.
8
13
mA
1,2
LVCMOS, 200MHz.
8
14
mA
1,2
Programmable outputs in HCSL
mode, B37[0] = 0.
19
25
mA
2
Programmable outputs in LVDS
mode, B37[0] = 0.
25
34
mA
2
Programmable outputs in
LVCMOS1 mode, B37[0] = 0.
16
22
mA
2
Minimum
Typical
Maximum
Units
PCIe Compliant -0.5% spread modulation.
30
31.5
33
kHz
Modulation frequency.
30
31.5
63
kHz
Amount of spread value (programmable) – down spread.
-0.1
-0.5
-3.0
Amount of spread value (programmable) – center spread.
±0.05
Output Buffer Supply
Current (VDDO1)
IDDOx
Output Buffer Supply
Current (VDDO0 – the total
for pins 9 and 10)
Total Power Down Current
1
2
IDDPD
Single CMOS driver active for each output pair.
See Test Loads for details.
3I
DDCORE
= IDDA + IDDD + IDDAO.
Table 16. Spread Spectrum Generation Specifications
Parameter
Symbol
Mod Frequency
fMODPCIe
Mod Frequency
fMOD
Spread%
SSC%
Conditions
©2020 Renesas Electronics Corporation
17
±1.5
%
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
I2C Bus Characteristics
Table 17. I2C Bus DC Characteristics
Parameter
Symbol
Conditions
Minimum
Input High Level
VIH
—
0.7 x VDDD
Input Low Level
VIL
—
VHYS
—
0.05 x VDDD
Input Leakage Current
IIN
—
-1
Output Low Voltage
VOL
IOL = 3mA.
Hysteresis of Inputs
Typical
Maximum
Units
V
0.3 x VDDD
V
V
30
μA
0.4
V
Maximum
Units
400
kHz
Table 18. I2C Bus AC Characteristics
Parameter
Symbol
Conditions
Minimum
FSCLK
—
10
tBUF
—
1.3
μs
Setup Time, START
tSU:START
—
0.6
μs
Hold Time, START
tHD:START
—
0.6
μs
Setup Time, Data Input (SDA)
tSU:DATA
—
0.1
μs
Hold Time, Data Input (SDA) 1
tHD:DATA
—
0
μs
Output Data Valid from Clock
tOVD
—
0.9
μs
Capacitive Load for Each Bus Line
CB
—
400
pF
Rise Time, Data and Clock (SDA, SCL)
tR
—
20 + 0.1 x CB
300
ns
Fall Time, Data and Clock (SDA, SCL)
tF
—
20 + 0.1 x CB
300
ns
HIGH Time, Clock (SCL)
tHIGH
—
0.6
μs
LOW Time, Clock (SCL)
tLOW
—
1.3
μs
tSU:STOP
—
0.6
μs
Serial Clock Frequency (SCL)
Bus free time between STOP and START
Setup Time, STOP
Typical
Note: A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the VIH(MIN) of the SCL signal) to bridge the
undefined region of the falling edge of SCL.
©2020 Renesas Electronics Corporation
18
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Test Loads
Figure 5. LVCMOS AC/DC Test Load
Test
Point
L
Zo
Rs
CL
Rs
Zo
L
CL
33Ω
50Ω
5 inches
4.7pF
Figure 6. LP-HCSL AC/DC Test Load
(Standard PCIe source-terminated test load)
Rs
CL
L
Test
Points
Differential Zo
CL
Rs
Rs
Zo
L
CL
Internal
100Ω
5 inches
2pF
Internal
85Ω
5 inches
2pF
Figure 7. LVDS AC/DC Test Load
L
Differential Zo
100ohm
Rs
Zo
L
CL
N/A
100Ω
5 inches
N/A
©2020 Renesas Electronics Corporation
19
Test
Points
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Figure 8. Test Setup for PCIe Measurement Using a Real-Time Scope
Real Time Scope
SMA
Connectors
Rs
Coax
Cables
L
Differential Zo
0.1µF
50
50
Rs
Rs
Zo
L
CL
Internal
100Ω
5 inches
N/A
Figure 9. Test Setup for PCIe Measurement Using a Phase Noise Analyzer
SMA
Connectors
L
CK+
0.1uF
CK-
50
Rs
Zo
L
CL
Internal
100Ω
5 inches
N/A
©2020 Renesas Electronics Corporation
Coax
Cables
Balun
Zo (differential)
DUT
Phase Noise Analyzer
20
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Crystal Characteristics
Table 19. Recommended Crystal Characteristics
Parameter
Value
Units
Frequency
8–50
MHz
Resonance Mode
Fundamental
–
Frequency Tolerance at 25°C
±20
ppm maximum
Frequency Stability, REF at 25°C Over Operating Temperature Range
±20
ppm maximum
Temperature Range (commercial)
0–70
°C
Temperature Range (industrial)
-40–85
°C
Equivalent Series Resistance (ESR)
50
Ω maximum
Shunt Capacitance (CO)
7
pF maximum
Load Capacitance (CL)
8
pF maximum
Drive Level
0.1
mW maximum
Aging Per Year
±5
ppm maximum
Package Outline Drawings
The package outline drawings are appended at the end of this document and are also accessible from the link below. The package
information is the most current data available and is subject to change without notice or revision of this document.
