0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
9UMS9633BKLF

9UMS9633BKLF

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    VFQFN-48

  • 描述:

    IC MOBILE PC CLK EMEBED 48VFQFPN

  • 数据手册
  • 价格&库存
9UMS9633BKLF 数据手册
Datasheet ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE ICS9UMS9633BW Recommended Application: Features/Benefits: Poulsbo Based Ultra-Mobile PC (UMPC) for Automotive Use • AEC Q100 compliant • Supports ULV CPUs with 67 to 167 MHz CPU outputs • Dedicated TEST/SEL and TEST/MODE pins saves isolation resistors on pins • CPU STOP# input for power manangment • Fully integrated Vreg Output Features: • 3 - CPU low power differential push-pull pairs • 3 - SRC low power differential push-pull pairs • 1 - LCD100 SSCD low power differential push-pull pair • 1 - DOT96 low power differential push-pull pair • Integrated series resistors on differential outputs • 1 - REF, 14.31818MHz, 3.3V SE output • 1.5V VDD IO operation, 3.3V VDD core and REF supply pin for REF • -40 to +85C operating range REF GNDREF VDDCORE_3.3 FSC_L TEST_MODE TEST_SEL SCLK SDATA VDDCORE_3.3 VDDIO_1.5 DOT96C_LPR DOT96T_LPR GNDDOT GNDLCD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 LCD100C_LPR LCD100T_LPR VDDIO_1.5 VDDCORE_3.3 *CR#0 GNDSRC SRCC0_LPR SRCT0_LPR *CR#1 VDDCORE_3.3 15 16 17 18 19 20 21 22 23 24 9UMS9633 SSOP Pin Configuration 48 47 46 45 44 43 42 41 40 39 38 37 36 35 VDDREF_3.3 X1 X2 CLKPWRGD#/PD_3.3 CPU_STOP# CPUT0_LPR CPUC0_LPR VDDIO_1.5 GNDCPU CPUT1_LPR CPUC1_LPR VDDCORE_3.3 VDDIO_1.5 GNDCPU 34 33 32 31 30 29 28 27 26 25 CPUT2_LPR CPUC2_LPR FSB_L *CR#2 SRCT2_LPR SRCC2_LPR GNDSRC SRCT1_LPR SRCC1_LPR VDDIO_1.5 48 SSOP Package * indicates inputs with internal pull up of ~10Kohm to 3.3V IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use 1425A—09/02/09 1 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Datasheet SSOP Pin Description PIN # PIN NAME 1 REF 2 GNDREF 3 VDDCORE_3.3 4 FSC_L 5 TEST_MODE 6 TEST_SEL 7 8 9 10 SCLK SDATA VDDCORE_3.3 VDDIO_1.5 11 DOT96C_LPR 12 DOT96T_LPR 13 14 GNDDOT GNDLCD 15 LCD100C_LPR 16 LCD100T_LPR 17 18 19 20 VDDIO_1.5 VDDCORE_3.3 *CR#0 GNDSRC 21 SRCC0_LPR 22 SRCT0_LPR 23 24 *CR#1 VDDCORE_3.3 TYPE DESCRIPTION OUT 14.318 MHz reference clock. PWR Ground pin for the REF outputs. PWR 3.3V power for the PLL core Low threshold input for CPU frequency selection. Refer to input electrical IN characteristics for Vil_FS and Vih_FS values. TEST_MODE is a real time input to select between Hi-Z and REF/N divider mode IN while in test mode. Refer to Test Clarification Table. TEST_SEL: latched input to select TEST MODE IN 1 = All outputs are tri-stated for test 0 = All outputs behave normally. IN Clock pin of SMBus circuitry, 5V tolerant. I/O Data pin for SMBus circuitry, 3.3V tolerant. PWR 3.3V power for the PLL core PWR Power supply for low power differential outputs, nominal 1.5V. Complementary clock of low power differential pair for 96.00MHz DOT clock. No OUT 50ohm resistor to GND needed. No Rs needed. True clock of low power differential pair for 96.00MHz DOT clock. No 50ohm resistor OUT to GND needed. No Rs needed. PWR Ground pin for DOT clock output PWR Ground pin for LCD clock output Complementary clock of low power differential pair for LCD100 SS clock. No 50ohm OUT resistor to GND needed. No Rs needed. True clock of low power differential pair for LCD100 SS clock. No 50ohm resistor to OUT GND needed. No Rs needed. PWR Power supply for low power differential outputs, nominal 1.5V. PWR 3.3V power for the PLL core IN Clock request for SRC0, 0 = enable, 1 = disable PWR Ground pin for the SRC outputs Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm