Low Phase-Noise, Low-Power
Programmable PhiClock™
Generator
Description
Features
The 9FGV1004C/9FGV1008C are members of Renesas’
PhiClock™ programmable clock generator family. The 9FGV1004
provides 1 copy each of 2 integer-related frequencies, 2 copies of
a fractional or spread-spectrum frequency. The 9FGV1008
provided 1 integer frequency and 1 copy of a fractional or
spread-spectrum frequency. Four user-defined configurations may
be selected via two hardware select pins or two I2C bits, allowing
easy software selection of the desired configuration. Any one of
the four OTP configurations may be specified as the default when
operating in I2C mode. Four unique I2C addresses are available,
allowing easy I2C access to multiple components.
▪
▪
▪
▪
High-performance Computing (HPC)
eSSDs
10G/25G/100G Ethernet
Fiber Optic Modules
Data Center Accelerators
Output Features
▪ 9FGV1004: 4 programmable output pairs plus 2 LVCMOS REF
outputs
▪ 9FGV1008 2 programmable output pairs plus 1 LVCMOS REF
output
▪ 2 integer and 1 fractional/spread spectrum output frequency
per configuration
▪ 1MHz–325MHz LVDS or LP-HCSL outputs
▪ 1MHz–200MHz LVCMOS outputs
▪ 1MHz–156.25MHz spread spectrum or fractional output
Key Specifications
▪ 12kHz–20MHz typical phase jitter at156.25M Hz (SSC off or
on) 224fs RMS (9FGV1008 OUT1)
▪ 12kHz–20MHz typical phase jitter at156.25MHz (SSC off or on)
267fs RMS (9FGV1004 OUT3)
▪ PCIe Gen1–4 compliant (spread spectrum off)
▪ PCIe Gen1–3 compliant (spread spectrum on)
▪ See AN1001 for generating PCIe Gen5 clocks from the
9FGV1004C/9FGV1008C
PCIe Clocking Architectures
▪ Common Clocked (CC)
▪ Independent Reference without spread spectrum (SRnS)
▪ See AN1001 for Independent Reference with spread-spectrum
(SRIS) applications
©2020 Renesas Electronics Corporation
1.8V, 2.5V or 3.3V power supplies
Individual VDDO for each programmable output pair
Supports HCSL, LVDS and LVCMOS I/O standards
Low-Power HCSL technology for improved performance, lower
power and higher integration:
• Programmable output impedance of 85Ω or 100Ω
▪ Supports LVPECL and CML logic with easy AC coupling – see
AN-891 for alternate terminations
▪ On-board OTP supports up to 4 complete configurations
selectable via strapping pins or I2C
▪ Internal crystal load capacitors
▪ Programmable spread-spectrum modulation frequency and
amount
▪ < 150mW at 1.8V with LP-HCSL outputs at 100MHz
(9FGV1004)
▪ < 135mW at 1.8V with LP-HCSL outputs at 100MHz
(9FGV1008)
▪ 4 programmable I2C addresses: D0, D2, D4, D6
▪ Easily configured with Renesas Timing Commander™ software
or Web Configurator
▪ Space saving 4 × 4 mm 24-VFQFPN, 24-LGA (9FGV1004) and
3 × 3 mm 16-LGA (9FGV1008) packages
▪ Integrated crystal option (9FGV1004CQ, 9FGV1008CQ)
Typical Applications
▪
▪
▪
▪
▪
9FGV1004C/9FGV1008C
Datasheet
1
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Contents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Output Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
PCIe Clocking Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
I2C Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Crystal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Package Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Marking Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Standard Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
©2020 Renesas Electronics Corporation
2
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Block Diagram
VDDREFp
9FGV1004
REF1
vREF0_SEL_I2C#
Consult factory if design requires REF1.
XIN/CLKIN
XO
OSC
9FGV1004CQ and
9FGV1008CQ
integrate the crystal
INT
DIV
Prog.
Output
OUT3#
OUT3
VDDO3
9FGV1004
INT
DIV
Prog.
Output
OUT2#
OUT2
VDDO2
OUT1/1#
VDDO1 on
9FGV1008
Prog.
Output
OUT1#
OUT1
VDDO1
Prog.