9FGV1002C:
www.idt.com/document/psc/24-vfqfpn-package-outline-drawing-40-x-40-x-075-mm-body-05mm-pitch-epad-26-x-26-mm-nbnbg24p2
www.idt.com/document/psc/24-lga-package-outline-drawing-40-x-40-x-140-mm-body-05mm-pitch-ltg24t2
9FGV1006C:
www.idt.com/document/psc/16-lga-package-outline-drawing-30-x-30-x-110-mm-body-05mm-pitch-ltg16p1
Marking Diagrams
Figure 10. 9FGV1002C Marking Diagrams
▪ Lines 1 and 2 are the truncated part number:
9FGV100
2CnnnGI
#YWW**$
1002C
Q5aaI
YWW**$
©2020 Renesas Electronics Corporation
• “nnn” denotes the decimal digits indicating a specific configuration.
• “aa” denotes the alphanumeric digits indicating a specific Q5 configuration.
▪ Line 3:
• “#” denotes the stepping number.
• “YWW” denotes the last digits of the year and week the part was assembled.
• “**” denotes the lot sequence; “$” denotes the mark code.
21
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Figure 11. 9FGV1006C Marking Diagrams
▪ Line 1: truncated part number
6Cnnn
YWW$
XXX
6CQ5aa
YWW$
XXX
• “nnn” denotes the decimal digits indicating a specific configuration.
• “aa” denotes the alphanumeric digits indicating a specific Q5 configuration.
▪ Line 2: “YWW” denotes the last digits of the year and week the part was
assembled; “$” denotes mark code.
▪ Line 3: “XXX” denotes the last three characters of the lot number.
Standard Configurations
Table 20. 9FGV1002C/9FGV1006C Standard Configurations
Supply
Voltage–all pins
(V)
Output Impedance
(ohms)
Number of PCIe
Clock Outputs
4
100
2
3.3
4
85
2
4
1.8
100
2
XTAL Frequency
(MHz)
Orderable Part Number
(Bulk)
Orderable Part Number
(Tape and Reel)
25 – external
9FGV1002C001NBGI
9FGV1002C001NBGI8
50 – internal
9FGV1002CQ505LTGI
9FGV1002CQ505LTGI8
25 – external
9FGV1006C001LTGI
9FGV1006C001LTGI8
50 – internal
9FGV1006CQ505LTGI
9FGV1006CQ505LTGI8
25 – external
9FGV1002C015NBGI
9FGV1002C015NBGI8
50 – internal
9FGV1002CQ515LTGI
9FGV1002CQ515LTGI8
25 – external
9FGV1006C015LTGI
9FGV1006C015LTGI8
50 – internal
9FGV1006CQ515LTGI
9FGV1006CQ515LTGI8
25 – external
9FGV1002C002NBGI
9FGV1002C002NBGI8
50 – internal
9FGV1002CQ506LTGI
9FGV1002CQ506LTGI8
25 – external
9FGV1006C002LTGI
9FGV1006C002LTGI8
50 – internal
9FGV1006CQ506LTGI
9FGV1006CQ506LTGI8
Table 21. Common Features of 9FGV1002C/9FGV1006C Standard Configurations
Output Freq (MHz)
100
Output Type
LP-HCSL
©2020 Renesas Electronics Corporation
REF Outputs
Off
22
Configuration
SSC amount (%)
Notes
0
0
CC, SRNS
1
-0.1
CC, SRIS
2
-0.3
CC, SRIS
3
-0.5
CC
November 30, 2020
9FGV1002C / 9FGV1006C Datasheet
Ordering Information
Orderable Part Number
Package
Carrier Type
Temperature
Crystal
9FGV1002CnnnNBGI
4 × 4 mm, 0.5mm pitch 24-VFQFPN
Tray
-40 to +85°C
External
9FGV1002CnnnNBGI8
4 × 4 mm, 0.5mm pitch 24-VFQFPN
Tape and Reel
-40 to +85°C
External
9FGV1002CQ5aaLTGI
4 × 4 mm, 0.5mm pitch 24-LGA
Tray
-40 to +85°C
50MHz Internal