OUT series resistor. No 50ohm resistor to GND needed. True clock of differential 0.8V push-pull SRC output with integrated 33ohm series OUT resistor. No 50ohm resistor to GND needed. IN Clock request for SRC1, 0 = enable, 1 = disable PWR 3.3V power for the PLL core IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use 1425A—09/02/09 2 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Datasheet SSOP Pin Description (continued) PIN # PIN NAME 25 VDDIO_1.5 26 SRCC1_LPR 27 SRCT1_LPR 28 GNDSRC 29 SRCC2_LPR 30 SRCT2_LPR 31 *CR#2 32 FSB_L 33 CPUC2_LPR 34 CPUT2_LPR 35 36 37 GNDCPU VDDIO_1.5 VDDCORE_3.3 38 CPUC1_LPR 39 CPUT1_LPR 40 41 GNDCPU VDDIO_1.5 42 CPUC0_LPR 43 CPUT0_LPR 44 CPU_STOP# 45 CLKPWRGD#/PD_3.3 46 47 48 X2 X1 VDDREF_3.3 TYPE DESCRIPTION PWR Power supply for low power differential outputs, nominal 1.5V. Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm OUT series resistor. No 50ohm resistor to GND needed. True clock of differential 0.8V push-pull SRC output with integrated 33ohm series OUT resistor. No 50ohm resistor to GND needed. PWR Ground pin for the SRC outputs Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm OUT series resistor. No 50ohm resistor to GND needed. True clock of differential 0.8V push-pull SRC output with integrated 33ohm series OUT resistor. No 50ohm resistor to GND needed. IN Clock request for SRC2, 0 = enable, 1 = disable Low threshold input for CPU frequency selection. Refer to input electrical IN characteristics for Vil_FS and Vih_FS values. Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated OUT 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm OUT series resistor. No 50 ohm resistor to GND needed. PWR Ground pin for the CPU outputs PWR Power supply for low power differential outputs, nominal 1.5V. PWR 3.3V power for the PLL core Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated OUT 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm OUT series resistor. No 50 ohm resistor to GND needed. PWR Ground pin for the CPU outputs PWR Power supply for low power differential outputs, nominal 1.5V. Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated OUT 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm OUT series resistor. No 50 ohm resistor to GND needed. IN Stops CPU0 clock when enabled. IN This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. OUT Crystal output, Nominally 14.318MHz IN Crystal input, Nominally 14.318MHz. PWR Power pin for the XTAL and REF clocks, nominal 3.3V IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use 1425A—09/02/09 3 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Datasheet Funtional Block Diagram REF X1 X2 OSC SRC(2:0) CPU, SRC SS-PLL CPU(2:0) LCD SS-PLL LCD100_SSC 96M Non-SS PLL DOT96MHz FSLC FSLB CKPWRGD/PD# CPU_STOP# CR#(2:0) TESTSEL Control Logic TESTMODE SMBDAT SMBCLK Power Groups Pin Number Description VDD GND 41, 46 Low power outputs 40, 45 CPUCLK 42 VDDCORE_3.3V 30 Low power outputs 25, 33 SRCCLK 29 VDDCORE_3.3V 22 Low power outputs 19 LCDCLK 23 VDDCORE_3.3V 15 Low power outputs 18 DOT 96Mhz 14 VDDCORE_3.3V Xtal, REF 5 7 IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use 1425A—09/02/09 4 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Datasheet Absolute Maximum Ratings PARAMETER SYMBOL CONDITIONS MAX UNITS Notes 3.3V Supply Voltage VDDxxx_3.3 Supply Voltage 3.9 V 1,2 1.5V Supply Voltage VDDxxx_1.5 Supply Voltage 3.9 V 1,2 3.3_Input High Voltage VIH3.3 3.3V Inputs VDD_3.3+ 0.3V V 1,2,3 Minimum Input Voltage VIL Any Input V 1 Storage Temperature Input ESD protection Ts ESD prot MIN GND - 0.5 150 ° - -65 Human Body Model 2000 V 1,2 Man Machine Model 200 V 1,2 C 1,2 Notes: 1 Guaranteed by design and characterization, not 100% tested in production. 