0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
9SQL4954CNLGI

9SQL4954CNLGI

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    VFQFN-24

  • 描述:

    IC CLK GENERATOR PCIE 24VFQFPN

  • 数据手册
  • 价格&库存
9SQL4954CNLGI 数据手册
3.3V PCIe® Gen1–5 and UPI Clock Generator Family 9SQL4952/9SQL4954/ 9SQL4958 Datasheet Description Features The 9SQL4952/9SQL4954/9SQL4958 devices comprise a family of 3.3V PCIe Gen1–5 clock generators with UPI support. There are 2, 4 and 8 outputs versions available and each differential output has a dedicated OE# pin supporting PCIe CLKREQ# functionality. ▪ Integrated terminations for 85Ω systems save 4 resistors per output ▪ 112–206 mW typical power consumption (at 3.3V) ▪ VDDIO rail allows 35% power savings at optional 1.05V (9SQL4958 only) ▪ Devices contain default configuration; SMBus not required PCIe Clocking Architectures ▪ SMBus features allow optimization to application: ▪ Common Clocked (CC) ▪ Independent Reference (IR) with and without spread spectrum • Input polarity and pull-up/pull-downs • Output slew rate and amplitude • Output impedance (33Ω, 85Ω or 100Ω) (SRIS, SRNS) Typical Applications ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ Servers/High-Performance Computing nVME Storage Networking Accelerators Industrial Control Key Specifications ▪ ▪ ▪ ▪ ▪ Contact factory for customized default configurations 25MHz input frequency OE# pins support PCIe CLKREQ# function Pin-selectable SRnS 0%, CC 0% and CC/SRIS -0.5% spread SMBus-selectable CC/SRIS -0.25% spread Clean switching between the CC/SRIS spread settings BCLK outputs blocked until PLL is locked for clean system startup ▪ 2 selectable SMBus addresses ▪ Space-saving packages: See Ordering Information for details 90fs RMS typical jitter (PCIe Gen5 CC) 70fs RMS typical jitter (QPI ≤ 11.4Gb/s, 12UI) < 50ps cycle-to-cycle jitter on differential outputs Output Features < 50ps output-to-output skew on differential outputs ±0ppm synthesis error on differential outputs ▪ 2, 4 or 8 100MHz CPU/PCIe output pairs ▪ One 3.3V LVCMOS REF output with Wake-On-LAN (WOL) support ▪ See AN-891 for easy AC-coupling to other logic families Block Diagram VDDA vOE(n:0)# VDDREF VDDXTAL VDDDIG VDDO/ VDDIO n+1 REF3.3 XIN/CLKIN_25 BCLKn# BCLKn X2 vSADR ^vSS_EN_tri ^CKPWRGD_PD# SDATA_3.3 SCLK_3.3 SSC Capable PLL Control Logic GNDXTAL GNDREF ©2020 Renesas Electronics Corporation 2 to 8 outputs BCLK0# BCLK0 GNDDIG 1 GND EPAD February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Contents Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 PCIe Clocking Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Output Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9SQL4952 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9SQL4954 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9SQL4958 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Alternate Terminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Crystal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 General SMBus Serial Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 How to Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 How to Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Marking Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 9SQL4952 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 9SQL4954 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 9SQL4958 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ©2020 Renesas Electronics Corporation 2 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Pin Assignments 9SQL4952 Pin Assignment vOE1# VDD3.3 GND ^CKPWRGD_PD# ^vSS_EN_tri GNDXTAL Figure 1. Pin Assignments for 4 × 4 mm 24-VFQFPN Package – Top View 24 23 22 21 20 19 XIN/CLKIN_25 1 14 BCLK0# 13 BCLK0 9 10 11 12 vOE0# 8 VDD3.3 7 GND GNDREF 5 GNDDIG 6 SDATA_3.3 vSADR/REF3.3 4 9SQL4952C 16 VDDA3.3 Connect EPAD to 15 GNDA GND SCLK_3.3 VDDXTAL3.3 3 VDDDIG3.3 X2 2 18 BCLK1# 17 BCLK1 24-VFQFPN, 4 x 4 mm, 0.5mm pitch ^ prefix indicates internal 120kOhm pull-up resistor v prefix indicates internal 120kOhm pull-down resistor ©2020 Renesas Electronics Corporation 3 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet 9SQL4954 Pin Assignment VDDO3.3 GND BCLK3 BCLK3# vOE3# GND ^CKPWRGD_PD# ^vSS_EN_tri Figure 2. Pin Assignments for 5 × 5 mm 32-VFQFPN Package – Top View 32 31 30 29 28 27 26 25 GNDXTAL 1 24 vOE2# 23 BCLK2# XIN/CLKIN_25 2 X2 3 22 BCLK2 21 VDDA3.3 9SQL4954C Connect EPAD to GND VDDXTAL3.3 4 VDDREF3.3 5 vSADR/REF3.3 6 20 GNDA 19 BCLK1# GNDREF 7 GNDDIG 8 18 BCLK1 17 vOE1# VDDO3.3 GND BCLK0# BCLK0 vOE0# SDATA_3.3 SCLK_3.3 VDDDIG3.3 9 10 11 12 13 14 15 16 32-VFQFPN, 5 x 5 mm, 0.5mm pitch ^ prefix indicates internal 120kOhm pull-up resistor v prefix indicates internal 120kOhm pull-down resistor ©2020 Renesas Electronics Corporation 4 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet 9SQL4958 Pin Assignment vOE5# VDD3.3 VDDIO GND BCLK6 BCLK6# vOE6# BCLK7 BCLK7# vOE7# VDDIO ^CKPWRGD_PD# Figure 3. Pin Assignments for 6 × 6 mm 48-VFQFPN Package – Top View 48 47 46 45 44 43 42 41 40 39 38 37 ^vSS_EN_tri 1 36 BCLK5# GNDXTAL 2 35 BCLK5 XIN/CLKIN_25 3 34 vOE4# X2 4 33 BCLK4# VDDXTAL3.3 5 32 BCLK4 9SQL4958C Connect EPAD to GND VDDREF3.3 6 vSADR/REF3.3 7 31 VDDIO 30 VDDA3.3 GNDREF 8 29 GNDA GNDDIG 9 28 vOE3# SCLK_3.3 10 27 BCLK3# SDATA_3.3 11 26 BCLK3 VDDDIG3.3 12 25 vOE2# BCLK2# BCLK2 GND VDDIO VDD3.3 BCLK1# BCLK1 vOE1# BCLK0# BCLK0 vOE0# VDDIO 13 14 15 16 17 18 19 20 21 22 23 24 48-VFQFPN, 6 x 6 mm, 0.4mm pitch ^v prefix indicates internal 60kOhm pull-down resistor v prefix indicates internal 120kOhm pull-down resistor ^ prefix indicates internal 120kOhm pull-up resistor Pin Descriptions Table 1. Pin Descriptions Type ^CKPWRGD_PD# Input Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal pull-up resistor. 