0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
9ZXL0632EKILF

9ZXL0632EKILF

  • 厂商:

    RENESAS(瑞萨)

  • 封装:

    VFQFN-40

  • 描述:

    DB600ZL OEM DERIVATIVE + WRTLK

  • 数据手册
  • 价格&库存
9ZXL0632EKILF 数据手册
9ZXL06x2E/9ZXL08xxE/ 6 to 12-Output Buffers for PCIe 9ZXL12x2E Gen1–5 and UPI with SMBus Write Datasheet Protect Description Features The 9ZXL revision E family of Zero-Delay/Fanout Buffers (ZDB, FOB) with SMBus Write Protect are 2nd-generation enhanced performance buffers for PCIe and CPU applications. The devices have hardware SMBUS write protection to prevent accidental writes. The family meets all published QPI/UPI, DB2000Q and PCIe Gen1–5 jitter specifications. Devices range from 6 to 12 outputs, with each output having an OE# pin to support the PCIe CLKREQ# function for low power states. All devices meet DB2000Q, DB1200ZL and DB800ZL jitter and skew requirements. ▪ SMBus Write Protect pin prevents SMBus against accidental writes ▪ 6–12 Low-power HCSL (LP-HCSL) outputs ▪ Integrated terminations eliminate up to 4 resistors per output pair ▪ Dedicated OE# pins support PCIe CLKREQ# function ▪ Up to 9 selectable SMBus addresses (9ZXL12xx, 9ZXL0853) ▪ Selectable PLL bandwidths minimizes jitter peaking in cascaded PLL topologies PCIe Clocking Architectures ▪ Hardware/SMBus control of ZDB and FOB modes allow change without power cycle ▪ Common Clocked (CC) ▪ Independent Reference (IR) with and without spread spectrum ▪ ▪ ▪ ▪ ▪ ▪ (SRIS, SRNS) Key Specifications ▪ Fanout Buffer Mode additive phase jitter: • • • • PCIe Gen5 CC, UPI > 20Gb/s < 24fs RMS DB2000Q additive jitter < 39fs RMS QPI/UPI 11.4GB/s < 40fs RMS IF-UPI additive jitter < 70fs RMS ▪ ZDB Mode phase jitter: • PCIe Gen5 CC, UPI > 20Gb/s < 22fs RMS • QPI/UPI 11.4GB/s < 120fs RMS • IF-UPI additive jitter < 130fs RMS ▪ Cycle-to-cycle jitter < 50ps ▪ Output-to-output skew < 50ps Spread spectrum compatible 1–400MHz FOB operation (all devices) 100MHz and 133.33MHz ZDB mode (9ZXL12xx, 9ZXL08xx) 100MHz ZDB mode (9ZXL06xx) -40°C to +85°C operating temperature range Packages: See Ordering Information for more details Typical Applications ▪ ▪ ▪ ▪ ▪ Servers/High-performance Computing nVME Storage Networking Accelerators Industrial Control Block Diagram VDDR VDDA VDD VDDIO 9ZXL12xx only FBOUT_NC# FBOUT_NC 9ZXL12x2 9ZXL08x2 9ZXL08x3 only 9ZXL12x2 9ZXL08x3 only PLL DIF_IN# DIFn# DIF_IN ^100M_133M# vSADR1_tri vSADR0_tri SMBCLK SMBDAT vSMB_WRTLOCK DIFn SMBus Engine 12, 8, or 6 outputs Factory Configuration DIF0# ^vHIBW_BYPM-LOBW# ^CKPWRGD_PD# DIF0 Control Logic vOE[n:0]# Resistors are integrated on 9ZXLxx5x devices and external on 9ZXLxx3x devices GNDA ©2020 Renesas Electronics Corporation 1 GND August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Contents Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 PCIe Clocking Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9ZXL06x2E Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 9ZXL08x2E Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 9ZXL0853E Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 9ZXL12x2E Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 General SMBus Serial Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 How to Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 How to Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Marking Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 9ZXL06x2E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 9ZXL08xxE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 9ZXL12x2E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ©2020 Renesas Electronics Corporation 2 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Pin Assignments 9ZXL06x2E Pin Assignment VDD vOE4# DIF4 DIF4# VDD DIF5 DIF5# vOE5# VDD VDDA Figure 1. Pin Assignment for 5 × 5 mm 40-VFQFPN Package – Top View 40 39 38 37 36 35 34 33 32 31 vSMB_WRTLOCK 1 30 NC ^HIBW_BYPM_LOBW# 2 29 VDD ^CKPWRGD_PD# 3 28 vOE3# 9ZXL0632 9ZXL0652 EPAD is pin 41 Connect to GND GNDR 4 VDDR 5 DIF_IN 6 DIF_IN# 7 27 DIF3# 26 DIF3 25 VDD 24 DIF2# SMBDAT 8 23 DIF2 SMBCLK 9 22 vOE2# FBOUT_NC# 10 21 VDD VDD vOE1# DIF1# DIF1 VDD DIF0# DIF0 vOE0# VDD FBOUT_NC 11 12 13 14 15 16 17 18 19 20 5 x 5 mm, 0.40mm pitch 40-VFQFPN Pins with ^ prefix have internal 120kohm pull-up Pins with v prefix have internal 120kohm pull-down ©2020 Renesas Electronics Corporation 3 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet 9ZXL08x2E Pin Assignment vOE6# VDD DIF7 DIF7# vOE7# VDD NC VDDA NC vSMB_WRTLOCK ^100M_133M# ^HIBW_BYPM_LOBW# Figure 2. Pin Assignment for 6 × 6 mm 48-VFQFPN Package – Top View 48 47 46 45 44 43 42 41 40 39 38 37 ^CKPWRGD_PD# 1 36 DIF6# GND 2 35 DIF6 VDDR 3 34 VDD DIF_IN 4 33 DIF5# 9ZXL0832 9ZXL0852 EPAD is pin 49 Connect to GND DIF_IN# 5 SMBDAT 6 SMBCLK 7 FBOUT_NC# 8 32 DIF5 31 vOE5# 30 vOE4# 29 DIF4# FBOUT_NC 9 28 DIF4 VDD 10 27 VDD vOE0# 11 26 DIF3# NC 12 25 DIF3 vOE3# vOE2# DIF2# DIF2 NC VDD vOE1# DIF1# DIF1 VDD DIF0# DIF0 13 14 