Output
OUT0#
INT PLL
vSEL0/SCL
vSEL1/SDA
9FGV1004
^OEB
^OEA
SMBus
Engine
Factory
Configuration
FODSSC
Control
Logic
9FGV1004
OUT0
VDDO0
Table 1. OE Mapping
OE[B:A]
OUT0
OUT1
OUT2
OUT3
REF0
REF1
00
Running
Stopped
Running
Stopped
Running
Running
01
Running
Running
Stopped
Stopped
Running
Running
10
Stopped
Stopped
Running
Running
Running
Running
11
Running
Running
Running
Running
Running
Running
©2020 Renesas Electronics Corporation
3
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Pin Assignments
OUT3
OUT3#
VDDO3
VDDAp
vREF0_SEL_I2C#
VDDREFp
Figure 1. Pin Assignments for 4 x 4 mm 24-VFQFPN Package – Top View
24 23 22 21 20 19
XIN/CLKIN 1
XO 2
18 VDDO2
17 OUT2
16 OUT2#
15 VDDO1
14 OUT1
13 OUT1#
VDDO0
10 11 12
OUT0
9
OUT0#
7
VDDDp
8
OTP_VPP
vSEL1/SDA 5
^OEA 6
^OEB
9FGV1004C
Connect
EPAD to GND
REF1 3
vSEL0/SCL 4
4 × 4 mm 24-VFQFPN, 0.5mm pitch
^ prefix indicates internal pull-up
v prefix indicates internal pull-down resistor
Note: The order of OUT3 is reversed from OUT[0:2]
OUT3
OUT3#
VDDO3
VDDAp
vREF0_SEL_I2C#
VDDREFp
Figure 2. Pin Assignments for 4 x 4 mm 24-LGA Package – Top View
24 23 22 21 20 19
NC 1
NC 2
18 VDDO2
17 OUT2
9FGV1004CQ
Connect
EPAD to GND
9
^OEB
OTP_VPP
16 OUT2#
15 VDDO1
14 OUT1
13 OUT1#
10 11 12
VDDO0
8
OUT0
7
VDDDp
vSEL1/SDA 5
^OEA 6
OUT0#
REF1 3
vSEL0/SCL 4
4 × 4 mm 24-LGA, 0.5mm pitch
^ prefix indicates internal pull-up resistor
v prefix indicates internal pull-down resistor
Note: The order of OUT3 is reversed from OUT[0:2]
©2020 Renesas Electronics Corporation
4
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
OUT0#
OUT0
vSEL0/SCL 3
vSEL1/SDA 4
VDDO1
5
6
7
8
12 OUT1
11 OUT1#
10 VDDAO0p
9 VDDO0
3 x 3 mm 16-LGA , 0.5mm pitch
^ prefix indicates internal pull-up
v prefix indicates internal pull-down
3 x 3 mm 16-LGA , 0.5mm pitch
^ prefix indicates internal pull-up
v prefix indicates internal pull-down
©2020 Renesas Electronics Corporation
9FGV1008CQ
EPAD = GND
OUT0
8
10 VDDAO0p
9 VDDO0
NC 2
OUT0#
7
12 OUT1
11 OUT1#
OTP_VPP
6
NC 1
VDDDp
5
OTP_VPP
vSEL0/SCL 3
vSEL1/SDA 4
9FGV1008C
EPAD = GND
VDDDp
XO 2
VDDAp
16 15 14 13
16 15 14 13
XIN/CLKIN 1
vREF0_SEL_I2C#
VDDREFp
VDDO1
VDDAp
vREF0_SEL_I2C#
VDDREFp
Figure 3. Pin Assignments for 3 x 3 mm 16-LGA Package – Top View
5
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Pin Descriptions
Table 2. 9FGV1004 Pin Descriptions
Number
Name
Type
Description
1[a]
XIN/CLKIN
2a]
XO
Output
Crystal output.
3
REF1
Output
LVCMOS reference output.
4
vSEL0/SCL
Input
Select pin for internal frequency configurations/I2C clock pin. Function is determined by state of
SEL_I2C# upon power-up. This pin has an internal pull-down.
vSEL1/SDA
I/O
Select pin for internal frequency configurations/I2C data pin. Function is determined by state of
SEL_I2C# upon power-up. This pin has an internal pull-down.
5
6
Input
Crystal input or reference clock input.
^OEA
Input
Active high input for enabling outputs. This pin has an internal pull-up resistor.
0 = disable outputs, 1 = enable outputs.
VDDDp
Power
Digital power. Connect to 1.8V, 2.5V or 3.3V.
^OEB
Input
Active high input for enabling outputs. This pin has an internal pull-up resistor.
0 = disable outputs, 1 = enable outputs.
OTP_VPP
Power
Voltage for programming OTP. During normal operation, this pin should be connected to the
same power rail as VDDD.
10
OUT0#
Output
Complementary output clock 0.
11
OUT0
Output
Output clock 0.
12
VDDO0
Power
Power supply for output 0.
13
OUT1#
Output
Complementary output clock 1.
14
OUT1
Output
Output clock 1.
15
VDDO1
Power
Power supply for output 1.
16
OUT2#
Output
Complementary output clock 2.
17
OUT2
Output
Output clock 2.
18
VDDO2
Power
Power supply for output 2.
19
OUT3
Output
Output clock 3.
20
OUT3#
Output
Complementary output clock 3.
21
VDDO3
Power
Power supply for output 3.
22
VDDAp
Power
Analog power. Connect to same voltage as VDDDp, with proper filtering.
7
8
9
Latched
I/O
Latched input/LVCMOS output. At power-up, the state of this pin is latched to select the state of
the I2C pins. After power-up, the pin acts as an LVCMOS reference output. This pin has an
internal pull-down.
1 = SEL0/SEL1.
0 = SCL/SDA.
23
vREF0_SEL_I2C#
24
VDDREFp
Power
Power supply for REF0 and REF1 and the internal XO. Programmable to 1.8V, 2.5V or 3.3V.
25
EPAD
GND
Connect to ground.
Note: Unused outputs can be programmed off and left floating. VDDREF and VDDO0 have to be connected.
[a] These pins are 'No Connect' on 9FGV100xQ integrated quartz versions and should have no stubs.
©2020 Renesas Electronics Corporation
6
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Table 3. 9FGV1008 Pin Descriptions
Number
1[a]
2
[a]
3
Name
XIN/CLKIN
XO
Type
Input
Output
Description
Crystal input or reference clock input.
Crystal output.
vSEL0/SCL
Input
Select pin for internal frequency configurations/I2C clock pin. Function is determined by state of
SEL_I2C# upon power up. This pin has an internal pull-down.
4
vSEL1/SDA
I/O
Select pin for internal frequency configurations/I2C data pin. Function is determined by state of
SEL_I2C# upon power-up. This pin has an internal pull-down.
5
VDDDp
Power
Digital power. Connect to 1.8V, 2.5V or 3.3V.
OTP_VPP
Power
Voltage for programming OTP. During normal operation, this pin should be connected to the
same power rail as VDDD.
7
OUT0#
Output
Complementary output clock 0.
8
OUT0
Output
Output clock 0.
9
VDDO0
Power
Power supply for output 0.
10
VDDAO0p
Power
Analog power supply for output 0. This pin should be connected to the same power rail as output
0 and filtered appropriately. Nominal voltages are 1.8V, 2.5V or 3.3V.
11
OUT1#
Output
Complementary output clock 1.
12
OUT1
Output
Output clock 1.
13
VDDO1
Power
Power supply for output 1.