48 31 22 Latched In Latched select input to select spread spectrum amount at initial power up. See Spread Selection table. 1 32 23 ^vSS_EN_tri Description 9SQL4958 9SQL4954 9SQL4952 Pin No. Pin No. Pin No. Name BCLK0 Output True output of differential BCLK. 15 13 13 BCLK0# Output Complement output of differential BCLK. 16 14 14 BCLK1 Output True output of differential BCLK. 18 18 17 BCLK1# Output Complement output of differential BCLK. 19 19 18 ©2020 Renesas Electronics Corporation 5 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Table 1. Pin Descriptions (Cont.) Name Type Description 9SQL4958 9SQL4954 9SQL4952 Pin No. Pin No. Pin No. BCLK2 Output True output of differential BCLK. 23 22 — BCLK2# Output Complement output of differential BCLK. 24 23 — BCLK3 Output True output of differential BCLK. 26 27 — BCLK3# Output Complement output of differential BCLK. 27 28 — BCLK4 Output True output of differential BCLK. 32 — — BCLK4# Output Complement output of differential BCLK. 33 — — BCLK5 Output True output of differential BCLK. 35 — — BCLK5# Output Complement output of differential BCLK. 36 — — BCLK6 Output True output of differential BCLK. 41 — — BCLK6# Output Complement output of differential BCLK. 42 — — BCLK7 Output True output of differential BCLK. 44 — — BCLK7# Output Complement output of differential BCLK. 45 — — EPAD GND Connect to ground. 49 33 25 GND GND Ground pin. 22 15 10 GND GND Ground pin. 40 26, 30 21 GNDA GND Ground pin for the PLL core. 29 20 15 GNDDIG GND Ground pin for digital circuitry. 9 8 6 GNDREF GND Ground pin for the REF outputs. 8 7 5 GNDXTAL GND GND for XTAL. 2 1 24 SCLK_3.3 Input Clock pin of SMBus circuitry, 3.3V tolerant. 10 10 8 I/O Data pin for SMBus circuitry, 3.3V tolerant. 11 11 9 SDATA_3.3 VDD3.3 Power Power supply, nominally 3.3V. 20 16 11 VDD3.3 Power Power supply, nominally 3.3V. 38 25 20 VDDA3.3 Power 3.3V power for the PLL core. 30 21 16 VDDDIG3.3 Power 3.3V digital power (dirty power). 12 9 7 VDDIO Power Power supply for differential outputs. 13 — — VDDIO Power Power supply for differential outputs. 21 — — VDDIO Power Power supply for differential outputs. 31 — — VDDIO Power Power supply for differential outputs. 39 — — VDDIO Power Power supply for differential outputs. 47 — — VDDREF3.3 Power Power supply for REF output, nominally 3.3V. 6 5 — VDDXTAL3.3 Power Power supply for XTAL, nominally 3.3V. 5 4 3 vOE0# Input Active low input for enabling output 0. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 14 12 12 ©2020 Renesas Electronics Corporation 6 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Table 1. Pin Descriptions (Cont.) Name 9SQL4958 9SQL4954 9SQL4952 Pin No. Pin No. Pin No. Type Description vOE1# Input Active low input for enabling output 1. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 17 17 19 vOE2# Input Active low input for enabling output 2. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 25 24 — vOE3# Input Active low input for enabling output 3. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 28 29 — vOE4# Input Active low input for enabling output 4. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 34 — — vOE5# Input Active low input for enabling output 5. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 37 — — vOE6# Input Active low input for enabling output 6. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 43 — — vOE7# Input Active low input for enabling output 7. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 46 — — vSADR/REF3.3 Latched I/O Latch to select SMBus Address/3.3V LVCMOS copy of X1/REFIN pin 7 6 4 X2 Output Crystal output. 4 3 2 Crystal input or Reference Clock input. nominally 25MHz. 3 2 1 XIN/CLKIN_25 Input Table 2. Spread Selection ^vSS_EN_tri Pin B1[4:3] Spread% Note 0 00 0 — 01 -0.25 PCIe Common Clock or SRIS mode. M (VDD/2) 10 0 PCIe Common Clock or SRIS mode. 1 11 -0.50 PCIe Common Clock or SRIS mode. PCIe SRNS mode. If SRnS mode is desired, power up with ^vSS_EN_tri = '0'. Do not attempt to switch to the other modes via SMBus control in Byte 1 or a system reset will be required. If Common Clock (CC) or SRIS mode is desired, power up with ^vSS_EN_tri at either 'M' or '1'. The desired spread spectrum amount can then be selected via Byte 1 without a requiring a system reset. Once 'M' or '1' is latched at power up, do not attempt to enter SRnS mode or a system reset will be required. ©2020 Renesas Electronics Corporation 7 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Absolute Maximum Ratings The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the 9SQL4952/9SQL4954/9SQL4958 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 3. Absolute Maximum Ratings Parameter Symbol Supply Voltage Minimum Maximum Units Notes VDDx -0.5 4.6 V 1,2 Input Voltage VIN -0.5 VDD + 0.5 V 1,3 Input High Voltage, SMBus VIHSMB 3.9 V 1 Storage Temperature Ts 150 °C 1 Junction Temperature Tj 125 °C 1 Input ESD Protection ESD prot V 1 1 Guaranteed Conditions SMBus clock and data pins. -65 Human Body Model. 2500 by design and characterization, not 100% tested in production. 