2 Operation under these conditions is neither implied, nor guaranteed. 3 Maximum input voltage is not to exceed maximum VDD Electrical Characteristics - Input/Supply/Common Output Parameters PARAMETER SYMBOL CONDITIONS MIN MAX UNITS Notes Ambient Operating Temp TambientITEMP No Airflow -40 85 °C 1 3.3V Supply Voltage VDDxxx_3.3 3.3V +/- 5% 3.135 3.465 V 1 1.5V Supply Voltage VDDxxx_1.5 1.5V - 5% to 3.3V + 5% 1.425 3.465 V 1 3.3V Input High Voltage VIHSE3.3 Single-ended inputs 2 VDD + 0.3 V 1 3.3V Input Low Voltage VILSE3.3 Single-ended inputs VSS - 0.3 0.8 V 1 Input Leakage Current IIN -5 5 uA 1 Input Leakage Current IINRES VIN = VDD , VIN = GND Inputs with pull or pull down resistors. (CR# pins) VIN = VDD , VIN = GND -200 200 uA 1 Output High Voltage VOHSE Single-ended outputs, IOH = -1mA V 1 Output Low Voltage Low Threshold InputHigh Voltage Low Threshold InputLow Voltage VOLSE Single-ended outputs, IOL = 1 mA 0.4 V 1 VIH_FS 3.3 V +/-5% 0.7 1.5 V 1 VIL_FS 3.3 V +/-5% VSS - 0.3 0.35 V 1 2.4 IDD_DEFAULT 3.3V supply, LCDPLL off 65 mA 1 IDD_LCDEN 70 mA 1 55 mA 1 IDD_PD3.3 3.3V supply, LCDPLL enabled 1.5V supply, Differential IO current, all outputs enabled 3.3V supply, Power Down Mode 2 mA 1 IDD_PDIO 1.5V IO supply, Power Down Mode 0.5 mA 1 Input Frequency Fi VDD = 3.3 V 15 MHz 2 Pin Inductance Lpin Operating Supply Current IDD_IO Power Down Current Input Capacitance Spread Spectrum Modulation Frequency 7 nH 1 5 pF 1 Output pin capacitance 6 pF 1 X1 & X2 pins 5 pF 1 33 kHz 1 CIN Logic Inputs COUT CINX fSSMOD Triangular Modulation 1.5 IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use 30 1425A—09/02/09 5 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Datasheet AC Electrical Characteristics - Input/Common Parameters PARAMETER SYMBOL Clk Stabilization TSTAB Tdrive_SRC TDRSRC Tdrive_PD# TDRPD Tdrive_CPU TDRSRC Tfall_PD# TFALL Trise_PD# TRISE CONDITIONS From VDD Power-Up or deassertion of PD# to 1st clock SRC output enable after CR# assertion Differential output enable after PD# de-assertion CPU output enable after CPU_STOP# de-assertion MIN Fall/rise time of PD# and CPU_STOP# inputs MAX UNITS Notes 1.8 ms 1 15 ns 1 300 us 1 10 ns 1 5 ns 1 5 ns 1 AC Electrical Characteristics - Low Power Differential Outputs PARAMETER SYMBOL CONDITIONS MIN MAX UNITS NOTES Rising Edge Slew Rate tSLR Differential Measurement 0.5 6 V/ns 1,2 0.5 Falling Edge Slew Rate tFLR Differential Measurement 6 V/ns 1,2 Rise/Fall Time Variation tSLVAR Single-ended Measurement 125 ps 1 Maximum Output Voltage VHIGH Includes overshoot 1150 mV 1 Minimum Output Voltage VLOW Includes undershoot -300 mV 1 Differential Voltage Swing VSWING Differential Measurement 300 mV 1 300 Crossing Point Voltage VXABS Single-ended Measurement Crossing Point Variation VXABSVAR Single-ended Measurement Duty Cycle DCYC Differential Measurement CPU Jitter - Cycle to Cycle CPUJ C2C Differential Measurement SRC Jitter - Cycle to Cycle SRCJ C2C Differential Measurement DOT Jitter - Cycle to Cycle DOTJ C2C Differential Measurement CPU[2:0] Skew CPUSKEW10 SRC[2:0] Skew SRCSKEW 550 mV 1,3,4 140 mV 1,3,5 55 % 1 85 ps 1 125 ps 1 250 ps 1 Differential Measurement 100 ps 1 Differential Measurement 250 ps 1 45 Electrical Characteristics - REF-14.318MHz PARAMETER SYMBOL CONDITIONS MIN MAX UNITS Notes Long Accuracy ppm see Tperiod min-max values -300 300 ppm 1,2 Clock period T period 14.318MHz output nominal 69.8203 69.8622 ns 2 Absolute min/max period Tabs 14.318MHz output nominal 69.8203 70.86224 ns 2 Output