15 16 17 18 19 20 21 22 23 24 6 x 6 mm, 0.4mm pitch 48-VFQFPN Pins with ^ prefix have internal 120kohm pull-up Pins with v prefix have internal 120kohm pull-down ©2020 Renesas Electronics Corporation 4 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet 9ZXL0853E Pin Assignment vOE6# VDD DIF7 DIF7# vOE7# VDD NC VDDA NC vSMB_WRTLOCK ^100M_133M# ^HIBW_BYPM_LOBW# Figure 3. Pin Assignment for 6 × 6 mm 48-VFQFPN Package – Top View 48 47 46 45 44 43 42 41 40 39 38 37 ^CKPWRGD_PD# 1 36 DIF6# VDDR 2 35 DIF6 DIF_IN 3 34 VDD DIF_IN# 4 33 DIF5# vSADR0_tri 5 32 DIF5 9ZXL0853 EPAD is pin 49 Connect to GND SMBDAT 6 SMBCLK 7 vSADR1_tri 8 31 vOE5# 30 vOE4# 29 DIF4# FBOUT_NC# 9 28 DIF4 FBOUT_NC 10 27 VDD VDD 11 26 DIF3# vOE0# 12 25 DIF3 vOE3# vOE2# DIF2# DIF2 NC VDD vOE1# DIF1# DIF1 VDD DIF0# DIF0 13 14 15 16 17 18 19 20 21 22 23 24 6 x 6 mm, 0.4mm pitch 48-VFQFPN Pins with ^ prefix have internal 120kohm pull-up Pins with v prefix have internal 120kohm pull-down ©2020 Renesas Electronics Corporation 5 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet 9ZXL12x2E Pin Assignment VDDIO DIF8 DIF8# vOE8# vOE9# DIF9 DIF9# VDDIO VDD GND DIF10 DIF10# vOE10# vOE11# DIF11 DIF11# Figure 4. Pin Assignment for 9 × 9 mm 64-VFQFPN Package – Top View 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 VDDA 1 48 GND GNDA 2 47 DIF7# vSMB_WRTLOCK 3 46 DIF7 ^100M_133M# 4 45 vOE7# ^HIBW_BYPM_LOBW# 5 44 vOE6# ^CKPWRGD_PD# 6 43 DIF6# GNDR 7 42 DIF6 9ZXL1232 9ZXL1252 Connect EPAD to ground VDDR 8 DIF_IN 9 DIF_IN# 10 41 GND 40 VDD 39 DIF5# vSADR0_tri 11 38 DIF5 SMBDAT 12 37 vOE5# SMBCLK 13 36 vOE4# vSADR1_tri 14 35 DIF4# FBOUT_NC# 15 34 DIF4 FBOUT_NC 16 33 GND VDDIO DIF3# DIF3 vOE3# vOE2# DIF2# DIF2 VDDIO VDD GND DIF1# DIF1 vOE1# vOE0# DIF0# DIF0 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 9 x 9 mm, 0.5mm pitch 64-VFQFPN Pins with ^ prefix have internal 120kohm pull-up Pins with v prefix have internal 120kohm pull-down ©2020 Renesas Electronics Corporation 6 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Pin Descriptions Table 1. Pin Descriptions 9ZXL12x2 Pin No. 9ZXL08x2 Pin No. 9ZXL0853 Pin No. 9ZXL06x2 Pin No. 4 47 47 — Input notifies device to sample latched inputs and start up on first high assertion. Low enters Power Down Mode, subsequent high assertions exit Power Down Mode. This pin has internal pull-up resistor. 6 1 1 3 Tri-level input to select High BW, Bypass or Low BW Mode. ^HIBW_BYPM_LO Latched This pin has an internal pull-up resistor. See PLL Operating BW# In Mode table for details. 5 48 48 2 DIF_IN Input HCSL true input. 9 4 3 6 DIF_IN# Input HCSL complementary input. 10 5 4 7 DIF0 Output Differential true clock output. 17 13 13 14 DIF0# Output Differential complementary clock output. 18 14 14 15 DIF1 Output Differential true clock output. 21 16 16 17 DIF1# Output Differential complementary clock output. 22 17 17 18 DIF10 Output Differential true clock output. 59 — — — DIF10# Output Differential complementary clock output. 60 — — — DIF11 Output Differential true clock output. 63 — — — DIF11# Output Differential complementary clock output. 64 — — — DIF2 Output Differential true clock output. 26 21 21 23 DIF2# Output Differential complementary clock output. 27 22 22 24 DIF3 Output Differential true clock output. 30 25 25 26 DIF3# Output Differential complementary clock output. 31 26 26 27 DIF4 Output Differential true clock output. 34 28 28 33 DIF4# Output Differential complementary clock output. 35 29 29 34 DIF5 Output Differential true clock output. 38 32 32 36 DIF5# Output Differential complementary clock output. 39 33 33 37 DIF6 Output Differential true clock output. 42 35 35 — DIF6# Output Differential complementary clock output. 43 36 36 — DIF7 Output Differential true clock output. 46 39 39 — DIF7# Output Differential complementary clock output. 47 40 40 — DIF8 Output Differential true clock output. 50 — — — DIF8# Output Differential complementary clock output. 51 — — — DIF9 Output Differential true clock output. 54 — — — DIF9# Output Differential complementary clock output. 55 — — — Name ^100M_133M# ^CKPWRGD_PD# Type Description 3.3V Input to select operating frequency. This pin has an Latched internal pull-up resistor. See Frequency Selection (PLL In Mode) table for definition. Input ©2020 Renesas Electronics Corporation 7 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Table 1. Pin Descriptions (Cont.) Name EPAD FBOUT_NC FBOUT_NC# 9ZXL12x2 Pin No. 9ZXL08x2 Pin No. 9ZXL0853 Pin No. 9ZXL06x2 Pin No. Connect EPAD to ground. 65 49 49 41 Output True half of differential feedback output. This pin should NOT be connected to anything outside the chip. It exists to provide delay path matching to get 0 propagation delay. 16 9 10 11 Output Complementary half of differential feedback output. This pin should NOT be connected to anything outside the chip. It exists to provide delay path matching to get 0 propagation delay. 