2 Operation under these conditions is neither implied nor guaranteed. 3 Not to exceed 4.6V. Thermal Characteristics Table 4. Thermal Characteristics Parameter 9SQL4952 Thermal Resistance 9SQL4954 Thermal Resistance 9SQL4958 Thermal Resistance 1 Symbol Conditions Package Typical Values Units Notes θJC Junction to case. 62 °C/W 1 θJb Junction to base. 5.4 °C/W 1 θJA0 Junction to air, still air. 50 °C/W 1 θJA1 Junction to air, 1 m/s air flow. 43 °C/W 1 θJA3 Junction to air, 3 m/s air flow. 39 °C/W 1 θJA5 Junction to air, 5 m/s air flow. 38 °C/W 1 θJC Junction to case. 42 °C/W 1 θJb Junction to base. 2.4 °C/W 1 θJA0 Junction to air, still air. 39 °C/W 1 θJA1 Junction to air, 1 m/s air flow. 33 °C/W 1 θJA3 Junction to air, 3 m/s air flow. 28 °C/W 1 θJA5 Junction to air, 5 m/s air flow. 27 °C/W 1 θJC Junction to case. 33 °C/W 1 θJb Junction to base. 2.1 °C/W 1 θJA0 Junction to air, still air. 37 °C/W 1 θJA1 Junction to air, 1 m/s air flow. 30 °C/W 1 θJA3 Junction to air, 3 m/s air flow. 27 °C/W 1 θJA5 Junction to air, 5 m/s air flow. 26 °C/W 1 NLG24 NLG32 NDG48 EPAD soldered to board. ©2020 Renesas Electronics Corporation 8 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Electrical Characteristics TA = TAMB. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Table 5. SMBus Parameters Parameter Symbol Conditions SMBus Input Low Voltage VILSMB VDDSMB = 3.3V. SMBus Input High Voltage VIHSMB VDDSMB = 3.3V. SMBus Output Low Voltage VOLSMB At IPULLUP. SMBus Sink Current IPULLUP At VOL. Nominal Bus Voltage VDDSMB SCLK/SDATA Rise Time tRSMB SCLK/SDATA Fall Time SMBus Operating Frequency Minimum Typical 2.1 Maximum Units 0.8 V 3.6 V 0.4 V 4 Notes mA 2.7 3.6 V (Max. VIL - 0.15V) to (Min. VIH + 0.15V). 1000 ns 1 tFSMB (Min. VIH + 0.15V) to (Max. VIL - 0.15V). 300 ns 1 fSMB SMBus operating frequency. 500 kHz 2 Notes 1 Guaranteed by design and characterization, not 100% tested in production. 2 The device must be powered up for the SMBus to function. Table 6. Input/Supply/Common Parameters – Normal Operating Conditions Parameter Symbol Conditions Minimum Typical Maximum Units Supply Voltage VDDxxx Supply voltage for core, analog and single-ended LVCMOS outputs. 3.135 3.3 3.465 V IO Supply Voltage VDDIO Supply voltage for differential low power outputs. 0.9975 1.05–3.3 3.465 V Ambient Operating Temperature TAMB Industrial range. -40 25 85 °C Input High Voltage VIH 0.75 x VDDx VDDx + 0.3 V Input Low Voltage VIL -0.3 0.25 x VDDx V Input High Voltage VIHtri 0.8 x VDDx VDDx + 0.3 V Input Mid Voltage VIMtri 0.6 x VDDx V Input Low Voltage VILtri 0.20 x VDDx V Single-ended inputs, except SMBus. Single-ended tri-level inputs ('_tri' suffix). 0.4 x VDDx 0.5 x VDDx -0.3 IIN Single-ended inputs, VIN = GND, VIN = VDD. -5 -0.05 5 μA IINP Single-ended inputs. VIN = 0V; inputs with internal pull-up resistors. VIN = VDD; inputs with internal pull-down resistors. -50 7 50 μA Input Frequency FIN XTAL or X1 input. Pin Inductance Lpin Input Current Capacitance CLK Stabilization CIN 25 Logic inputs, except DIF_IN. 1.5 COUT Output pin capacitance. tSTAB From VDD power-up and after input clock stabilization or deassertion of PD# to 1st clock. ©2020 Renesas Electronics Corporation 9 0.3 MHz 4 7 nH 1 5 pF 1 6 pF 1 1.8 ms 1,2 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Table 6. Input/Supply/Common Parameters – Normal Operating Conditions (Cont.) Parameter Symbol Conditions Minimum Typical Maximum Units Notes SS Modulation Frequency fMOD Triangular modulation. 30 31.6 33 kHz 1 OE# Latency tLATOE# DIF start after OE# assertion. DIF stop after OE# deassertion. 1 2 3 clocks 1,3 Tdrive_PD# tDRVPD DIF output enable after PD# de-assertion. 300 μs 1,3 Fall Time tF Fall time of single-ended control inputs. 5 ns 1,2 Rise Time tR Rise time of single-ended control inputs. 5 ns 1,2 1 Guaranteed by design and characterization, not 100% tested in production. 2 Control input must be monotonic from 20% to 80% of input swing. 3 Time from deassertion until outputs are > 200mV. 4 Contact the factory for other frequencies. Table 7. BCLK Low-Power HCSL Outputs Parameter Symbol Slew Rate Trf Crossing Voltage (abs) Vcross_abs Scope averaging off. Crossing Voltage (var) Δ-Vcross Scope averaging off. Avg. Clock Period Accuracy Conditions Minimum Typical Maximum Units Notes Scope averaging on, fast setting. 2 2.7 4 V/ns 2,3 Scope averaging, slow setting. 1 1.9 3 V/ns 2,3 250 409 550 mV 1,4,5 14 140 mV 1,4,9 0 0 +2500 ppm 2,10,12,13 9.95 10 10.0503 ns 2,6 16 50 ps 2 660 761 850 mV 1 -150 -7 150 mV 1 819 1150 mV 1,7,15 Devices have 0 ppm synthesis error. TPERIOD_AVG The maximum occurs with -0.5% SSC. Absolute Period TPERIOD_ABS Jitter, Cycle to Cycle tjcyc-cyc Voltage High VHIGH Voltage Low VLOW Absolute Maximum Voltage VMIN Absolute Minimum Voltage VMAX Duty Cycle tDC Slew Rate Matching ΔTrf Skew, Output to Output tsk3 1 Measured from single-ended waveform. 2 Measured from differential waveform. Includes jitter and spread spectrum modulation. Statistical measurement on single-ended signal using oscilloscope math function (scope averaging on). Measurement on single-ended signal using absolute value (scope averaging off). -300 -46 1,8,15 45 49 55 % 2 Single-ended measurement. 6 20 % 1,14 Averaging on, VT = 50%. 12 50 ps 2 3 Measured from -150 mV to +150 mV on the differential waveform (derived from REFCLK+ minus REFCLK-). The signal must be monotonic through the measurement region for rise and fall time. The 300mV measurement window is centered on the differential zero crossing. 