High Voltage VOH IOH = -1 mA 2.4 V 1 Output Low Voltage VOL IOL = 1 mA 0.4 V 1 Output High Current IOH -33 -33 mA 1 Output Low Current IOL 30 38 mA 1 Rising Edge Slew Rate tSLR Measured from 0.8 to 2.0 V 1 4 V/ns 1 Falling Edge Slew Rate tFLR Measured from 2.0 to 0.8 V 1 4 V/ns 1 Duty Cycle dt1 VT = 1.5 V 45 55 % 1 Jitter tjcyc-cyc VT = 1.5 V 1000 ps 1 VOH @MIN = 1.0 V, VOH@MAX = 3.135 V VOL @MIN = 1.95 V, VOL @MAX = 0.4 V IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use 1425A—09/02/09 6 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Datasheet Electrical Characteristics - SMBus Interface PARAMETER SYMBOL SMBus Voltage VDD CONDITIONS Low-level Output Voltage Current sinking at VOLSMB = 0.4 V SCLK/SDATA Clock/Data Rise Time SCLK/SDATA Clock/Data Fall Time Maximum SMBus Operating Frequency VOLSMB @ IPULLUP IPULLUP SMB Data Pin TFI2C (Max VIL - 0.15) to (Min VIH + 0.15) (Min VIH + 0.15) to (Max VIL - 0.15) FSMBUS Block Mode TRI2C MIN MAX UNITS Notes 2.7 3.3 V 1 0.4 V 1 mA 1 1000 ns 1 300 ns 1 100 kHz 1 4 Notes on Electrical Characteristics: 1 Guaranteed by design and characterization, not 100% tested in production. 2 Slew rate measured through Vswing centered around differential zero 3 Vxabs is defined as the voltage where CLK = CLK# 4 Only applies to the differential rising edge (CLK rising and CLK# falling) Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#. 5 6 All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is at 14.31818MHz 7 Operation under these conditions is neither implied, nor guaranteed. Clock Periods Differential Outputs with Spread Spectrum Enabled Measurement Window 1us 0.1s 0.1s 0.1s 1us 1 Clock Lg- -SSC -ppm error 0ppm + ppm error +SSC Lg+ Definition Absolute Period Short-term Long-Term Average Average Period Long-Term Average Short-term Average Absolute Period Signal Name 1 Clock Symbol Minimum Minimum Minimum Nominal Maximum Maximum Maximum SRC 100 9.87400 9.99900 9.99900 10.00000 10.00100 10.05130 10.17630 Units ns Notes 1,2 CPU 100 9.91400 9.99900 9.99900 10.00000 10.00100 10.05130 10.13630 ns 1,2 CPU 133 7.41425 7.49925 7.49925 7.50000 7.50075 7.53845 7.62345 ns 1,2 CPU 166 5.91440 5.99940 5.99940 6.00000 6.00060 6.03076 6.11576 ns 1,2 Clock Periods Differential Outputs with Spread Spectrum Disabled Measurement Window 1 Clock 1us 0.1s 0.1s 0.1s 1us 1 Clock Symbol Lg- -SSC -ppm error 0ppm + ppm error +SSC Lg+ Definition Absolute Period Short-term Long-Term Average Average Period Long-Term Average Short-term Average Absolute Period Maximum Maximum Minimum Nominal Maximum 9.87400 9.99900 10.00000 10.00100 10.17630 Units ns Notes 1,2 CPU 100 9.91400 9.99900 10.00000 10.00100 10.13630 ns 1,2 CPU 133 7.41425 7.49925 7.50000 7.50075 7.62345 ns 1,2 CPU 166 5.91440 5.99940 6.00000 6.00060 6.11576 ns 1,2 10.16560 10.41560 10.41670 DOT 96 1 Guaranteed by design and characterization, not 100% tested in production. 10.41770 10.66770 ns 1,2 Signal Name Minimum SRC 100 2 Minimum All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use 1425A—09/02/09 7 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Table 1: CPU Frequency Select Table CPU SRC DOT 1 1 FS LB FSLC MHz MHz MHz 0 0 133.33 0 1 166.67 100.00 96.00 1 0 100.00 1 1 66.67 LCD MHz Datasheet REF MHz 100.00 14.318 1. FSLC is a low-threshold input.Please see VIL_FS and VIH_FS specifications in the Input/Supply/Common Output Parameters Table for correct values. Also refer to the Test Clarification Table. Table 3: CPU N-step Programming Table 2: LCD Spread Select Table (Pin 20/21) B1b5 B1b4 B1b3 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 Spread Comment % -0.5% LCD100 -1% LCD100 -2% LCD100 -2.5% LCD100 +/- 0.25% LCD100 +/-0.5% LCD100 +/-1% LCD100 +/-1.25% LCD100 CPU (MHz) 133.33 166.67 100.00 200.00 P 3 3 4 2 Default N (hex) 64 7D 64 64 Fcpu = 4MHz x N/P = 4MHz x N/P = 4MHz x N/P = 4MHz x N/P CPU Power Management Table SMBus Register PD CPU_STOP# CPU CPU# OE 0 Enable Running Running 1 X Enable Low/20K Low 1 0 Enable High Low 0 0 X Low/20K Low Disable SRC, LCD, DOT Power Management Table PD CR_x# SMBus Register OE 0 1 0 0 0 X 1 X Enable X Enable Disable SRC SRC# Running Running Low/20K Low Low/20K Low Low/20K Low DOT/LCD DOT#/LCD# Running Low/20K Running Low/20K Running Low Running Low REF Power Management Table PD SMBus Register OE REF 0 1 0 Enable X Disable Running Low Low IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use 1425A—09/02/09 8 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Datasheet General SMBus serial interface information for the ICS9UMS9633BW How to Write: How to Read: Controller (host) sends a start bit. Controller (host) sends the write address D2 (H) ICS clock will acknowledge Controller (host) sends the begining byte location = N ICS clock will acknowledge Controller (host) sends the data byte count = X ICS clock will acknowledge Controller (host) starts sending Byte N through Byte N + X -1 • ICS clock will acknowledge each byte one at a time • Controller (host) sends a Stop bit • • • • • • • • • • • • • • • • • • • • • • Controller (host) will send start bit. Controller (host) sends the write address D2 (H) ICS clock will acknowledge Controller (host) sends the begining byte location = N ICS clock will acknowledge Controller (host) will send a separate start bit. Controller (host) sends the read address D3 (H) ICS clock will acknowledge ICS clock will send the data byte count = X ICS clock sends Byte N + X -1 ICS clock sends Byte 0 through byte X (if X(H) was written to byte 8). Controller (host) will need to acknowledge each byte Controllor (host) will send a not acknowledge bit Controller (host) will send a stop bit Index Block Read Operation Index Block Write Operation Controller (Host) starT bit T Slave Address D2(H) WR WRite Controller (Host) T starT bit Slave Address D2(H) WR WRite ICS (Slave/Receiver) ICS (Slave/Receiver) ACK ACK Beginning Byte = N Beginning Byte = N ACK ACK RT Repeat starT Slave Address D3(H) RD ReaD Data Byte Count = X ACK Beginning Byte N ACK X Byte ACK Data Byte Count = X ACK Beginning Byte N Byte N + X - 1 ACK X Byte ACK P stoP bit Byte N + X - 1 N P IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use Not acknowledge stoP bit 1425A—09/02/09 9 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Byte Bit(s) 7 6 5 4 3 2 1 0 Byte Bit(s) 7 6 5 4 3 2 1 0 Datasheet 0 PLL & Divider Enable Register Pin # Name Description This bit controls whether the PLL driving the CPU PLL1 Enable and SRC clocks is enabled or not. This bit controls whether the PLL driving the DOT PLL2 Enable and clock is enabled or not. This bit controls whether the PLL driving the LCD PLL3 Enable clock is enabled or not. Reserved This bit controls whether the CPU output divider is enabled or not. CPU Divider Enable NOTE: This bit should be automatically set to ‘0’ if bit 7 is set to ‘0’. This bit controls whether the SRC output divider is enabled or not. SRC Output Divider NOTE: This bit should be automatically set to ‘0’ if Enable bit 7 is set to ‘0’. This bit controls whether the LCD output divider is enabled or not. LCD Output Divider Enable NOTE: This bit should be automatically set to ‘0’ if bit 5 is set to ‘0’. This bit controls whether the DOT output divider is enabled or not. DOT Output Divider Enable NOTE: This bit should be automatically set to ‘0’ if bit 6 is set to ‘0’. 