14
VDDAp
Power
Analog power. Connect to same voltage as VDDDp, with proper filtering.
6
Latched
I/O
Latched input/LVCMOS Output. At power-up, the state of this pin is latched to select the state of
the I2C pins. After power-up, the pin acts as a LVCMOS reference output. This pin has an
internal pull-down.
1 = SEL0/SEL1.
0 = SCL/SDA.
15
vREF0_SEL_I2C#
16
VDDREFp
Power
Power supply for REF outputs and the internal XO. Nominal voltages are 1.8V, 2.5V or 3.3V.
17
EPAD
GND
Connect to ground.
Note: Unused outputs can be programmed off and left floating. VDDREF and VDDO0 have to be connected.
[a] These pins are 'No Connect' on 9FGV100xQ integrated quartz versions and should have no stubs.
©2020 Renesas Electronics Corporation
7
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Absolute Maximum Ratings
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the
device. Functional operation of the 9FGV1004C/9FGV1008C at absolute maximum ratings is not implied. Exposure to absolute maximum
rating conditions may affect device reliability.
Table 4. Absolute Maximum Ratings
Parameter
Rating
Supply Voltage, V DDA, VDDD, VDDO
3.9V
Storage Temperature, T STG
-65°C to 150°C
ESD Human Body Model
2000V
Junction Temperature
125°C
Inputs
XIN/CLKIN
0V to 1.2V voltage swing
Other Inputs
-0.5V to VDDD
Outputs
Outputs, VDDO (LVCMOS)
-0.5V to VDDO + 0.5V
Outputs, IO (SDA)
10mA
Thermal Characteristics
Table 5. Thermal Characteristics–24-pin Devices
Parameter
Thermal Resistance
(devices with external crystal)
Thermal Resistance Q-series
(devices with internal crystal)
1
Symbol
Conditions
Package
Typical Values
Units
Notes
θJC
Junction to case
52
°C/W
1
θJb
Junction to base
2.3
°C/W
1
θJA0
Junction to air, still air
44
°C/W
1
θJA1
Junction to air, 1 m/s air flow
37
°C/W
1
θJA3
Junction to air, 3 m/s air flow
33
°C/W
1
θJA5
Junction to air, 5 m/s air flow
32
°C/W
1
θJC
Junction to case
57.3
°C/W
1
θJb
Junction to base
24.3
°C/W
1
θJA0
Junction to air, still air
79.8
°C/W
1
θJA1
Junction to air, 1 m/s air flow
73.9
°C/W
1
θJA3
Junction to air, 3 m/s air flow
69.9
°C/W
1
θJA5
Junction to air, 5 m/s air flow
67.3
°C/W
1
NBG24
LTG24
EPAD soldered to board.
©2020 Renesas Electronics Corporation
8
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Table 6. Thermal Characteristics–16-pin Devices
Parameter
Thermal Resistance
(devices with external crystal)
Thermal Resistance Q-series
(devices with internal crystal)
1
Symbol
Conditions
Package
Typical Values
Units
Notes
θJC
Junction to case
66
°C/W
1
θJb
Junction to base
5.1
°C/W
1
θJA0
Junction to air, still air
63
°C/W
1
θJA1
Junction to air, 1 m/s air flow
56
°C/W
1
θJA3
Junction to air, 3 m/s air flow
51
°C/W
1
θJA5
Junction to air, 5 m/s air flow
49
°C/W
1
θJC
Junction to case
82.1
°C/W
1
θJb
Junction to base
42.3
°C/W
1
θJA0
Junction to air, still air
93.6
°C/W
1
θJA1
Junction to air, 1 m/s air flow
87.1
°C/W
1
θJA3
Junction to air, 3 m/s air flow
83.3
°C/W
1
θJA5
Junction to air, 5 m/s air flow
66
°C/W
1
LTG16
LTG16
EPAD soldered to board.
Recommended Operating Conditions
Table 7. Recommended Operating Conditions
Symbol
Minimum
Typical
Maximum
Units
Power supply voltage for supporting 1.8V outputs.
1.71
1.8
1.89
V
Power supply voltage for supporting 2.5V outputs.
2.375
2.5
2.625
V
Power supply voltage for supporting 3.3V outputs.
3.135
3.3
3.465
V
VDDD
Power supply voltage for core logic functions.
1.71
3.465
V
VDDA
Analog power supply voltage. Use filtered analog power supply if available.
1.71
3.465
V
TA
Operating temperature, ambient.
-40
85
°C
CL
Maximum load capacitance (3.3V LVCMOS only).
15
pF
tPU
Power up time for all VDDs to reach minimum specified voltage (power ramps
must be monotonic).
5
ms
VDDOx
Parameter
©2020 Renesas Electronics Corporation
9
0.05
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Electrical Characteristics
VDDx = 3.3V ±5%, 2.5V ±5%, 1.8V ±5%, TA = -40°C to +85°C unless stated otherwise.
Table 8. Common Electrical Characteristics
Parameter
Input Frequency
Output Frequency
(OUT[3:0])
Output Frequency
(OUT[1:0])
Symbol
fIN
fOUT
Conditions
Minimum
Typical
Maximum
Units Notes
Crystal input frequency.
8
50
MHz
1
CLKIN input frequency.
1
240
MHz
5
Differential clock output (LVDS/LP-HCSL).
1
325
MHz
Single-ended clock output (LVCMOS).
1
200
MHz
Spread spectrum or fractional configuration.
1
156.25
MHz
2600
MHz
VCO Frequency
fVCO
VCO operating frequency range.
2400
Loop Bandwidth
fBW
Input frequency = 25MHz.
0.06
0.9
MHz
Input High Voltage
VIH
SEL[1:0].
0.7 x VDDD
VDDD + 0.3
V
Input Low Voltage
VIL
SEL[1:0].
GND - 0.3
0.8
V
Input High Voltage
VIH
REF/SEL_I2C#.