4 Measured at crossing point where the instantaneous voltage value of the rising edge of REFCLK+ equals the falling edge of REFCLK-. ©2020 Renesas Electronics Corporation 10 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet 5 Refers to the total variation from the lowest crossing point to the highest, regardless of which edge is crossing. Refers to all crossing points for this measurement. 6 Defines as the absolute minimum or maximum instantaneous period. This includes cycle to cycle jitter, relative ppm tolerance, and spread spectrum modulation. 7 Defined as the maximum instantaneous voltage including overshoot. 8 Defined as the minimum instantaneous voltage including undershoot. 9 Defined as the total variation of all crossing voltages of Rising REFCLK+ and Falling REFCLK-. This is the maximum allowed variance in VCROSS for any particular system. 10 Refer to Section 8.6.2 of the PCI Express Base Specification, Revision 5.0 for information regarding PPM considerations. 11 System board compliance measurements must use the test load. REFCLK+ and REFCLK- are to be measured at the load capacitors CL. Single-ended probes must be used for measurements requiring single ended measurements. Either single-ended probes with math or differential probe can be used for differential measurements. Test load CL = 2pF. 12 PCIe Gen1 through Gen4 specify ±300ppm frequency tolerances. PCIe Gen5 reduces the allowable tolerance to ±100ppm without spread spectrum. 13 “ppm” refers to parts per million and is a DC absolute period accuracy specification. 1ppm is 1/1,000,000th of 100.000000MHz exactly or 100Hz. For 100ppm, then we have an error budget of 100Hz/ppm × 100ppm = 10kHz. The period is to be measured with a frequency counter with measurement window set to 100ms or greater. The ±100ppm applies to systems that do not employ Spread Spectrum clocking, or that use common clock source. For systems employing Spread Spectrum clocking, there is an additional 2,500ppm nominal shift in maximum period resulting from the 0.5% down spread resulting in a maximum average period specification of +2,600ppm for Common Clock architectures. Separate Reference Clock architectures may have a lower allowed spread percentage. 14 Matching applies to rising edge rate for REFCLK+ and falling edge rate for REFCLK-. It is measured using a ±75 mV window centered on the median cross point where REFCLK+ rising meets REFCLK- falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate of REFCLK+ should be compared to the Fall Edge Rate of REFCLK-; the maximum allowed difference should not exceed 20% of the slowest edge rate. 15 At default SMBus amplitude settings. Table 8. UPI Phase Jitter of Differential Outputs Parameter Phase Jitter, ZDB Mode Typical Maximum Specification Limits Units Notes QPI and UPI (100MHz, 8.0Gb/s, 12UI) 0.08 0.12 0.3 ps (RMS) 1,2 QPI and UPI (100MHz, ≤11.4Gb/s, 12UI) 0.07 0.10 0.2 ps (RMS) 1,2 Symbol tjphQPI_UPI Conditions Minimum 1 Applies to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details. 2 Calculated from Intel™-supplied Clock Jitter Tool. Equipment noise removed from the results. Table 9. 12kHz–20MHz Phase Jitter of Differential Outputs Parameter Symbol Phase Jitter, 12kHz–20MHz tjph12k20M ©2020 Renesas Electronics Corporation Conditions Differential outputs when device is set to PCIe SRnS mode (Byte1[4:3] = 00). 11 Minimum Typical Maximum Units 1.9 2 ps (rms) February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Table 10. Current Consumption – 9SQL4952 Parameter Symbol Operating Supply Current IDDAOP VDDA, all outputs active at 100MHz. 13 17 mA IDDOP All VDD, except VDDA, all outputs active at100MHz. 18 23 mA Wake-on-LAN Current (Power down state and Byte 3, bit 5 = '1') IDDAPD VDDA, DIF outputs off, REF output running. 0.9 1.5 mA 1 IDDPD All VDD, except VDDA, DIF outputs off, REF output running. 5.7 8 mA 1 Power Down Current (Power down state and Byte 3, bit 5 = '0') IDDAPD VDDA, all outputs off. 0.9 1.5 mA IDDPD All VDD, except VDDA, all outputs off. 1.7 2.5 mA 1 Conditions Minimum Typical Maximum Units Notes This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1). Table 11. Current Consumption – 9SQL4954 Parameter Symbol Conditions Minimum Typical Maximum Units Notes IDDAOP VDDA, all outputs active at 100MHz. 13 17 mA IDDOP All other VDD, except VDDA, all outputs active at100MHz. 30 39 mA Wake-on-LAN Current (Power down state and Byte 3, bit 5 = '1') IDDAPD VDDA, DIF outputs off, REF output running. 0.9 1.5 mA 1 IDDPD All other VDD, except VDDA, DIF outputs off, REF output running. 5.9 8.0 mA 1 Power Down Current (Power down state and Byte 3, bit 5 = '0') IDDAPD VDDA, all outputs off. 0.9 1.5 mA IDDPD All other VDD, except VDDA, all outputs off. 1.5 2.5 mA Operating Supply Current 1 This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1). Table 12. Current Consumption – 9SQL4958 Parameter Operating Supply Current Wake-on-LAN Current (Power down state and Byte 3, bit 5 = '1') Power Down Current (Power down state and Byte 3, bit 5 = '0') 1 Symbol Conditions Minimum Typical Maximum Units Notes IDDAOP VDDA, all outputs active at 100MHz. 14 19 mA IDDOP All VDD, except VDDA and VDDIO, all outputs active at100MHz. 18 24 mA IDDIOOP VDDIO, all outputs active at100MHz. 30 37 mA IDDAPD VDDA, DIF outputs off, REF output running. 0.9 1.5 mA 1 IDDPD All VDD, except VDDA and VDDIO, DIF outputs off, REF output running. 