9FGV1002CQ5aaLTGI8
4 × 4 mm, 0.5mm pitch 24-LGA
Tape and Reel
-40 to +85°C
50MHz Internal
9FGV1006CnnnLTGI
3 × 3 mm, 0.5mm pitch 16-LGA
Tray
-40 to +85°C
External
9FGV1006CnnnLTGI8
3 × 3 mm, 0.5mm pitch 16-LGA
Tape and Reel
-40 to +85°C
External
9FGV1006CQ5aaLTGI
3 × 3 mm, 0.5mm pitch 16-LGA
Tray
-40 to +85°C
50MHz Internal
9FGV1006CQ5aaLTGI8
3 × 3 mm, 0.5mm pitch 16-LGA
Tape and Reel
-40 to +85°C
50MHz Internal
“G” indicates RoHS 6.6 compliance.
“nnn” are decimal digits indicating a specific configuration.
“aa” are alphanumeric digits indicating a specific configuration.
“Q5” indicates internal 50MHz crystal.
Revision History
Revision Date
Description of Change
November 30, 2020
Removed “Output Frequency” parameter from Spread Spectrum Generation Specifications table.
October 29, 2020
Updated pin descriptions for VDDAp and VDDDp.
October 9, 2020
Added a condition and values for REF outputs to the Lock Time parameter.
September 28, 2020
Removed “PCIe Gen5’ from the standard configuration tables titles and the relative heading title.
August 18, 2020
Updated 9FGV1006CQ marking diagram.
August 14, 2020
Updated Slew Rate 1.8V minimum value from 0.8 to 1.0V/ns.
August 13, 2020
Updated Carrier Type in Ordering Information table from “Cut-Tape” to “Tray”.
July 16, 2020
Corrected internal resistors on SEL0/SCL and SEL1/SDA to be pull-downs.
July 10, 2020
Initial release.
©2020 Renesas Electronics Corporation
23
November 30, 2020
24-VFQFPN, Package Outline Drawing
4.0 x 4.0 x 0.75 mm Body, 0.5mm Pitch, Epad 2.6 x 2.6 mm
NB/NBG24P2, PSC-4313-02, Rev 01, Page 1
TOP VIEW
BOTTOM VIEW
SIDE VIEW
24-VFQFPN, Package Outline Drawing
4.0 x 4.0 x 0.75 mm Body, 0.5mm Pitch, Epad 2.6 x 2.6 mm
NB/NBG24P2, PSC-4313-02, Rev 01, Page 2
Package Revision History
Description
Date Created
Rev No.
Jan 24, 2018
Rev 01
Change QFN to VFQFPN and New Format
May 11, 2016
Rev 00
Initial Release
24-LGA Package Outline Drawing
4.0 x 4.0 x 1.40 mm Body, 0.5mm Pitch
LTG24T2, PSC-4481-02, Rev 00, Page 1
24-LGA Package Outline Drawing
4.0 x 4.0 x 1.40 mm Body, 0.5mm Pitch
LTG24T2, PSC-4481-02, Rev 00, Page 2
Package Revision History
Date Created
Rev No.
Sept 15, 2017
Rev 00
Description
Initial Release
16-LGA Package Outline Drawing
3.0 x 3.0 x 1.10 mm Body, 0.5mm Pitch
LTG16P1, PSC-4651-01, Rev 02, Page 1
16-LGA Package Outline Drawing
3.0 x 3.0 x 1.10 mm Body, 0.5mm Pitch
LTG16P1, PSC-4651-01, Rev 02, Page 2
Package Revision History
Description
Date Created
Rev No.
Nov 6, 2017
Rev 02
Modify Solder Mask & Epad Chamfer
Sept 29, 2017
Rev 01
Modify Land Pattern
IMPORTANT NOTICE AND DISCLAIMER
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)
Corporate Headquarters
Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:
www.renesas.com/contact/
Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.
© 2020 Renesas Electronics Corporation. All rights reserved.