1 PLL SS Enable/Control Register Pin # Name Description This bit controls whether PLL1 has spread enabled or not. Spread spectrum for PLL1 is set at -0.5% PLL1 SS Enable down-spread. Note that PLL1 drives the CPU and SRC clocks. PLL3 SS Enable PLL3 FS Select This bit controls whether PLL3 has spread enabled or not. Note that PLL3 drives the SSC clock, and that the spread spectrum amount is set in bits 3-5. These 3 bits select the frequency of PLL3 and the SSC clock when Byte 1 Bit 6 (PLL3 Spread Spectrum Enable) is set. Reserved Reserved Reserved IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use Type 0 1 Default RW 0 = Disabled 1 = Enabled 1 RW 0 = Disabled 1 = Enabled 1 RW 0 = Disabled 1 = Enabled 1 0 RW 0 = Disabled 1 = Enabled 1 RW 0 = Disabled 1 = Enabled 1 RW 0 = Disabled 1 = Enabled 1 RW 0 = Disabled 1 = Enabled 1 Type 0 1 Default RW 0 = Disabled 1 = Enabled 1 RW 0 = Disabled 1 = Enabled 1 RW See Table 2: LCD Spread Select Table 0 0 0 0 0 0 1425A—09/02/09 10 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Byte Bit(s) 7 6 5 4 3 2 1 0 Byte Bit(s) 7 6 5 Datasheet 2 Output Enable Register Pin # Name Description This bit controls whether the CPU[0] output buffer CPU0 Enable is enabled or not. This bit controls whether the CPU[1] output buffer CPU1 Enable is enabled or not. This bit controls whether the CPU[2] output buffer CPU2 Enable is enabled or not. This bit controls whether the SRC[0] output buffer SRC0 Enable is enabled or not. This bit controls whether the SRC[1] output buffer SRC1 Enable is enabled or not. This bit controls whether the SRC[2] output buffer SRC2 Enable is enabled or not. This bit controls whether the DOT output buffer is DOT Enable enabled or not. This bit controls whether the LCD output buffer is LCD100 Enable enabled or not. 3 Output Control Register Pin # Name REF Enable Description Reserved Reserved This bit controls whether the REF output buffer is enabled or not. Type 0 1 Default RW 0 = Disabled 1 = Enabled 1 RW 0 = Disabled 1 = Enabled 1 RW 0 = Disabled 1 = Enabled 1 RW 0 = Disabled 1 = Enabled 1 RW 0 = Disabled 1 = Enabled 1 RW 0 = Disabled 1 = Enabled 1 RW 0 = Disabled 1 = Enabled 1 RW 0 = Disabled 1 = Enabled 1 Type 0 1 Default 0 0 RW 0 = Disabled 1 = Enabled 1 4 REF Slew These bits control the edge rate of the REF clock. RW 3 2 1 0 This bit controls whether the CPU[0] output buffer is free-running or stoppable. If it is set to stoppable CPU0 Stop Enable the CPU[0] output buffer will be disabled with the assertion of CPU_STP#. This bit controls whether the CPU[1] output buffer is free-running or stoppable. If it is set to stoppable CPU1 Stop Enable the CPU[1] output buffer will be disabled with the assertion of CPU_STP#. This bit controls whether the CPU[2] output buffer is free-running or stoppable. If it is set to stoppable CPU2 Stop Enable the CPU[2] output buffer will be disabled with the assertion of CPU_STP#. IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use 00 = Slow Edge Rate 01 = Medium Edge Rate 10 = Fast Edge Rate 11 = Reserved 10 RW Free Running Stoppable 0 RW Free Running Stoppable 0 RW Free Running Stoppable 0 1425A—09/02/09 11 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Byte Bit(s) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 4 CPU PLL N Register Pin # Name Byte Bit(s) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 5 CPU PLL/N Register Pin # Name CPU N Div7 CPU N Div6 CPU N Div5 CPU N Div4 CPU N Div3 CPU N Div2 CPU N Div1 CPU N Div0 Byte Bit(s) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 6 Pin # Reserved