5.2 8 mA 1 IDDIOOP VDDIO, DIF outputs off, REF output running. 0.04 0.1 mA 1 IDDAPD VDDA, all outputs off. 0.9 1.5 mA IDDPD All VDD, except VDDA and VDDIO, all outputs off. 1.7 2.3 mA VDDIO, all outputs off. 0.04 0.1 mA IDDIOOP This is the current required to have the REF output running in Wake-on-LAN mode (Byte 3, bit 5 = 1). ©2020 Renesas Electronics Corporation 12 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Table 13. PCIe Phase Jitter of Differential Outputs TAMB = over the specified operating range. Supply voltages per normal operation conditions. See Test Loads for loading conditions. Parameter PCIe Phase Jitter (Common Clocked Architecture) PCIe Phase Jitter (SRIS Architecture) Symbol Conditions Units Notes tjphPCIeG1-CC PCIe Gen1 (2.5 GT/s) 18 28 86 ps (p-p) 1,2,7 PCIe Gen2 Hi Band (5.0 GT/s) 0.9 1.6 3 ps (RMS) 1,2,7 PCIe Gen2 Lo Band (5.0 GT/s) 0.4 0.6 3.1 ps (RMS) 1,2, tjphPCIeG3-CC PCIe Gen3 (8.0 GT/s) 0.25 0.4 1 ps (RMS) 1,2,3,7 tjphPCIeG4-CC PCIe Gen4 (16.0 GT/s) 0.25 0.4 0.5 ps (RMS) 1,2,3,4,7 tjphPCIeG5-CC PCIe Gen5 (32.0 GT/s) 0.09 0.11 0.15 ps (RMS) 1,2,3,5,7 tjphPCIeG1-SRIS PCIe Gen1 (2.5 GT/s) 4 6 ps (RMS) 1,2,6,8 tjphPCIeG2-SRIS PCIe Gen2 (5.0 GT/s) 0.8 1.1 ps (RMS) 1,2,6,8 tjphPCIeG3-SRIS PCIe Gen3 (8.0 GT/s) 0.3 0.4 ps (RMS) 1,2,6,8 tjphPCIeG4-SRIS PCIe Gen4 (16.0 GT/s) 0.3 0.35 ps (RMS) 1,2,6,8 tjphPCIeG5-SRIS PCIe Gen5 (32.0 GT/s) 0.15 0.19 ps (RMS) 1,2,6,8 tjphPCIeG2-CC Minimum Typical Maximum Limit N/A 1 The REFCLK jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section of the data sheet for the exact measurement setup. Values for the Common Clock architecture are calculated for CC/SRIS spread off and spread on at -0.5%. SRIS values are calculated for CC/SRIS spread off and spread on at ≤-0.3%. If oscilloscope data is used, equipment noise is removed from all results. 2 Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak to peak jitter using a multiplication factor of 8.83. In the case where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used. 3 SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2MHz taking care to minimize removal of any non-SSC content. 4 Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system. 5 Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system. 6 While the PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, it does not provide specification limits, hence the N/A in the “Limit” column. SRIS values are informative only. In general, a clock operating in an SRIS system must be twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by √2. An additional consideration is the value for which to divide by √2. The conservative approach is to divide the ref clock jitter limit, and the case can be made for dividing the channel simulation values by √2, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A “rule-of-thumb” SRIS limit would be either 0.5ps RMS/√2 = 0.35ps RMS, or 0.7ps RMS/√2 = 0.5ps RMS. 7 Calculated for Byte1[4:3] spread settings of 01, 10 and 11. 8 Calculated for Byte1[4:3] spread settings of 01, and 10. ©2020 Renesas Electronics Corporation 13 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Table 14. REF Output Parameter Symbol Long Accuracy ppm Clock Period Conditions Minimum Typical Maximum Units Notes See Tperiod min-max values. 0 ppm 1,2 Tperiod REF output. 40 ns 2 High Output Voltage VHIGH IOH = -2mA. Low Output Voltage VLOW IOL = 2mA. 0.8 x VDDREF V 0.2 x VDDREF V trf1 Byte 3 = 1F, VOH = 0.8 × VDD, VOL = 0.2 × VDD. 0.5 0.9 1.5 V/ns 1 trf1 Byte 3 = 5F, VOH = 0.8 × VDD, VOL = 0.2 × VDD. 1.0 1.5 2.5 V/ns 1,3 trf1 Byte 3 = 9F, VOH = 0.8 × VDD, VOL = 0.2 × VDD. 1.5 2.1 3.1 V/ns 1 trf1 Byte 3 = DF, VOH = 0.8 × VDD, VOL = 0.2 × VDD. 2.0 2.7 3.8 V/ns 1 Duty Cycle dt1X VT = VDD/2 V. 45 49.7 55 % 1,4 Jitter, Cycle to Cycle tjcyc-cyc VT = VDD/2 V. 35 125 ps 1,4 tjdBc1k 1kHz offset. -145 -135 dBc 1,4 tjdBc10k 10kHz offset to Nyquist. -150 -140 dBc 1,4 12kHz to 5MHz, DIF SSC off. 0.13 0.3 ps (rms) 1,4 12kHz to 5MHz, DIF SSC on. 1.4 1.5 ps (rms) 1,4 Rise/Fall Slew Rate Noise Floor Jitter, Phase tjphREF 1 Guaranteed by design and characterization, not 100% tested in production. 2 All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is trimmed to 25.00MHz. 3 Default SMBus value. 4 When driven by a crystal. ©2020 Renesas Electronics Corporation 14 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Power Management Table 15. Power Management 3 Differential Output CKPWRGD_PD# SMBus OE bit OEx# Pin True O/P Comp. O/P REF 0 X X Low 1 Low 1 Hi-Z 2 1 1 0 Running 1 1 1 1 0 X Running Disabled 1 Disabled 1 Running Disabled 1 Running Disabled 1 Disabled 4 1 The output state is set by B11[1:0] (Low/Low default). 2 REF is Hi-Z until the 1st assertion of CKPWRGD_PD# high. After this, when CKPWRG_PD# is low, REF is disabled unless Byte3[5] = 1, in which case REF is running. 3 Input polarities defined at default values. 