0.65 x VDDREF
VDDREF + 0.3
V
Input Low Voltage
VIL
REF/SEL_I2C#.
-0.3
0.4
V
Input High Voltage
VIH
XIN/CLKIN.
0.8
1.2
V
Input Low Voltage
VIL
XIN/CLKIN.
-0.3
0.4
V
OEA, OEB (24-pin device only)
10
ns
SEL1/SDA, SEL0/SCL.
300
ns
3
7
pF
Input Rise/Fall Time
TR/TF
SEL[1:0].
2500
Input Capacitance
CIN
Internal Pull-up Resistor
RUP
200
237
300
kΩ
RDOWN
200
237
300
kΩ
8
pF
Internal Pull-down
Resistor
Programmable
capacitance at XIN and
XO (XIN in parallel with
XO)
CL
XIN/CLKIN, XO.
0
Input Duty Cycle
t2
CLKIN, measured at VDDREF/2.
40
50
60
%
LVCMOS, fOUT > 156.25MHz.
40
50
60
%
LVCMOS, fOUT < 156.25MHz.
45
50
55
%
LVDS, LP-HCSL outputs.
45
50
55
%
Output Duty Cycle
t3
©2020 Renesas Electronics Corporation
10
6
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Table 8. Common Electrical Characteristics (Cont.)
Parameter
Symbol
3
6
7
Units Notes
4
Reference clock RMS phase jitter (12kHz to
5MHz integration range). See “Test
Frequencies for Jitter Measurements” for
configurations.
250
fs rms
4
OUTx RMS phase jitter(12kHz to 20MHz
integration range) differential output. See
“Test Frequencies for Jitter Measurements”
for configurations.
267
fs rms
4
Cycle-to-cycle jitter (Peak-to-Peak), See
“Test Frequencies for Jitter Measurements”
for configurations.
27
ps
4
Reference clock RMS phase jitter (12kHz to
5MHz integration range). See “Test
Frequencies for Jitter Measurements” for
configurations.
317
fs rms
4
OUTx RMS phase jitter(12kHz to 20MHz
integration range) differential output. See
“Test Frequencies for Jitter Measurements”
for configurations.
224
fs rms
4
t7
Skew between the same frequencies, with
outputs using the same driver format.
34
ps
7
t8a
PLL outputs valid from VDDs reaching 1.5V.
5
10
ms
2,3
t8b
REF outputs valid from VDDs reaching 1.5V.
5
11
ms
2,3
t6
t6
Practical lower frequency is determined by loop filter settings.
Includes loading the configuration bits from OTP to registers.
Actual PLL lock time depends on the loop configuration.
4 Actual
5
Maximum
ps
Output Skew (9FGV1004)
2
Typical
27
Clock Jitter (9FGV1008)
1
Minimum
Cycle-to-cycle jitter (Peak-to-Peak), See
“Test Frequencies for Jitter Measurements”
for configurations.
Clock Jitter (9FGV1004)
Lock Time
Conditions
jitter is configuration dependent. These values are representative of what the device can achieve.
Input doubler off. Maximum input frequency with input doubler on is 160MHz.
With internal low pass filter enabled. When disabled, maximum frequency is 325MHz.
9FGV1004 OUT0 and OUT1.
©2020 Renesas Electronics Corporation
11
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Table 9. Test Frequencies for Jitter Measurements
Device
XIN/CLKIN
9FGV1004
9FGV1004Q5
50
100
Device
XIN/CLKIN
OUT0
9FGV1008
9FGV1008Q5
50
100
1 All
2
3
OUT0
OUT1
OUT2
OUT3
Unit
Notes
125.00
156.25
MHZ
1,2,3
OUT1
Unit
Notes
156.25
MHZ
1,2,3
outputs measured with 100MHz outputs both spreading and non-spreading.
Outputs configured as LP-HCSL or LVDS with REF output off unless noted.
This configuration used for 12kHz–20MHz OUT phase jitter measurement. REF off, SSC off.
Table 10. LVCMOS Output Electrical Characteristics
Parameter
Symbol
Slew Rate
SR
Conditions
Minimum
Typical
Maximum
Units
3.3V ±5%, 20% to 80% of VDDO
(output load = 4.7pF).
2.6
3.7
4.7
V/ns
2.5V ±5%, 20% to 80% of VDDO
(output load = 4.7pF).
1.5
2.4
4.7
V/ns
1.8V ±5%, 20% to 80% of VDDO
(output load = 4.7pF).
1.0
1.7
3.2
V/ns
VDDO
V
0.22
0.4
V
5
μA
Output High Voltage
VOH
IOH = -15mA at 3.3V.
IOH = -12mA at 2.5V.
IOH = -8mA at 1.8V.
Output Low Voltage
VOL
IOL = 15mA at 3.3V.
IOL = 12mA at 2.5V.
IOL = 8mA at 1.8V.
0.8 x VDDO
Output Leakage Current
IOZDD
Outputs tri-stated, VDDO, VDDREF =
3.465V.
0
CMOS Output Driver Impedance
ROUT
TA = 25°C.
17
Notes
Ω
Table 11. LVDS Output Electrical Characteristics
Parameter
Symbol
Minimum
Typical
Maximum
Units
Differential Output Voltage for the TRUE Binary State
VOT (+)
247
328
454
mV
Differential Output Voltage for the FALSE Binary State
VOT (-)
-454
-332
-247
mV
Change in VOT between Complementary Output States
ΔV OT
50
mV
Output Common Mode Voltage (Offset Voltage) at 3.3V +5% and 2.5V +5%
VOS
1.125
1.19
1.55
V
Output Common Mode Voltage (Offset Voltage) at 1.8V +5%
VOS
0.8
0.86
0.95
V
Change in VOS between Complementary Output States
ΔVOS
0
50
mV
Outputs Short Circuit Current, VOUT+ or VOUT- = 0V or V DD
IOS
6
12
mA
Differential Outputs Short Circuit Current, VOUT+ = VOUT-
IOSD
3
12
mA
©2020 Renesas Electronics Corporation
12
Notes
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Table 11. LVDS Output Electrical Characteristics (Cont.)