15 8 9 10 Type GND Description GND GND Ground pin. 23 49 49 41 GND GND Ground pin. 33 49 49 41 GND GND Ground pin. 41 49 49 — GND GND Ground pin. 48 49 49 — GND GND Ground pin. 58 — — — GNDA GND Ground pin for the PLL core. 2 49 49 41 GNDR GND Analog ground pin for the differential input (receiver). 7 2 49 4 12,20,43,45 20,43,45 30 NC — No connect. SMBCLK Input Clock pin of SMBUS circuitry. 13 7 7 9 SMBDAT I/O Data pin of SMBUS circuitry. 12 6 6 8 VDD Power Power supply, nominally 3.3V. 24 VDD Power Power supply, nominally 3.3V. 40 — — — VDD Power Power supply, nominally 3.3V. 57 — — — VDDA Power Power supply for PLL core. 1 44 44 40 VDDIO Power Power supply for differential outputs. 25 — — — VDDIO Power Power supply for differential outputs. 32 — — — VDDIO Power Power supply for differential outputs. 49 — — — VDDIO Power Power supply for differential outputs. 56 — — — VDDR Power Power supply for differential input clock (receiver). This VDD should be treated as an analog power rail and filtered appropriately. Nominally 3.3V. 8 3 2 5 vOE0# Input Active low input for enabling output 0. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 19 11 12 13 vOE1# Input Active low input for enabling output 1. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 20 18 18 19 ©2020 Renesas Electronics Corporation 8 12,16,20, 10,15,19,27, 11,15,19,27, 21,25,29, 34,38,42 34,38,42 31,35,39 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Table 1. Pin Descriptions (Cont.) Name vOE10# vOE11# vOE2# vOE3# vOE4# vOE5# vOE6# vOE7# vOE8# vOE9# vSADR0_tri vSADR1_tri vSMB_WRTLOCK 9ZXL12x2 Pin No. 9ZXL08x2 Pin No. 9ZXL0853 Pin No. 9ZXL06x2 Pin No. Input Active low input for enabling output 10. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 61 — — — Input Active low input for enabling output 11. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 62 — — — Input Active low input for enabling output 2. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 28 23 23 22 Input Active low input for enabling output 3. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 29 24 24 28 Input Active low input for enabling output 4. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 36 30 30 32 Input Active low input for enabling output 5. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 37 31 31 38 Input Active low input for enabling output 6. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 44 37 37 — Input Active low input for enabling output 7. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 45 41 41 — Input Active low input for enabling output 8. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 52 — — — Input Active low input for enabling output 9. This pin has an internal pull-down. 1 = disable output, 0 = enable output. 53 — — — Input SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. It has an internal pull-down resistor. See the SMBus Addressing table. 11 — 5 — Input SMBus address bit. This is a tri-level input that works in conjunction with other SADR pins, if present, to decode SMBus Addresses. It has an internal pull-down resistor. See the SMBus Addressing table. 14 — 8 — Input This pin prevents SMBus writes when asserted. SMBus reads are not affected. This pin has an internal pull-down. 0 = SMBus writes allows, 1 = SMBus writes blocked. 3 46 46 1 Type Description ©2020 Renesas Electronics Corporation 9 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Absolute Maximum Ratings Stresses above the ratings listed below can cause permanent damage to the 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E. These ratings, which are standard values for Renesas commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range. Table 2. Absolute Maximum Ratings 1 2 3 Parameter Symbol Conditions Supply Voltage VDDx Input Low Voltage VIL Input High Voltage VIH Except for SMBus interface. Input High Voltage VIHSMB SMBus clock and data pins. Storage Temperature Ts Junction Temperature Tj Input ESD Protection ESD prot Minimum Typical Maximum Units Notes 3.9 V 1,2 V 1 VDD + 0.5 V 1,3 3.9 V 1 150 °C 1 125 °C 1 V 1 GND - 0.5 -65 Human Body Model. 2500 Guaranteed by design and characterization, not 100% tested in production. Operation under these conditions is neither implied nor guaranteed. Not to exceed 3.9V. Thermal Characteristics Table 3. Thermal Characteristics Parameter 9ZXL12 Thermal Resistance 9ZXL08 Thermal Resistance Symbol Conditions Package Typical Values Units Notes θJC Junction to case. 14 °C/W 1 θJb Junction to base. 1 °C/W 1 θJA0 Junction to air, still air. 28 °C/W 1 θJA1 Junction to air, 1 m/s air flow. 21 °C/W 1 θJA3 Junction to air, 3 m/s air flow. 19 °C/W 1 θJA5 Junction to air, 5 m/s air flow. 18 °C/W 1 θJC Junction to case. 19 °C/W 1 θJb Junction to base. 0 °C/W 1 θJA0 Junction to air, still air. 30 °C/W 1 θJA1 Junction to air, 1 m/s air flow. 23 °C/W 1 θJA3 Junction to air, 3 m/s air flow. 20 °C/W 1 θJA5 Junction to air, 5 m/s air flow. 19 °C/W 1 ©2020 Renesas Electronics Corporation NLG64 NDG48 10 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Table 3. Thermal Characteristics (Cont.) Parameter Symbol 9ZXL06 Thermal Resistance 1 Conditions Package Typical Values Units Notes θJC Junction to case. 32 °C/W 1 θJb Junction to base. 2 °C/W 1 θJA0 Junction to air, still air. 44 °C/W 1 θJA1 Junction to air, 1 m/s air flow. 37 °C/W 1 θJA3 Junction to air, 3 m/s air flow. 33 °C/W 1 θJA5 Junction to air, 5 m/s air flow. 31 °C/W 1 NDG40 EPAD soldered to ground. Electrical Characteristics TA = TAMB. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Table 4. SMBus Parameters Parameter Symbol SMBus Input Low Voltage VILSMB SMBus Input High Voltage VIHSMB SMBus Output Low Voltage VOLSMB At IPULLUP. SMBus Sink Current IPULLUP At VOL. Nominal Bus Voltage VDDSMB SCLK/SDATA Rise Time tRSMB SCLK/SDATA Fall Time SMBus Operating Frequency 1 2 3 4 5 Conditions Minimum 2.1 Typical Maximum Units 0.8 V VDDSMB V 0.4 V 4 Notes mA 2.7 3.6 V 1 (Max VIL - 0.15V) to (Min VIH + 0.15V). 1000 ns 1 tFSMB (Min VIH + 0.15V) to (Max V IL - 0.15V). 300 ns 1 fSMB SMBus operating frequency. 400 kHz 5 Guaranteed by design and characterization, not 100% tested in production. Control input must be monotonic from 20% to 80% of input swing. Time from deassertion until outputs are > 200mV. DIF_IN input. The differential input clock must be running for the SMBus to be active. Table 5. DIF_IN Clock Input Parameters Parameter Input Crossover Voltage – DIF_IN 1 2 Symbol Conditions Minimum Typical Maximum VCROSS Crossover voltage. 150 Input Swing – DIF_IN VSWING Differential value. 300 Input Slew Rate – DIF_IN dv/dt Measured differentially. 0.4 Input Leakage Current IIN VIN = VDD , VIN = GND. Input Duty Cycle dtin Input Jitter – Cycle to Cycle JDIFIn 900 Units Notes mV 1 mV 1 8 V/ns 1,2 -5 5 μA Measurement from differential waveform. 45 55 % 1 Differential measurement. 0 125 ps 1 Guaranteed by design and characterization, not 100% tested in production. Slew rate measured through ±75mV window centered around differential zero. ©2020 Renesas Electronics Corporation 11 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Table 6. Input/Supply/Common Parameters TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Symbol Minimum Typical Maximum Units Supply Voltage VDDx Supply voltage for core and analog. 3.135 3.3 3.465 V Output Supply Voltage VDDIO Supply voltage for DIF outputs, if present. 0.95 1.05 3.465 V 5 Ambient Operating Temperature TAMB Extended Industrial range (TEXIND). -40 25 105 °C 7 Industrial range (TIND). -40 25 85 °C Input High Voltage VIH Single-ended inputs, except SMBus, tri-level inputs. 2 VDD + 0.3 V Input Low Voltage VIL Single-ended inputs, except SMBus, tri-level inputs. GND - 0.3 0.8 V Input High Voltage VIH Tri-level inputs. 2.2 VDD + 0.3 V Input Mid Voltage VIM Tri-level inputs. 1.2 1.8 V Input Low Voltage VIL Tri-level inputs. GND - 0.3 0.8 V IIN Single-ended inputs, VIN = GND, V IN = VDD. -5 5 μA IINP Single-ended inputs. VIN = 0 V; inputs with internal pull-up resistors. VIN = V DD; inputs with internal pull-down resistors. -50 50 μA Fibyp VDD = 3.3V, Bypass Mode. 1 400 MHz Fipll VDD = 3.3V, 100MHz PLL Mode. 98.5 100.00 102.5 MHz Fipll VDD = 3.3V, 133.33MHz PLL Mode. 132 133.33 135 MHz ppm Error Contribution ppm ppm error contributed to input clock. Pin Inductance Lpin Input Current Input Frequency CIN Capacitance CINDIF_IN Conditions 7 nH 1 5 pF 1 DIF_IN differential clock inputs. 1.5 2.7 pF 1,4 6 pF 1 1.8 ms 1,2 33 kHz 5 10 clocks 1,2,3 49 300 μs 1,3 Clk Stabilization TSTAB From VDD power-up and after input clock stabilization or deassertion of PD# to 1st clock. Input SS Modulation Frequency PCIe fMODINPCIe OE# Latency 3 ppm 1.5 Output pin capacitance. 2 0 6 Logic inputs, except DIF_IN. COUT 1 VDD/2 Notes 1 Allowable frequency for PCIe applications (Triangular modulation). 30 tLATOE# DIF start after OE# assertion. DIF stop after OE# deassertion. 4 Tdrive_PD# tDRVPD DIF output enable after PD# deassertion. Tfall tF Fall time of control inputs. 5 ns 2 Trise tR Rise time of control inputs. 5 ns 2 Guaranteed by design and characterization, not 100% tested in production. Control input must be monotonic from 20% to 80% of input swing. Time from deassertion until outputs are > 200mV. ©2020 Renesas Electronics Corporation 12 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet 4 5 6 7 DIF_IN input. 9ZXL12x2 only. 9ZXL12x2 and 9ZXL08x2 only. Not all devices are available in this temperature range. See Ordering Information for details. Table 7. Current Consumption – 9ZXL12 Parameter Operating Supply Current Power Down Current 1 Symbol Typical Maximum Units Notes VDDA, PLL Mode at 100MHz. 38 46 mA 1 VDDA, Fanout Buffer Mode at 100MHz. 4 5 mA 1 All other VDD pins. 25 34 mA IDDOIO VDDIO for LP-HCSL outputs, if applicable. 83 107 mA IDDAPD VDDA, CKPWRGD_PD# = 0. 3 4 mA IDDPD All other VDD pins, CKPWRGD_PD# = 0. 