4 See SMBus description for Byte 3, bit 4. Table 16. SMBus Address Selection SADR Address + Read/Write Bit 0 1101000 X 1 1101010 X State of SADR on first application of CKPWRGD_PD# Test Loads Figure 4. Single-ended Output Test Load Test Point L DUT REFCLK Zo Rs CL Table 17. Terminations for Single-ended Output Clock Source Device Under Test (DUT) Rs (Ω) Zo (Ω) L (cm) CL (pF) N/A 9SQL495x 33 50 12.7 4.7 ©2020 Renesas Electronics Corporation 15 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Figure 5. Test Load for AC/DC Measurements CL CK+ L Test Points for High Impedance Probe Zo (differential) DUT CK- CL Table 18. Terminations for AC/DC Measurements Clock Source Device Under Test (DUT) Rs (Ω) Zo (Ω) L (cm) CL (pF) N/A 9SQL495x Internal 85 12.7 2 Figure 6. Test Setup for PCIe Clock Phase Jitter Measurements Oscillocope (≥20GS/s) L CKIN+ CK+ Zo (differential) DUT CKIN- Coax Cables 0.1uF CK- 50 SMA Connectors 50 Table 19. Terminations for PCIe Clock Phase Jitter Measurements Clock Source Device Under Test (DUT) Rs (Ω) Zo (Ω) L (cm) CL (pF) N/A 9SQL495x Internal 85 12.7 N/A Alternate Terminations The device family can easily drive LVPECL, LVDS, and CML logic. See “AN-891 Driving LVPECL, LVDS, and CML Logic with IDT's “Universal” Low-Power HCSL Outputs” for details. ©2020 Renesas Electronics Corporation 16 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Crystal Characteristics Table 20. Recommended Crystal Characteristics 1 Parameter Value Units Frequency1 25 MHz Resonance Mode Fundamental — Frequency Tolerance @ 25°C ±20 ppm maximum Frequency Stability, reference at 25°C over operating temperature range ±20 ppm maximum Temperature Range (industrial) -40 to +85 °C Temperature Range (commercial) 0 to +70 °C Equivalent Series Resistance (ESR) 50 Ω maximum Shunt Capacitance (CO) 7 pF maximum Load Capacitance (CL) 8 pF maximum Drive Level 0.1 mW maximum Aging per year ±5 ppm maximum When driven by an external oscillator via the XIN/CLKIN_25 pin, X2 should be floating. ©2020 Renesas Electronics Corporation 17 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet General SMBus Serial Interface Information How to Write How to Read ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ Controller (host) sends a start bit Controller (host) sends the write address IDT clock will acknowledge Controller (host) sends the beginning byte location = N IDT clock will acknowledge Controller (host) sends the byte count = X IDT clock will acknowledge Controller (host) starts sending Byte N through Byte N+X-1 IDT clock will acknowledge each byte one at a time Controller (host) sends a stop bit Controller (host) sends the write address IDT clock will acknowledge Controller (host) sends the beginning byte location = N IDT clock will acknowledge Controller (host) will send a separate start bit Controller (host) sends the read address IDT clock will acknowledge IDT clock will send the data byte count = X IDT clock sends Byte N+X-1 IDT clock sends Byte 0 through Byte X (if X(H) was written to Byte 8) ▪ Controller (host) will need to acknowledge each byte Index Block Write Operation Controller (Host) Controller (host) will send a start bit IDT (Slave/Receiver) T starT bit Slave Address WR WRite ▪ Controller (host) will send a not acknowledge bit ▪ Controller (host) will send a stop bit Index Block Read Operation ACK Beginning Byte = N Controller (Host) ACK ACK starT bit Slave Address WR WRite ACK Beginning Byte = N Data Byte Count = X Beginning Byte N X Byte O O O IDT (Slave/Receiver) T ACK ACK O O O RT RD Byte N + X - 1 Repeat starT Slave Address ReaD ACK ACK P stoP bit Data Byte Count=X ACK Note: Address is latched on SADR pin. Beginning Byte N O O O X Byte ACK O O O Byte N + X - 1 N P ©2020 Renesas Electronics Corporation 18 Not acknowledge stoP bit February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Table 21. Byte 0: Output Enable Register Byte 01 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Control Function Output Enable Output Enable Output Enable Output Enable Output Enable Output Enable Output Enable Output Enable Type RW RW RW RW RW RW RW RW 0 See B11[1:0] 1 OE# Pin Controls Output 9SQL4958 Name OE7 OE6 OE5 OE4 OE3 OE2 OE1 OE0 9SQL4958 Default 1 1 1 1 1 1 1 1 9SQL4954 Name Reserved Reserved Reserved Reserved OE3 OE2 OE1 OE0 9SQL4954 Default x x x x 1 1 1 1 9SQL4952 Name Reserved Reserved Reserved Reserved Reserved OE1 OE0 Reserved 9SQL4952 Default x x x x x 1 1 x 1 A low on these bits will override the OE# pin and force the differential output to the state indicated by B11[1:0] (Low/Low default) Table 22. Byte 1: Spread Spectrum with VHIGH Control Register Byte 1 Control Function Type Bit7 Bit6 SS Enable SS Enable Readback Bit1 Readback Bit0 R R Bit5 Bit4 Bit3 Enable software control of spread spectrum SS Software Control Bit1 SS Software Control Bit0 RW RW1 RW1 See Spread Selection table 1 Values in B1[4:3] control SS amount Bit0 RW RW 00 = 0.6V 10 = 0.75V 01 = 0.68V 11 = 0.85V See Spread Selection table Name SSENRB1 SSENRB1 SSEN_SWCNTRL SSENSW1 SSENSW0 Default Latch Latch 0 0 0 1 Bit1 Controls Output Amplitude Reserved SS controlled by latch (B1[7:6]) 0 Bit2 AMPLITUDE 1 AMPLITUDE 0 x 1 0 See notes on Spread Selection table. B1[5] must be set to a 1 in order to use B1[4:3]. ©2020 Renesas Electronics Corporation 19 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Table 23. Byte 2: BCLK Slew Selection Register Byte 2 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Control Function Select fast or slow slew rate Select fast or slow slew rate Select fast or slow slew rate Select fast or slow slew rate Select fast or slow slew rate Select fast or slow slew rate Select fast or slow slew rate Select fast or slow slew rate Type RW RW RW RW RW RW RW RW 0 Slow Slew Rate 1 Fast Setting 9SQL4958 Name BCLK7_slew BCLK6_slew BCLK5_slew BCLK4_slew BCLK3_slew BCLK2_slew BCLK1_slew BCLK0_slew 9SQL4958 Default 1 1 1 1 1 1 1 1 9SQL4954 Name Reserved Reserved Reserved Reserved BCLK3_slew BCLK2_slew