Parameter
Symbol
Minimum
Typical
Maximum
Units
Rise Times Tested at 20% – 80%
TR
257
375
ps
Fall Times Tested at 80% – 20%
TF
287
375
ps
Notes
Table 12. Low-Power (LP) Push-Pull HCSL Differential Outputs
VDDO = 3.3V ±5%, 2.5V ±5%, 1.8V ±5%, TA = -40°C to +85°C unless stated otherwise.
Parameter
Symbol
Slew Rate
TR/F
Slew Rate Matching
ΔTR/F
Conditions
Scope averaging on.
Minimum Typical Maximum Units
1
Crossing Voltage (abs)
VCROSS
Scope averaging off.
Crossing Voltage (var)
ΔVCROSS
Scope averaging off.
Average Clock Period
Accuracy
TPERIOD_AVG
Absolute Period
TPERIOD_ABS Includes jitter and spread modulation.
2.5
4
V/ns
2,3,16
9
20
%
1,14,16
424
550
mV
1,4,5,16
16
140
mV
1,4,9,16
-100
0
+2600
ppm
2,10,12,13
9.949
10
10.101
ns
2,6
250
Outputs set to 100MHz for PCIe
applications.
Notes
Absolute Maximum Voltage
VMAX
Includes 300mV of overshoot (Vovs).
660
808
1150
mV
1,7,15
Absolute Minimum Voltage
VMIN
Includes -300mV of undershoot (Vuds).
-300
-54
150
mV
1,8,15
1
Measured from single-ended waveform.
2 Measured
3 Measured
4
from differential waveform.
from -150mV to +150mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through
the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing.
Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-.
5 Refers to the total variation from the lowest crossing point to the
6
7
8
9
measurement.
highest, regardless of which edge is crossing. Refers to all crossing points for this
Defines as the absolute minimum or maximum instantaneous period. This includes cycle-to-cycle jitter, relative ppm tolerance, and spread spectrum
modulation.
Defined as the maximum instantaneous voltage including overshoot.
Defined as the minimum instantaneous voltage including undershoot.
Defined as the total variation of all crossing voltages of rising REFCLK+ and falling REFCLK-. This is the maximum allowed variance in VCROSS for
any particular system.
10
11
Refer to Section 8.6 of the PCI Express Base Specification, Revision 4.0 for information regarding PPM considerations.
System board compliance measurements must use the test load. REFCLK+ and REFCLK- are to be measured at the load capacitors CL.
Single-ended probes must be used for measurements requiring single-ended measurements. Either single-ended probes with math or differential
probe can be used for differential measurements. Test load CL = 2pF.
12 PCIe Gen1
through Gen4 specify ±300ppm frequency tolerances. The PhiClock devices already meet the tighter ±100ppm frequency tolerances
proposed for PCIe Gen5 and required by most servers.
13 “ppm” refers to
parts per million and is a DC absolute period accuracy specification. 1ppm is 1/1,000,000th of 100.000000MHz exactly or 100Hz.
For 100ppm, then we have an error budget of 100Hz/ppm × 100ppm = 10kHz. The period is to be measured with a frequency counter with
measurement window set to 100ms or greater. The ±100ppm applies to systems that do not employ Spread Spectrum Clocking, or that use
common clock source. For systems employing Spread Spectrum Clocking, there is an additional 2,500ppm nominal shift in maximum period
resulting from the 0.5% down spread resulting in a maximum average period specification of +2,600ppm for Common Clock Architectures.
Separate Reference Clock Architectures may have a lower allowed spread percentage.
©2020 Renesas Electronics Corporation
13
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
14
15
16
Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75mV window centered on the
median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the
oscilloscope is to use for the edge rate calculations. The rise edge rate of REFCLK+ should be compared to the fall edge rate of REFCLK-; the
maximum allowed difference should not exceed 20% of the slowest edge rate.
At default amplitude settings.
Guaranteed by design and characterization.
Table 13. Filtered Phase Jitter Parameters – PCIe Common Clocked (CC) Architectures
TAMB = over the specified operating range. Supply Voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Typical
Maximum
Industry
Limits
Units
Notes
PCIe Gen1.
24
43
86
ps
(p-p)
1,2,3
PCIe Gen2 Low Band
10kHz < f < 1.5MHz
(PLL BW of 5–16MHz, 8–16MHz,
CDR = 5MHz).
0.7
1.4
3
ps
(rms)
1,2
PCIe Gen2 High Band
1.5MHz < f < Nyquist (50MHz)
(PLL BW of 5–16MHz, 8–16MHz,
CDR = 5MHz).
1.8
2.6
3.1
ps
(rms)
1,2
tjphPCIeG3-CC
PCIe Gen3
(PLL BW of 2–4MHz, 2–5MHz,
CDR = 10MHz).
0.44
0.65
1
ps
(rms)
1,2
tjphPCIeG4-CC
PCIe Gen4 (SSC off)
(PLL BW of 2–4MHz, 2–5MHz,
CDR = 10MHz).
0.30
0.44
0.5
ps
(rms)
1,2,6,7
Symbol
Conditions
tjphPCIeG1-CC
tjphPCIeG2-CC
PCIe Phase
Jitter
Minimum
Table 14. Filtered Phase Jitter Parameters – PCIe Independent Reference (IR) Architectures
TAMB = over the specified operating range. Supply Voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
PCIe Phase
Jitter
Typical
Maximum
Industry
Limits
Units
Notes
PCIe Gen2 (-0.5% SSC)
(PLL BW of 16MHz, CDR = 5MHz).
1.2
1.53
2
ps
(rms)
1,2,4,5
PCIe Gen3 (SSC off)
(PLL BW of 2–4MHz, CDR = 10MHz).