1 2 mA Typical Maximum Units Notes VDDA, PLL Mode at 100MHz. 37 45 mA 1 VDDA, Fanout Buffer Mode at 100MHz. 4 5 mA 1 All other VDD pins at 100MHz. 55 68 mA IDDA IDD Conditions Minimum 1 Includes VDDR. Table 8. Current Consumption – 9ZXL08 Parameter Symbol Operating Supply Current IDDA Power Down Current IDDAPD VDDA, CKPWRGD_PD# = 0. 3 4 mA IDDPD All other VDD pins, CKPWRGD_PD# = 0. 1 2 mA Typical Maximum Units Notes VDDA, PLL Mode at 100MHz. 37 45 mA 1 VDDA, Fanout Buffer Mode at 100MHz. 4 5 mA 1 All other VDD pins at 100MHz. 41 50 mA 1 IDD Conditions Minimum 1 Includes VDDR. Table 9. Current Consumption – 9ZXL06 Parameter Symbol Operating Supply Current IDDA Power Down Current IDDAPD VDDA, CKPWRGD_PD# = 0. 3 4 mA IDDPD All other VDD pins, CKPWRGD_PD# = 0. 1 2 mA 1 IDD Conditions Minimum 1 Includes VDDR. ©2020 Renesas Electronics Corporation 13 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Table 10. Skew and Differential Jitter Parameters TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Symbol Conditions CLK_IN, DIF[x:0] tSPO_PLL Input-to-output skew in PLL Mode at 100MHz, nominal temperature and voltage. CLK_IN, DIF[x:0] tPD_BYP Input-to-output skew in Bypass Mode at 100MHz, nominal temperature and voltage. CLK_IN, DIF[x:0] tDSPO_PLL CLK_IN, DIF[x:0] tDSPO_BYP Minimum Typical Maximum Units Notes -100 -21.3 100 ps 1,2,4,5,7 2 2.6 3 ns 1,2,3,5,7 Input-to-output skew variation in PLL Mode at 100MHz, across voltage and temperature. -50 0.0 50 ps 1,2,3,5,7 Input-to-output skew variation in Bypass Mode at 100MHz, across voltage and temperature, TAMB = 0C to +70°C. -250 250 ps 1,2,3,5,7 Input-to-output skew variation in Bypass mode at 100MHz, across voltage and temperature, TAMB = -40°C to +85°C. -350 350 ps 1,2,3,5,7 ps 1,2,3,5,7 (rms) CLK_IN, DIF[x:0] tDTE Random differential tracking error between two 9ZX devices in Hi BW Mode. 3 5 CLK_IN, DIF[x:0] tDSSTE Random differential spread spectrum tracking error between two 9ZX devices in Hi BW Mode. 23 50 ps 1,2,3,5,7 DIF[x:0] tSKEW_ALL Output-to-output skew across all outputs, common to PLL and Bypass Mode, at 100MHz. 50 ps 1,2,3,7 PLL Jitter Peaking jpeak-hibw LOBW#_BYPASS_HIBW = 1. 0 1.3 2.5 dB 6,7 PLL Jitter Peaking jpeak-lobw LOBW#_BYPASS_HIBW = 0. 0 1.3 2 dB 6,7 PLL Bandwidth pll HIBW LOBW#_BYPASS_HIBW = 1. 2 2.6 4 MHz 7,8 PLL Bandwidth pllLOBW LOBW#_BYPASS_HIBW = 0. 0.7 1.0 1.4 MHz 7,8 Duty Cycle tDC Measured differentially, PLL Mode. 45 50.3 55 % 1 Duty Cycle Distortion tDCD Measured differentially, Bypass Mode at 100MHz. -1 0 1 % 1,9 Jitter, Cycle to Cycle tjcyc-cyc PLL Mode. 14 50 ps 1,10 Additive jitter in Bypass Mode. 0.1 5 ps 1,10 1 2 3 4 5 6 7 8 9 Measured into fixed 2pF load cap. Input-to-output skew is measured at the first output edge following the corresponding input. Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present. All Bypass Mode input-to-output specs refer to the timing between an input edge and the specific output edge created by it. This parameter is deterministic for a given device. Measured with scope averaging on to find mean value. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking. Guaranteed by design and characterization, not 100% tested in production. Measured at 3db down or half power point. Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in Bypass Mode. 10 Measured from differential waveform. ©2020 Renesas Electronics Corporation 14 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Table 11. LP-HCSL Outputs TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Symbol Slew Rate dV/dt Scope averaging on. Slew Rate Matching ΔdV/dt Single-ended measurement. Maximum Voltage Vmax Minimum Voltage Vmin Measurement on single-ended signal using absolute value (scope averaging off). Crossing Voltage (abs) 2 5 6 7 8 2 Δ-Vcross Specification Limits Units Notes 2.9 4 1–4 V/ns 1,2,3 7.1 20 20 % 1,4,7 700 792 850 660–1150 -150 -35 150 -300 300 372 462 250–550 mV 1,5,7 15 50 140 mV 1,6,7 Scope averaging off. 7,8 mV 7,8 Guaranteed by design and characterization, not 100% tested in production. Measured from differential waveform. 3 Slew 4 Minimum Typical Maximum Vcross_abs Scope averaging off. Crossing Voltage (var) 1 Conditions rate is measured through the Vswing voltage range centered around differential 0 V. This results in a ±150mV window around differential 0V. Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a ±75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling). The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed. The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute. At default SMBus settings. Includes previously separate values of +300mV overshoot and -300mV of undershoot. Table 12. PCIe Phase Jitter Parameters TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Symbol Minimum Typical Maximum Limits Units Notes PCIe Gen 1 (2.5 GT/s) 2.6 6.8 86 ps (p-p) 1,2 PCIe Gen 2 Hi Band (5.0 GT/s) 0.09 0.16 3 ps (RMS) 1,2 PCIe Gen 2 Lo Band (5.0 GT/s) 0.08 0.12 3.1 ps (RMS) 1,2 tjphPCIeG3-CC PCIe Gen 3 (8.0 GT/s) 0.05 0.07 1 ps (RMS) 1,2 tjphPCIeG4-CC PCIe Gen 4 (16.0 GT/s) 0.05 0.07 0.5 ps (RMS) 1,2,3,4 tjphPCIeG5-CC PCIe Gen 5 (32.0 GT/s) 0.018 0.022 0.15 ps (RMS) 1,2,3,5,7 tjphPCIeG1-SRIS PCIe Gen 1 (2.5 GT/s) 8.71 8.73 ps (RMS) 1,2,6 tjphPCIeG2-SRIS PCIe Gen 2 (5.0 GT/s) 0.81 0.83 ps (RMS) 1,2,6 tjphPCIeG3-SRIS PCIe Gen 3 (8.0 GT/s) 0.329 0.335 ps (RMS) 1,2,6 tjphPCIeG4-SRIS PCIe Gen 4 (16.0 GT/s) 0.222 0.235 ps (RMS) 1,2,6 tjphPCIeG5-SRIS PCIe Gen 5 (32.0 GT/s) 0.084 0.091 ps (RMS) 1,2,6 tjphPCIeG1-CC PCIe Phase Jitter, Low Bandwidth ZDB Mode (Common Clocked Architecture) PCIe Phase Jitter, Low Bandwidth ZDB Mode (SRIS Architecture) tjphPCIeG2-CC ©2020 Renesas Electronics Corporation Conditions 15 N/A August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Table 12. PCIe Phase Jitter Parameters (Cont.) TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Symbol Minimum Typical Maximum Limits Units Notes PCIe Gen 1 (2.5 GT/s) 5.4 6.9 86 ps (p-p) 1,2 PCIe Gen 2 Hi Band (5.0 GT/s) 0.19 0.25 3 ps (RMS) 1,2 PCIe Gen 2 Lo Band (5.0 GT/s) 0.09 0.13 3.1 ps (RMS) 1,2 tjphPCIeG3-CC PCIe Gen 3 (8.0 GT/s) 0.10 0.13 1 ps (RMS) 1,2 tjphPCIeG4-CC PCIe Gen 4 (16.0 GT/s) 0.10 0.13 0.5 ps (RMS) 1,2,3,4 tjphPCIeG5-CC PCIe Gen 5 (32.0 GT/s) 0.032 0.042 0.15 ps (RMS) 1,2,3,5,7 8.61 8.63 ps (RMS) 1,2,6 ps (RMS) 1,2,6 ps (RMS) 1,2,6 tjphPCIeG1-CC PCIe Phase Jitter, High Bandwidth ZDB Mode (Common Clocked Architecture) tjphPCIeG2-CC Conditions tjphPCIeG1-SRIS PCIe Gen 1 (2.5 GT/s) PCIe Phase Jitter, High tjphPCIeG2-SRIS PCIe Gen 2 (5.0 GT/s) Bandwidth ZDB Mode tjphPCIeG3-SRIS PCIe Gen 3 (8.0 GT/s) (SRIS Architecture) tjphPCIeG4-SRIS PCIe Gen 4 (16.0 GT/s) 0.88 0.96 0.354 0.375 0.271 0.305 ps (RMS) 1,2,6 tjphPCIeG5-SRIS PCIe Gen 5 (32.0 GT/s) 0.097 0.109 ps (RMS) 1,2,6 N/A 1 The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section 2 3 4 5 6 7 of the data sheet for the exact measurement setup. The worst case results for each data rate are summarized in this table. Equipment noise is removed from all results. Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83. In the case where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC content. Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system. Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system. The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide specification limits, hence the n/a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by √2. An additional consideration is the value for which to divide by √2. The conservative approach is to divide the ref clock jitter limit, and the case can be made for dividing the channel simulation values by √2, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A "rule-of-thumb" SRIS limit would be either 0.5ps RMS/√2 = 0.35ps RMS if the clock chip is far from the clock input, or 0.7ps RMS/√2 = 0.5ps RMS if the clock chip is near the clock input. This specification also applied to UPI data rates > 20Gb/s. ©2020 Renesas Electronics Corporation 16 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Table 13. Additive PCIe Phase Jitter for Fanout Buffer Mode TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Symbol tjphPCIeG1-CC Conditions Minimum Typical Maximum Limits Notes 1.3 1.9 86 ps (p-p) 1,2 PCIe Gen2 Hi Band (5.0 GT/s) 0.089 0.126 3 ps (RMS) 1,2 PCIe Gen2 Lo Band (5.0 GT/s) 0.023 0.034 3.1 ps (RMS) 1,2 tjphPCIeG3-CC PCIe Gen3 (8.0 GT/s) 0.044 0.062 1 ps (RMS) 1,2 tjphPCIeG4-CC PCIe Gen4 (16.0 GT/s) 0.044 0.062 0.5 ps (RMS) 1,2,3,4 tjphPCIeG5-CC PCIe Gen5 (32.0 GT/s) 0.017 0.024 0.15 ps (RMS) 1,2,3,5,8 0.127 0.181 ps (RMS) 1,2,6 Additive PCIe Phase Jitter, tjphPCIeG2-SRIS PCIe Gen2 (5.0 GT/s) Fanout Buffer Mode7 tjphPCIeG3-SRIS PCIe Gen3 (8.0 GT/s) (SRIS Architecture) tjphPCIeG4-SRIS PCIe Gen4 (16.0 GT/s) 0.112 0.159 ps (RMS) 1,2,6 0.029 0.042 ps (RMS) 1,2,6 0.031 0.043 ps (RMS) 1,2,6 tjphPCIeG5-SRIS PCIe Gen5 (32.0 GT/s) 0.027 0.038 ps (RMS) 1,2,6 Additive PCIe Phase Jitter, Fanout Buffer Mode7 (Common Clocked Architecture) tjphPCIeG2-CC PCIe Gen1 (2.5 GT/s) Units tjphPCIeG1-SRIS PCIe Gen1 (2.5 GT/s) N/A 1 The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section 2 3 4 5 6 7 8 of the data sheet for the exact measurement setup. The total Ref Clk jitter limits for each data rate are listed for convenience. The worst case results for each data rate are summarized in this table. Equipment noise is removed from all results. Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency. For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83. In the case where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used. SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC content. Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system. Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system. The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide specification limits, hence the n/a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by √2. An additional consideration is the value for which to divide by √2. The conservative approach is to divide the ref clock jitter limit, and the case can be made for dividing the channel simulation values by √2, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A "rule-of-thumb" SRIS limit would be either 0.5ps RMS/√2 = 0.35ps RMS if the clock chip is far from the clock input, or 0.7ps RMS/√2 = 0.5ps RMS if the clock chip is near the clock input. Additive jitter for RMS values is calculated by solving for “b” where b = √(c2 - a2) and “a” is rms input jitter and “c” is rms output jitter. This specification also applied to UPI data rates > 20Gb/s. ©2020 Renesas Electronics Corporation 17 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Table 14. Filtered Phase Jitter Parameters – QPI/UPI, IF-UPI and DB2000Q TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Phase Jitter, ZDB Mode Conditions Minimum Typical Maximum Specification Limits Units Notes QPI and UPI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI) 0.16 0.37 0.5 ps (RMS) 1,2 QPI and UPI (100MHz, 8.0Gb/s, 12UI) 0.10 0.15 0.3 ps (RMS) 1,2 QPI and UPI (100MHz, ≤11.4Gb/s, 12UI) 0.08 0.12 0.2 ps (RMS) 1,2 QPI and UPI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI) 0.03 0.05 QPI and UPI (100MHz, 8.0Gb/s, 12UI) 0.03 0.05 QPI and UPI (100MHz, ≤11.4Gb/s, 12UI) 0.02 0.04 IF-UPI, Lo-BW ZDB Mode 0.10 0.13 1 ps (RMS) 1,4,5 IF-UPI, Hi-BW ZDB Mode 0.17 0.20 1 ps (RMS) 1,4,5 IF-UPI, Fanout Mode 0.06 0.07 1 ps (RMS) 1,4 DB2000Q, Fanout Mode 28 39 80 fs (RMS) 1,4,5 Symbol tjphQPI_UPI tjphQPI_UPI Additive Phase Jitter, Fanout Mode tjphIF-UPI tjphDB2000Q 1 2 3 ps (RMS) 1,2,3 N/A ps (RMS) 1,2,3 ps (RMS) 1,2,3 Applies to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details. Calculated from Intel-supplied clock jitter tool. For RMS values, additive jitter is calculated by solving for “b” where b = √(c2 - a2), “a” is rms input jitter and “c” is rms total jitter. 4 Calculated from phase noise analyzer with Intel-specified brick-wall filter applied. This is an additive jitter specification regardless of buffer operating 5 mode. The IF-UPI specification is an additive specification, regardless of the buffer operating mode. The enhanced 9ZXL devices meet this specification in all operating modes. Table 15. Phase Jitter Parameters – 12kHz to 20MHz TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions. Parameter Symbol Conditions 12kHz–20MHz Additive Phase Jitter, Fanout Buffer Mode tjph12k-20MFOB Fanout Buffer Mode, SSC OFF, 100MHz 1 2 3 Minimum Typical Maximum Specification Limits 98 125 N/A Units Notes fs (RMS) 1,2,3 Applies to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details. 12kHz to 20MHz brick wall filter. For RMS values, additive jitter is calculated by solving for “b” where b = √(c2 - a2), “a” is rms input jitter and “c” is rms total jitter. ©2020 Renesas Electronics Corporation 18 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Power Management Table 16. Power Management CKPWRGD_PD# DIF_IN SMBus EN bit OE[x]# Pin DIF[x] PLL State (in ZDB Mode) 0 X X X Low/Low OFF 0 0 Low/Low ON 0 1 Low/Low ON 1 0 Running ON 1 1 Low/Low ON 1 Running Table 17. Frequency Selection (PLL Mode) 100M_133M# DIF_IN MHz DIF[x] 1 100.00 DIF_IN 0 133.33 DIF_IN Note: 9ZXL12xx and 9ZXL08xx only. 9ZXL06xx is 100MHz only. Table 18. PLL Operating Mode HiBW_BypM_LoBW# Mode PLL Low PLL Lo BW Running Mid Bypass Off High PLL Hi BW Running Note: See SMBus Byte 0, bits 7 and 6 for additional information. ©2020 Renesas Electronics Corporation 19 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Test Loads Figure 5. Test Load for AC/DC Measurements CL CK+ CKIN+ Clock Source L CK+ Zo (differential) DUT CK- Test Points for High Impedance Probe CKIN- CK- CL Table 19. Parameters for AC/DC Measurements Clock Source Device Under Test (DUT) Rs (Ω) Differential Zo (Ω) L (cm) CL (pF) SMA100B 9ZXLxx3x 27 External 85 25.4 2 SMA100B 9ZXLxx5x Internal 85 25.4 2 Parameters Measured AC/DC parameters Figure 6. Test Load for Phase Jitter Measurements using Phase Noise Analyzer PNA Coax Cables L CK+ CKIN+ Clock Source CK+ Zo (differential) DUT CK- CKIN- Balun 0.1uF CK- 50 SMA Connectors Table 20. Parameters for Phase Jitter Measurements using Phase Noise Analyzer Clock Source Device Under Test (DUT) Rs (Ω) Differential Zo (Ω) L (cm) SMA100B 9ZXLxx3x 27 External 85 25.4 9FGV1006 9ZXLxx3x 27 External 85 25.4 SMA100B 9ZXLxx5x Internal 85 25.4 9FGV1006 9ZXLxx5x Internal 85 25.4 ©2020 Renesas Electronics Corporation 20 CL (pF) Notes Parameters Measured Fanout Mode N/A ZDB Mode Fanout Mode PCIe, IF-UPI, DB2000Q ZDB Mode August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Figure 7. Test Load for Phase Jitter Measurements using Oscilloscope Oscilloscope (≥ 20GS/s) L CK+ CKIN+ Clock Source CK+ Zo (differential) DUT CK- CKIN- Coax Cables 0.1uF CK- SMA Connectors 50 50 Table 21. Parameters for Phase Jitter Measurements using Oscilloscope