BCLK1_slew BCLK0_slew 9SQL4954 Default x x x x 1 1 1 1 9SQL4952 Name Reserved Reserved Reserved Reserved Reserved BCLK1_slew BCLK0_slew Reserved 9SQL4952 Default x x x x x 1 1 x Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Wake-on-Lan Enable for REF REF Output Enable Reserved Reserved Reserved Reserved x x x x 1 See BCLK Low-Power HCSL Outputs table for slew rates. Table 24. Byte 3: REF Slew Rate Control Register Byte 3 Bit7 Control Function Bit6 Slew Rate Control Type RW RW RW RW 0 00 = Slowest 10 = Fast REF disabled in Power Down Disabled1 1 01 = Slow 11 = Fastest REF runs in Power Down Enabled REF Power Down Function REF OE 0 1 Name Default 1 REF Slew Rate [1:0] 0 1 The disabled state depends on Byte11[1:0]. '00' = Low, '01'= HiZ, '10' = Low, '11' = High. Byte 4 is Reserved ©2020 Renesas Electronics Corporation 20 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Table 25. Byte 5: Revision and Vendor ID Register Byte 5 Bit7 Bit6 Control Function Type Bit4 Bit3 Bit2 Revision ID R R R R R C rev = 0010 1 RID3 RID2 Bit1 Bit0 R R VENDOR ID R 0 Name Bit5 0001 = IDT/Renesas RID1 RID0 VID3 VID2 VID1 VID0 Bit4 Bit3 Bit2 Bit1 Bit0 R R R Table 26. Byte 6: Device Type/Device ID Register Byte 6 Bit7 Control Function Type Bit6 Bit5 Device Type R Device ID R R R 9SQL4958 = 0b00100 9SQL4954 = 0b00100 9SQL4952 = 0b00010 0 00 = 9SQL 1 Name Device Type1 R Device Type0 Device ID5 Device ID4 Device ID3 Device ID2 Device ID1 Device ID0 Bit4 Bit3 Bit2 Bit1 Bit0 RW RW Table 27. Byte 7: Byte Count Register Byte 7 Bit7 Bit6 Bit5 Control Function Byte Count Programming Type 0 RW Reserved Reserved Reserved RW RW Writing to this register will configure how many bytes will be read back. 1 Name Default x x x BC4 BC3 BC2 BC1 BC0 0 1 0 0 0 Bytes 8 and 9 are Reserved ©2020 Renesas Electronics Corporation 21 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Table 28. Byte 10: PLL MN Enable, PD_Restore Register Byte 10 Bit7 Bit6 Control Function M/N Programming Enable Restore Default Config. In PD Type RW RW 0 M/N Prog. Disabled Clear Config in PD 1 M/N Prog. Enabled Keep Config in PD Name PLL M/N En Power-Down (PD) Restore Default 0 1 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Reserved Reserved Reserved Reserved Reserved Reserved x x x x x x Table 29. Byte 11: Stop State Control Register Byte 11 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Control Function Reserved Reserved Reserved Reserved Reserved Reserved 1 RW RW 00 = Low/Low 01 = HiZ/HiZ 10 = High/Low 11 = Low/High Name Default Bit0 True/Complement DIF Output Disable State Type 0 Bit1 x x x STP[1] STP[0] x x x 0 0 Bit4 Bit3 Bit2 Bit1 Bit0 Table 30. Byte 12: Impedance Control Register 1 Byte 12 Control Function Type Bit7 Bit6 Output impedance control [1:0] RW RW 0 Bit5 Output impedance control [1:0] RW RW Output impedance control [1:0] RW RW Output impedance control [1:0] RW RW 00 = 33ohm BCLK Zout, 01 = 85ohm BCLK Zout 10 = 100ohm BCLK Zout, 11 = Reserved 1 9SQL4958 Name BCLK3_imp[1] BCLK3_imp[0] BCLK2_imp[1] BCLK2_imp[0] BCLK1_imp[1] BCLK1_imp[0] BCLK0_imp[1] BCLK0_imp[0] 9SQL4958 Default 9SQL4958 defaults to 0b01010101 9SQL4954 Name BCLK1_imp[1] BCLK1_imp[0] ©2020 Renesas Electronics Corporation Reserved Reserved 22 BCLK0_imp[1] BCLK0_imp[0] Reserved Reserved February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Table 30. Byte 12: Impedance Control Register 1 (Cont.) Byte 12 Bit7 Bit6 Bit5 9SQL4954 Default 9SQL4952 Name Bit4 Bit3 Bit2 Bit1 Bit0 Reserved Reserved Reserved Bit2 Bit1 Bit0 9SQL4954 defaults to 0b01xx01xx BCLK0_imp[1] BCLK0_imp[0] Reserved 9SQL4952 Default Reserved Reserved 9SQL4952 defaults to 0b01xxxxxx Table 31. Byte 13: Impedance Control Register 2 Byte 13 Control Function Type Bit7 Bit6 Output impedance control [1:0] RW RW 0 Bit5 Bit4 Output impedance control [1:0] RW RW Bit3 Output impedance control [1:0] RW RW Output impedance control [1:0] RW RW 00 = 33ohm BCLK Zout, 01 = 85ohm BCLK Zout 10 = 100ohm BCLK Zout, 11 = Reserved 1 9SQL4958 Name BCLK7_imp[1] BCLK7_imp[0] BCLK6_imp[1] BCLK6_imp[0] BCLK5_imp[1] BCLK5_imp[0] BCLK4_imp[1] BCLK4_imp[0] 9SQL4958 Default 9SQL4958 defaults to 0h55 9SQL4954 Name Reserved Reserved BCLK3_imp[1] BCLK3_imp[0] BCLK2_imp[1] BCLK2_imp[0] 9SQL4954 Default 9SQL4952 Name Reserved Reserved Reserved Reserved 9SQL4954 defaults to 0bxx0101xx Reserved Reserved 9SQL4952 Default ©2020 Renesas Electronics Corporation Reserved Reserved BCLK1_imp[1] BCLK1_imp[0] 9SQL4952 defaults to 0bxxxx01xx 23 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Table 32. Byte 14: Pull-up Pull-down Control Register 1 Byte 14 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Control Function Pull-up(pu)/ Pull-down(pd) control Pull-up(pd)/ Pull-down(pd) control Pull-up(pd)/ Pull-down(pd) control Pull-up(pd)/ Pull-down(pd) control Type RW RW RW RW RW RW RW RW 0 00 = None 01 = pd 00 = None 01 = pd 00 = None 01 = pd 00 = None 01 = pd 1 10 = pu 11 = pu+pd 10 = pu 11 = pu+pd 10 = pu 11 = pu+pd 10 = pu 11 = pu+pd 9SQL4958 Name OE3_pu/pd[1] OE3_pu/pd[0] OE2_pu/pd[1] OE2_pu/pd[0] OE1_pu/pd[1] OE1_pu/pd[0] OE0_pu/pd[1] OE0_pu/pd[0] 9SQL4958 Default 0 1 0 1 0 1 0 1 9SQL4954 Name OE1_pu/pd[1] OE1_pu/pd[0] Reserved Reserved OE0_pu/pd[1] OE0_pu/pd[0] Reserved Reserved 9SQL4954 Default 0 1 x x 0 1 x x 9SQL4952 Name OE0_pu/pd[1] OE0_pu/pd[0] Reserved Reserved Reserved Reserved Reserved Reserved 9SQL4952 Default 0 1 x x x x x x Bit3 Bit2 Bit1 Bit0 Table 33. Byte 15: Pull-up