0.37
0.45
0.7
ps
(rms)
1,2,4,
5,6
Symbol
Conditions
tjphPCIeG2-SRnS
tjphPCIeG3-SRnS
Minimum
Notes for all PCIe Filtered Phase Jitter tables:
1
2
3
4
5
Applies to all differential outputs, guaranteed by design and characterization.
Based on PCIe Base Specification Rev4.0 version 1.0. See http://www.pcisig.com for latest specifications.
Sample size of at least 100K cycles. This figure extrapolates to 108ps pk-pk at 1M cycles for a BER of 1-12.
IR is the new name for Separate Reference Independent Spread (SRIS) and Separate Reference no Spread (SRNS) PCIe clock architectures.
According to the PCIe Base Specification Rev4.0 version 1.0, the jitter transfer functions and corresponding jitter limits are not defined for the IR
clock architecture. Widely accepted industry limits using widely accepted industry filters are used to populate this table. The PCIe Base
Specification Rev5.0 is expected to resolve this.
©2020 Renesas Electronics Corporation
14
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
6
7
For improved PCIe performance, including PCIe Gen5, see application note AN1001.
SSC off.
Table 15. Current Consumption–9FGV1004
VDDO = 3.3V ±5%, 2.5V ±5%, 1.8V ±5%, TA = -40°C to +85°C unless stated otherwise.
Parameter
Symbol
Conditions
VDDREF Supply Current
IDDREF
Core Supply Current
IDDCORE
Output Buffer Supply Current
(VDDO3)
Output Buffer Supply Current
(VDDO2)
IDDOx
Output Buffer Supply Current
(VDDO1)
Output Buffer Supply Current
(VDDO0)
Total Power Down Current
1
2
3
IDDPD
Minimum
Typical
Maximum
Units
Notes
50MHz REFCLK, subtract 3mA for
25MHz REFCLK.
7
11
mA
2500MHz VCO, 50MHz REFCLK.
30
42
mA
3
LVDS, 325MHz
18
24
mA
2
LP-HCSL, 100MHz
12
21
mA
2
LVCMOS, 50MHz
14
19
mA
1,2
LVCMOS, 200MHz
21
35
mA
1,2
LVDS, 325MHz
18
24
mA
2
LP-HCSL, 100MHz
16
21
mA
2
LVCMOS, 50MHz
14
19
mA
1,2
LVCMOS, 200MHz
21
35
mA
1,2
LVDS, 325MHz, SSC Off
8
11
mA
2
LP-HCSL, 100MHz, SSC Off
6
8
mA
2
LP-HCSL, 100MHz, SSC On
14
18
mA
2
LVCMOS, 50MHz, SSC Off
5
7
mA
1,2
LVCMOS, 50MHz, SSC On
9
12
mA
1,2
LVCMOS, 200MHz, SSC Off
13
24
mA
1,2
LVDS, 325MHz
16
21
mA
2
LP-HCSL, 100MHz
15
18
mA
2
LVCMOS, 50MHz
13
17
mA
1,2
LVCMOS, 200MHz
21
34
mA
1,2
Programmable outputs in HCSL
mode, B37[0] = 0.
20
26
mA
1,2
Programmable outputs in LVDS
mode, B37[0] = 0.
31
43
mA
1,2
Programmable outputs in
LVCMOS1 mode, B37[0] = 0.
16
20
mA
1,2
Single CMOS driver active for each output pair.
See Test Loads for details.
IDDCORE = IDDA + IDDD.
©2020 Renesas Electronics Corporation
15
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Table 16. Current Consumption–9FGV1008
VDDO = 3.3V ±5%, 2.5V ±5%, 1.8V ±5%, TA = -40°C to +85°C unless stated otherwise.
Parameter
Symbol
VDDREF Supply Current
IDDREF
Core Supply Current
IDDCORE
Output Buffer Supply Current
(VDDO1)
IDDOx
Output Buffer Supply Current
(VDDO0)
Total Power Down Current
1
2
3
IDDPD
Conditions
Minimum
Typical
Maximum
Units
Notes
50MHz REFCLK.
5
7
mA
2500MHz VCO, SSC off.
32
45
mA
3
2500MHz VCO, SSC on.
39
56
mA
3
LVDS, 325MHz.
18
22
mA
2
LP-HCSL, 100MHz.
16
21
mA
2
LVCMOS, 50MHz.
14
18
mA
1,2
LVCMOS, 200MHz.
22
34
mA
1,2
LVDS, 325MHz.
16
21
mA
2
LP-HCSL.
16
20
mA
2
LVCMOS, 50MHz.
13
18
mA
1,2
LVCMOS, 200MHz.
21
33
mA
1,2
Programmable outputs in HCSL
mode, B37[0] = 0.
19
25
mA
1,2
Programmable outputs in LVDS
mode, B37[0] = 0.
25
35
mA
1,2
Programmable outputs in
LVCMOS1 mode, B37[0] = 0.
17
23
mA
1,2
Single CMOS driver active for each output pair.
See Test Loads for details.
IDDCORE = IDDA + IDDD + IDDAO.
Table 17. 9FGV1004C/9FGV1008C Spread Spectrum Programmability
Parameter
Symbol
Mod Frequency
fMODPCIe
Mod Frequency
fMOD
Conditions
Minimum
Typical
Maximum
Units
PCIe Compliant -0.5% spread modulation.
30
31.5
33
kHz
Modulation frequency.
30
63
kHz
Spread%
SSC%
Spread amount – down spread.
-0.1
-3
%
Spread%
SSC%
Spread amount – center spread.
±0.05
±1.5
%
©2020 Renesas Electronics Corporation
16
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
I2C Bus Characteristics
Table 18. I2C Bus DC Characteristics
Parameter
Symbol
Conditions
Minimum
Input High Level
VIH
—
0.7 x VDDD
Input Low Level
VIL
—
VHYS
—
0.05 x VDDD
Input Leakage Current
IIN
—
-1
Output Low Voltage
VOL
IOL = 3mA.