Name Byte Bit(s) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 7 Pin # Reserved Name Datasheet Control Function Reserved Reserved Reserved Reserved Reserved Reserved Reserved N Divider Prog bit 8 CPU N Div8 Control Function See Table 3: CPU N-step Programming Type 0 1 Default 1 1 1 1 1 1 1 0 0 1 Default X X X X X X X X RW Type RW RW RW RW RW RW RW RW Default depends on latched input frequency. Default for CPU = 166 is 7Dh. Default for all other frequencies is 64h. Control Function Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Type 0 1 Default 1 1 1 1 0 0 1 1 Control Function Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Type 0 1 Default 0 0 0 0 0 0 0 0 IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use 1425A—09/02/09 12 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Byte Bit(s) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 8 Pin # Byte Bit(s) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reserved Name Datasheet Control Function Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Type 0 1 Default 0 0 0 0 0 0 0 0 9 LCD100 PLL N Register Pin # Name Control Function LCD100 N Div7 LCD100 N Div6 LCD100 N Div5 LCD100 = (4MHz x N)/4 LCD100 N Div4 Default frequency is (4 x 64h)/4 = 100MHz LCD100 N Div3 LCD100 N Div2 LCD100 N Div1 LCD100 N Div0 Type R R R R R R R R 0 1 Default 1 0 0 1 0 1 1 0 Byte Bit(s) 7 6 5 4 3 2 1 0 10 Status Readback Register Pin # Name 37 FSB 9 FSC 24 CR0# Readbk 28 CR1# Readbk 36 CR2# Readbk Type R R R R R Byte Bit(s) 7 6 5 4 3 2 1 0 11 Revision ID/Vendor ID Register Pin # Name Rev Code Bit 3 Rev Code Bit 2 Rev Code Bit 1 Rev Code Bit 0 Vendor ID bit 3 Vendor ID bit 2 Vendor ID bit 1 Vendor ID bit 0 Byte Bit(s) 7 6 5 4 3 2 1 0 12 Device ID Register Pin # Name DEV_ID3 DEV_ID2 DEV_ID1 DEV_ID0 Description Frequency Select B Frequency Select C Real time CR0# State Indicator Real time CR1# State Indicator Real time CR2# State Indicator Reserved Reserved Reserved Description Revision ID (0 for A rev) Vendor ID Description Device ID MSB Device ID 2 Device ID 1 Device ID LSB Reserved Reserved Reserved Reserved IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use Write Byte 9 to 64h BEFORE enabling N programming 0 1 See Table 1: CPU Frequency Select Table CR0# is Low CR0# is High CR1# is Low CR1# is High CR2# is Low CR2# is High Type R R R R R R R R 0 Type R R R R 0 1 Vendor specific 1 Default Latch Latch X X X 0 0 0 Default X X X X 0 0 0 1 Default 0 0 1 1 0 0 0 0 1425A—09/02/09 13 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Byte Bit(s) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 13 Pin # Reserved Register Name Byte Bit(s) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 14 Pin # Reserved Register Name Byte Bit(s) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 15 Byte Count Register Pin # Name BC5 BC4 BC3 BC2 BC1 BC0 Datasheet Control Function Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Type 0 1 Default 0 0 0 0 0 0 0 0 Control Function Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Type 0 1 Default 0 0 0 0 0 0 0 0 Control Function Reserved Reserved Byte Count 5 Byte Count 4 Byte Count 3 Byte Count 2 Byte Count 1 Byte Count LSB Type 0 1 Default 0 0 0 0 1 1 1 1 Control Function Reserved Reserved Reserved Reserved Reserved Reserved Enables CPU N programming Enables LCD N programming Type 0 1 RW RW Disabled Disabled Enabled Enabled RW RW RW RW RW RW Specifies Number of bytes to be read back during an SMBus read. Default is 0xF. Bytes 16:40 are reserved Byte Bit(s) Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 41 N Program Enable Register Pin # Name CPU N Enable LCD N Enable IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use Default 0 0 0 0 0 0 0 0 1425A—09/02/09 14 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Datasheet Test Clarification Table Comments HW TEST_SEL HW PIN Power-up w/ TEST_SEL = 1 to enter test mode Cycle power to disable test mode TEST_MODE -->low Vth input TEST_MODE is a real time input TEST_MODE OUTPUT HW PIN 0.7V 0.7V >0.7V REF/N IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use 1425A—09/02/09 15 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Datasheet SYMBOL A A1 b c D E E1 e h L N a 300 mil SSOP In Millimeters COMMON DIMENSIONS MIN MAX 2.41 2.80 0.20 0.40 0.20 0.34 0.13 0.25 SEE VARIATIONS 10.03 10.68 7.40 7.60 0.635 BASIC 0.38 0.64 0.50 1.02 SEE VARIATIONS 0° 8° In Inches COMMON DIMENSIONS MIN MAX .095 .110 .008 .016 .008 .0135 .005 .010 SEE VARIATIONS .395 .420 .291 .299 0.025 BASIC .015 .025 .020 .040 SEE VARIATIONS 0° 8° VARIATIONS N 48 D mm. MIN 15.75 D (inch) MAX 16.00 MIN .620 MAX .630 Reference Doc.: JEDEC Publication 95, MO-118 10-0034 Ordering Information 9UMS9633BFW3LFT Example: XXXX B F W3 LF T Designation for tape and reel packaging Lead Free, RoHS Compliant AEC-Q100 level 3 (-40C to +85C temperature range) Package Type F = SSOP Revision Designator Device Type IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use 1425A—09/02/09 16 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Datasheet User Recommended Reflow Profile Pb-Free Plastic Surface Mount Package Profile Feature Pb-Free Assembly (260 °C) Preheat & Soak 150 °C 200 °C 60-120 seconds Temperature min (Tsmin) Temperature max (Tsmax ) Time (Tsmin to Tsmax ) (ts ) Average ramp-up rate (Tsmax to Tp) Liquidous temperature (TL) Time at liquidous (tL) Peak package body (TP)* Time (tP) ** within 5 °C of the specified classification temperature (Tc ) Average ramp-down rate (TP to Tsmax ) Time 25 °C to peak temperature * Tolerance for peak profile temperature (T P) 3 °C/second max. 217 °C 60-150 seconds 260°C 30** seconds 6 °C/second max. 8 minutes max. is defined as a supplier minimum and a user maximum. ** Tolerance for time at peak profile temperature (t P) is defined as a supplier minimum and a user maximum. Recommended Reflow Profile IDTTM/ICSTM Ultra Mobile PC Clock for Automotive use 1425A—09/02/09 17 ICS9UMS9633BW ULTRA MOBILE PC CLOCK FOR AUTOMOTIVE USE Datasheet Revision History Rev. 0.1 0.2 0.3 0.4 0.5 0.6 A Issue Date Description 12/11/07 Initial Release 1. Byte 4 default value changed to FF hex 02/27/08 2. Byte 6 default value changed to F3 hex. 04/23/08 Updated Ordering Information. 1. Corrected Reference in Byte 5 to CPU NDIV8. Should refer to Byte 4, bit 0. 2. Corrected Reference in LCD100 NDIV to only refer to Byte 9 3. Corrected headings in clock period table. 4. Added N-step programming info. 05/21/08 5. Corrected Byte 4 default value 08/12/08 Added reflow profile. 11/12/08 Removed reference to 1.5V inputs 09/02/09 Released to final. Page # - 16 Various 17 Various Innovate with IDT and accelerate your future networks. Contact: www.IDT.com TM For Sales For Tech Support 800-345-7015 408-284-8200 Fax: 408-284-2775 408-284-6578 pcclockhelp@idt.com Corporate Headquarters Asia Pacific and Japan Europe Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.) Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505 IDT Europe, Limited Prime House Barnett Wood Lane Leatherhead, Surrey United Kingdom KT22 7DE +44 1372 363 339 © 2006 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA 18 IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved.
9UMS9633BKLF 价格&库存

很抱歉,暂时无法提供与“9UMS9633BKLF”相匹配的价格&库存,您可以联系我们找货

免费人工找货