Pull-down Control Register 2 Byte 15 Bit7 Bit6 Control Function Pull-up(pd)/ Pull-down(pd) control Pull-up(pd)/ Pull-down(pd) control Pull-up(pd)/ Pull-down(pd) control Pull-up(pd)/ Pull-down(pd) control Type RW RW RW RW RW RW RW RW 0 00 = None 01 = pd 00 = None 01 = pd 00 = None 01 = pd 00 = None 01 = pd 1 10 = pu 11 = pu+pd 10 = pu 11 = pu+pd 10 = pu 11 = pu+pd 10 = pu 11 = pu+pd 9SQL4958 Name OE7_pu/pd[1] OE7_pu/pd0] OE6_pu/pd[1] OE6_pu/pd[0] OE5_pu/pd[1] OE5_pu/pd[0] OE4_pu/pd[1] OE4_pu/pd[0] 9SQL4958 Default 0 1 0 1 0 1 0 1 9SQL4954 Name Reserved Reserved OE3_pu/pd[1] OE3_pu/pd[0] OE2_pu/pd[1] OE2_pu/pd[0] Reserved Reserved 9SQL4954 Default 0 1 0 1 0 1 0 1 9SQL4952 Name Reserved Reserved Reserved Reserved OE1_pu/pd[1] OE1_pu/pd[0] Reserved Reserved 9SQL4952 Default 0 1 0 1 0 1 0 1 ©2020 Renesas Electronics Corporation Bit5 Bit4 24 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Table 34. Byte 16: Pull-up Pull-down Control Register 3 Byte 16 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Pull-up(pd)/ Pull-down(pd) control Control Function Type RW RW 00 = None 01 = pd 1 10 = pu 11 = pu+pd Name CKPWRGD_ PD_pu/pd[1] CKPWRGD_ PD_pu/pd[0] 0 Default Reserved 0 Reserved 0 Reserved Reserved 1 Reserved Reserved 0 0 1 1 0 Byte 17 is Reserved Table 35. Byte 18: Polarity Control Register 2 Byte 18 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Control Function Sets OE pin polarity Sets OE pin polarity Sets OE pin polarity Sets OE pin polarity Sets OE pin polarity Sets OE pin polarity Sets OE pin polarity Sets OE pin polarity Type RW RW RW RW RW RW RW RW 0 Output enabled when OE pin is low 1 Output enabled when OE pin is high 9SQL4958 Name OE7_polarity OE6_polarity OE5_polarity OE4_polarity OE3_polarity OE2_polarity OE1_polarity OE0_polarity 9SQL4958 Default 0 0 0 0 0 0 0 0 9SQL4954 Name Reserved OE3_polarity OE2_polarity Reserved OE1_polarity Reserved OE0_polarity Reserved 9SQL4954 Default 0 0 0 0 0 0 0 0 9SQL4952 Name Reserved Reserved OE1_polarity Reserved OE0_polarity Reserved Reserved Reserved 9SQL4952 Default 0 0 0 0 0 0 0 0 ©2020 Renesas Electronics Corporation 25 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Table 36. Byte 19: Polarity Control Register 1 Byte 19 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Control Function Sets CKPWRGD_PD polarity Type RW 0 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Power Down when Low 1 Power Down when High Name CKPWRGD_PD_ polarity Default 0 0 ©2020 Renesas Electronics Corporation 0 0 0 26 0 0 0 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Package Outline Drawings The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available. 9SQL4952: www.idt.com/document/psc/nlnlg24p1-package-outline-40-x-40-mm-body-05-mm-pitch-qfn-epad-size-245-x-245-mm 9SQL4954: www.idt.com/document/psc/32-vfqfpn-package-outline-drawing-50-x-50-x-090-mm-body-epad-315-x-315-mm-nlg32p1 9SQL4958: www.idt.com/document/psc/48-vfqfpn-package-outline-drawing-60-x-60-x-090-mm-body-epad-42-x-42-mm-040mm-pitch-ndg48p2 Marking Diagrams 9SQL4952 ▪ Line 1: truncated part number. ▪ Line 2: • “YYWW” is the last two digits of the year and the work week the part was assembled. • “$” denotes the mark code. ▪ “LOT” denotes the lot number. 9SQL4954 ▪ Lines 1, 2 and 3: part number. ▪ Line 4: • “YYWW” is the last two digits of the year and the work week the part was assembled. • “$” denotes the mark code. ▪ “LOT” denotes the lot number. 9SQL4958 ▪ Lines 1 and 2: part number. ▪ Line 3: • “YYWW” is the last two digits of the year and the work week the part was assembled. • “$” denotes the mark code. ▪ “LOT” denotes the lot number. ©2020 Renesas Electronics Corporation 27 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Ordering Information Table 37. Ordering Information Number of Output Clock Outputs Impedance 2 85 4 85 8 85 Orderable Part Number 9SQL4952CNLGI 9SQL4952CNLGI8 9SQL4954CNLGI 9SQL4954CNLGI8 9SQL4958CNDGI 9SQL4958CNDGI8 Temperature Range Package Part Number Suffix and Shipping Method 24-VFQFPN None = Trays 32-VFQFPN -40°C to +85°C “8” = Tape and Reel, Pin 1 Orientation: EIA-481C (see Table 38 for more details) 48-VFQFPN “C” is the device revision designator (will not correlate with the datasheet revision). “G” denotes Pb-free configuration, RoHS compliant. Table 38. Pin 1 Orientation in Tape and Reel Packaging Part Number Suffix Pin 1 Orientation Illustration Correct Pin 1 ORIENTATION 8 CARRIER TAPE TOPSIDE (Round Sprocket Holes) Quadrant 1 (EIA-481-C) USER DIRECTION OF FEED ©2020 Renesas Electronics Corporation 28 February 19, 2020 9SQL4952/9SQL4954/9SQL4958 Datasheet Revision History Revision Date Description of Change February 19, 2020 ▪ Updated October 22, 2019 description to include “Datasheet was also upgraded to C-rev parts.” ▪ Rebranded datasheet with Renesas logos/disclaimer. October 22, 2019 ▪ Combined 9SQL4952, 9SQL4954, and 9SQL4958 datasheets into one single document. ▪ Datasheet was also upgraded to C-rev parts. October 28, 2016 Last revision date of the 9SQL4958 datasheet. December 12, 2016 Last revision date of the 9SQL4954 datasheet. December 8, 2016 Last revision date of the 9SQL4952 datasheet. ©2020 Renesas Electronics Corporation 29 February 19, 2020 1RWLFH  'HVFULSWLRQVRIFLUFXLWVVRIWZDUHDQGRWKHUUHODWHGLQIRUPDWLRQLQWKLVGRFXPHQWDUHSURYLGHGRQO\WRLOOXVWUDWHWKHRSHUDWLRQRIVHPLFRQGXFWRUSURGXFWV DQGDSSOLFDWLRQH[DPSOHV
9SQL4954CNLGI 价格&库存

很抱歉,暂时无法提供与“9SQL4954CNLGI”相匹配的价格&库存,您可以联系我们找货

免费人工找货