Hysteresis of Inputs
Typical
Maximum
Units
V
0.3 x VDDD
V
V
30
μA
0.4
V
Maximum
Units
400
kHz
Table 19. I2C Bus AC Characteristics
Parameter
Symbol
Conditions
Minimum
FSCLK
—
10
tBUF
—
1.3
μs
Setup Time, START
tSU:START
—
0.6
μs
Hold Time, START
tHD:START
—
0.6
μs
Setup Time, Data Input (SDA)
tSU:DATA
—
0.1
μs
1
tHD:DATA
—
0
μs
tOVD
—
0.9
μs
Capacitive Load for Each Bus Line
CB
—
400
pF
Rise Time, Data and Clock (SDA, SCL)
tR
—
20 + 0.1 x CB
300
ns
Fall Time, Data and Clock (SDA, SCL)
tF
—
20 + 0.1 x CB
300
ns
High Time, Clock (SCL)
tHIGH
—
0.6
μs
Low Time, Clock (SCL)
tLOW
—
1.3
μs
tSU:STOP
—
0.6
μs
Serial Clock Frequency (SCL)
Bus free time between STOP and START
Hold Time, Data Input (SDA)
Output Data Valid from Clock
Setup Time, STOP
Typical
1 A device
must internally provide a hold time of at least 300ns for the SDA signal (referred to the VIH(MIN) of the SCL signal) to bridge the undefined
region of the falling edge of SCL.
©2020 Renesas Electronics Corporation
17
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Test Loads
Figure 4. LVCMOS AC/DC Test Load
Test
Point
L
Zo
Rs
CL
Rs
Zo
L
CL
33Ω
50Ω
5 inches
4.7pF
Figure 5. LP-HCSL AC/DC Test Load
(Standard PCIe source-terminated test load)
Rs
CL
L
Test
Points
Differential Zo
CL
Rs
Rs
Zo
L
CL
Internal
100Ω
5 inches
2pF
Internal
85Ω
5 inches
2pF
Figure 6. LVDS AC/DC Test Load
L
Differential Zo
100ohm
Rs
Zo
L
CL
N/A
100Ω
5 inches
N/A
©2020 Renesas Electronics Corporation
18
Test
Points
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Figure 7. Test Setup for PCIe Measurement Using a Real-Time Scope
Real Time Scope
SMA
Connectors
Rs
Coax
Cables
L
Differential Zo
0.1µF
50
50
Rs
Rs
Zo
L
CL
Internal
100Ω
5 inches
N/A
Figure 8. Test Setup for PCIe Measurement Using a Phase Noise Analyzer
SMA
Connectors
L
CK+
0.1uF
CK-
50
Rs
Zo
L
CL
Internal
100Ω
5 inches
N/A
©2020 Renesas Electronics Corporation
Coax
Cables
Balun
Zo (differential)
DUT
Phase Noise Analyzer
19
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Crystal Characteristics
Table 20. Recommended Crystal Characteristics
Parameter
Value
Units
Frequency
8 – 50
MHz
Resonance Mode
Fundamental
—
Frequency Tolerance at 25°C
±20
ppm maximum
Frequency Stability, REF at 25°C Over Operating Temperature Range
±20
ppm maximum
Temperature Range (commercial)
0 to +70
°C
Temperature Range (industrial)
-40 to +85
°C
Equivalent Series Resistance (ESR)
50
Ω maximum
Shunt Capacitance (CO)
7
pF maximum
Load Capacitance (CL)
8
pF maximum
Drive Level
0.1
mW maximum
Aging per year
±5
ppm maximum
Package Drawings
The package outline drawings are appended at the end of this document and are also accessible from the link below. The package
information is the most current data available and is subject to change without notice or revision of this document.
9FGV1004C:
www.idt.com/document/psc/24-vfqfpn-package-outline-drawing-40-x-40-x-075-mm-body-05mm-pitch-epad-26-x-26-mm-nbnbg24p2
www.idt.com/us/en/document/psc/lga24l-package-outline-drawing-40-x-40-x-155-mm-body-050mm-pitch-ltg24t1
9FGV1008C:
www.idt.com/us/en/document/psc/16-lga-package-outline-drawing30-x-30-x-110-mm-body-05mm-pitchltg16p1
©2020 Renesas Electronics Corporation
20
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Marking Diagrams
24-VFQFPN
9FGV100
4CnnnGI
#YWW**$
▪ Lines 1 and 2 are the truncated part number.
▪ Line 3:
• “#” denotes the stepping number.
• “YWW” denotes the last digits of the year and week the part was assembled.
• “**” denotes the lot sequence.
• “$” denotes the mark code.
24-LGA (with internal crystal)
1004C
Q5aa
YWW**$
▪ Lines 1 and 2 are the truncated part number.
▪ Line 3:
• “YWW” denotes the last digits of the year and week the part was assembled.
• “**” denotes the lot sequence.
• “$” denotes the mark code.
16-LGA
8Cnnn
YWW$
XXX
▪ Line 1 is the truncated part number.
▪ Line 2:
• “YWW” denotes the last digits of the year and week the part was assembled.
• “$” denotes the mark code.
▪ Line 3:
• “XXX” denotes the last three characters of the assembly lot number.
16-LGA (with internal crystal)
8CQ5aa
YWW$
XXX
▪ Line 1 is the truncated part number.
▪ Line 2:
• “YWW” denotes the last digits of the year and week the part was assembled.
• “$” denotes the mark code.
▪ Line 3:
• “XXX” denotes the last three characters of the assembly lot number.
©2020 Renesas Electronics Corporation
21
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Standard Configurations
Table 21. 9FGV1004C/9FGV1008C Standard Configurations
Supply Voltage–all
pins (V)
Output Impedance
(ohms)
Number of PCIe
Clock Outputs
4
3.3 and 1.8
100 (LP-HCSL)
2
XTAL Frequency
(MHz)
Orderable Part Number
(Bulk)
Orderable Part Number
(Tape and Reel)
50 – external
9FGV1004C001NBGI
9FGV1004C001NBGI8
50 – internal
9FGV1004CQ501LTGI
9FGV1004CQ501LTGI8
50 – external
9FGV1008C001LTGI
9FGV1008C001LTGI8
50 – internal
9FGV1008CQ501LTGI
9FGV1008CQ501LTGI8
Table 22. Common Features of 9FGV1004C/9FGV1008C Standard Configurations
Configuration
0
1
2
3
9FGV1004 Output
9FGV1008 Output
OUT0
OUT0
100
1.8
LP-HCSL
OUT1
—
100
1.8
LP-HCSL
OUT2
OUT1
125
1.8
LVDS
OUT3
—
50
1.8
LP-HCSL
OUT0
OUT0
100
1.8
LP-HCSL
OUT1
—
100
1.8
LP-HCSL
OUT2
OUT1
156.25
1.8
LVDS
OUT3
—
50
1.8
LP-HCSL
OUT0
OUT0
100
3.3
LP-HCSL
OUT1
—
100
3.3
LP-HCSL
OUT2
OUT1
125
3.3
LVDS
OUT3
—
50
3.3
LP-HCSL
OUT0
OUT0
100
3.3
LP-HCSL
OUT1
—
100
3.3
LP-HCSL
OUT2
OUT1
156.25
3.3
LVDS
OUT3
—
50
3.3
LP-HCSL
©2020 Renesas Electronics Corporation
Output Frequency (MHz) Supply Voltage (V)
22
Output Type
Ref Outputs
OFF
OFF
OFF
OFF
October 29, 2020
9FGV1004C/9FGV1008C Datasheet
Ordering Information
Orderable Part Number
Package
Carrier Type
Temperature
Crystal
9FGV1004CnnnNBGI
4 × 4 mm, 0.5mm pitch 24-VFQFPN
Tray
-40 to +85°C
External
9FGV1004CnnnNBGI8
4 × 4 mm, 0.5mm pitch 24-VFQFPN
Tape and Reel
-40 to +85°C
External
9FGV1004CQ5aaLTGI
4 × 4 mm, 0.5mm pitch 24-LGA
Tray
-40 to +85°C
50MHz Internal
9FGV1004CQ5aaLTGI8
4 × 4 mm, 0.5mm pitch 24-LGA
Tape and Reel
-40 to +85°C
50MHz Internal
9FGV1008CnnnLTGI
3 × 3 mm, 0.5mm pitch 16-LGA
Tray
-40 to +85°C
External
9FGV1008CnnnLTGI8
3 × 3 mm, 0.5mm pitch 16-LGA
Tape and Reel
-40 to +85°C
External
9FGV1008CQ5aaLTGI
3 × 3 mm, 0.5mm pitch 16-LGA
Tray
-40 to +85°C
50MHz Internal
9FGV1008CQ5aaLTGI8
3 × 3 mm, 0.5mm pitch 16-LGA
Tape and Reel
-40 to +85°C
50MHz Internal
“G” indicates RoHS 6.6 compliance.
“nnn” are decimal digits indicating a specific configuration.
“aa” are alphanumeric digits indicating a specific configuration.
“Q5” indicates internal 50MHz crystal.
Revision History
Revision Date
Description of Change
October 29, 2020
Updated pin descriptions for VDDAp and VDDDp.
October 20, 2020
Added Test Loads section and diagrams.
September 28, 2020
Added Standard Configurations section and tables.
September 22, 2020
Correct all fOUT minimum frequencies from 10MHz to 1MHz in Common Electrical Characteristics table.
August 18, 2020
Updated 9FGV1008CQ (16-LGA with internal crystal) marking diagram.
August 14, 2020
Updated Slew Rate 1.8V minimum value from 0.8 to 1.0V/ns.
August 13, 2020
Updated Carrier Type in Ordering Information table from “Trays” to “Tray”.
July 20, 2020
Corrected internal resistors from pull-up to pull-down on SEL0/SCL and SEL1/SDA pins.
April 16, 2020
Initial release.
©2020 Renesas Electronics Corporation
23
October 29, 2020
24-VFQFPN, Package Outline Drawing
4.0 x 4.0 x 0.75 mm Body, 0.5mm Pitch, Epad 2.6 x 2.6 mm
NB/NBG24P2, PSC-4313-02, Rev 01, Page 1
TOP VIEW
BOTTOM VIEW
SIDE VIEW
24-VFQFPN, Package Outline Drawing
4.0 x 4.0 x 0.75 mm Body, 0.5mm Pitch, Epad 2.6 x 2.6 mm
NB/NBG24P2, PSC-4313-02, Rev 01, Page 2
Package Revision History
Description
Date Created
Rev No.
Jan 24, 2018
Rev 01
Change QFN to VFQFPN and New Format
May 11, 2016
Rev 00
Initial Release
16-LGA Package Outline Drawing
3.0 x 3.0 x 1.10 mm Body, 0.5mm Pitch
LTG16P1, PSC-4651-01, Rev 02, Page 1
16-LGA Package Outline Drawing
3.0 x 3.0 x 1.10 mm Body, 0.5mm Pitch
LTG16P1, PSC-4651-01, Rev 02, Page 2
Package Revision History
Description
Date Created
Rev No.
Nov 6, 2017
Rev 02
Modify Solder Mask & Epad Chamfer
Sept 29, 2017
Rev 01
Modify Land Pattern
IMPORTANT NOTICE AND DISCLAIMER
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)
Corporate Headquarters
Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:
www.renesas.com/contact/
Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.
© 2020 Renesas Electronics Corporation. All rights reserved.