Clock Source Device Under Test (DUT) Rs (Ω) Differential Zo (Ω) L (cm) SMA100B 9ZXLxx3x 27 External 85 25.4 9FGV1006 9ZXLxx3x 27 External 85 25.4 SMA100B 9ZXLxx5x Internal 85 25.4 9FGV1006 9ZXLxx5x Internal 85 25.4 ©2020 Renesas Electronics Corporation 21 CL (pF) Notes Parameters Measured Fanout Mode N/A ZDB Mode Fanout Mode QPI/UPI ZDB Mode August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet General SMBus Serial Interface Information How to Write How to Read ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ ▪ Controller (host) sends a start bit Controller (host) sends the write address Renesas clock will acknowledge Controller (host) sends the beginning byte location = N Renesas clock will acknowledge Controller (host) sends the byte count = X Renesas clock will acknowledge Controller (host) starts sending Byte N through Byte N+X-1 Renesas clock will acknowledge each byte one at a time Controller (host) sends a stop bit Index Block Write Operation Controller (Host) T Renesas (Slave/Receiver) Controller (host) will send a start bit Controller (host) sends the write address Renesas clock will acknowledge Controller (host) sends the beginning byte location = N Renesas clock will acknowledge Controller (host) will send a separate start bit Controller (host) sends the read address Renesas clock will acknowledge Renesas clock will send the data byte count = X Renesas clock sends Byte N+X-1 Renesas clock sends Byte 0 through Byte X (if X(H) was written to Byte 8) ▪ Controller (host) will need to acknowledge each byte ▪ Controller (host) will send a not acknowledge bit ▪ Controller (host) will send a stop bit starT bit Slave Address WR WRite ACK Index Block Read Operation Beginning Byte = N Controller (Host) ACK T Data Byte Count = X ACK WR Beginning Byte N starT bit Slave Address WRite ACK ACK X Byte O O O Renesas Beginning Byte = N ACK O O O RT RD Byte N + X - 1 Repeat starT Slave Address ReaD ACK ACK P stoP bit Data Byte Count=X ACK Beginning Byte N O O O X Byte ACK O O O Byte N + X - 1 N P ©2020 Renesas Electronics Corporation 22 Not acknowledge stoP bit August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Table 22. SMBus Addressing Pin SMBus Address SADR1_tri SADR0_tri 9ZXL12x2 9ZXL0853 9ZXL08x2 9ZXL06x2 0 0 D8 D8 D8 0 M DA — — 0 1 DE — — M 0 C2 — — M M C4 — — M 1 C6 — — 1 0 CA — — 1 M CC — — 1 1 CE — — Note: 9ZXL08x2 and 9ZXL06x2 do not have SMBus address select pins. Their address is D8. Table 23. Byte 0: PLL Mode and Frequency Select Register Byte 0 Bit7 Bit6 Bit5 Bit4 Bit3 Control PLL Operating PLL Operating Function Mode Readback 1 Mode Readback 0 Type R R 0 00 = Low BW ZDB Mode 01 = Bypass (Fanout Buffer) 1 10 = Reserved Name Default Bit2 Enable software PLL Operating control of PLL BW Mode 1 Bit1 Bit0 PLL Operating Mode 0 Frequency Select Readback RW RW RW R HW Latch 00 = Low BW ZDB Mode 01 = Bypass (Fanout Buffer) 133MHz 11 = High BW ZDB Mode SMBus Control 10 = Reserved 11 = High BW ZDB Mode 100MHz PLL Rdbk[1] PLL Rdbk[0] PLL_SW_EN PLL Mode[1] PLL Mode[0] 100M_133M# Latch Latch 0 1 1 Latch Reserved Reserved 0 0 Note: Setting bit 3 to '1' allows the user to override the latch value from pin 5 via use of bits 2 and 1. A warm system reset is required if the user changes these bits. Bit 0 defaults to 1 on the 9ZXL06x2 devices. ©2020 Renesas Electronics Corporation 23 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Table 24. Byte 1: Output Control Register 1 Byte 1 Bit7 Bit6 Bit5 Bit4 Bit3 Control Function Output Enable Type RW 0 Low/Low 1 OE# Pin Control Bit2 Bit1 Bit0 9ZXL12xx Name DIF7_en DIF6_en DIF5_en DIF4_en DIF3_en DIF2_en DIF1_en DIF0_en 9ZXL12xx Default 1 1 1 1 1 1 1 1 9ZXL08xx Name DIF5_en DIF4_en DIF3_en DIF2_en Reserved DIF1_en DIF0_en Reserved 9ZXL08xx Default 1 1 1 1 0 1 1 0 9ZXL06xx Name Reserved DIF3_en DIF2_en Reserved Reserved DIF1_en DIF0_en Reserved 9ZXL06xx Default 0 1 1 0 0 1 1 0 Bit4 Bit3 Bit2 Bit1 Bit0 Table 25. Byte 2: Output Control Register 2 Byte 2 Bit7 Bit6 Bit5 Control Function Output _enable Type RW 0 Low/Low 1 OE# Pin Control 9ZXL12xx Name Reserved Reserved Reserved Reserved DIF11_en DIF10_en DIF9_en DIF8_en 9ZXL12xx Default 0 0 0 0 1 1 1 1 9ZXL08xx Name Reserved Reserved Reserved Reserved Reserved DIF7_en Reserved DIF6_en 9ZXL08xx Default 0 0 0 0 0 1 0 1 9ZXL06xx Name Reserved Reserved Reserved Reserved Reserved DIF5_en DIF4_en Reserved 9ZXL06xx Default 0 0 0 0 0 1 1 0 Bytes 3 and 4 are Reserved ©2020 Renesas Electronics Corporation 24 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Table 26. Byte 5: Revision and Vendor ID Register Byte 5 Bit7 Bit6 Control Function Type Bit5 Bit4 Bit3 Bit2 Revision ID R R R R R R R E rev = 0010 1 Bit0 Vendor ID R 0 Bit1 IDT/Renesas = 0001 Name RID3 RID2 RID1 RID0 VID3 VID2 VID1 VID0 Default 0 1 0 0 0 0 0 1 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R R R R DevID 3 DevID 2 DevID 1 DevID 0 Bit2 Bit1 Bit0 Table 27. Byte 6: Device ID Register Byte 6 Bit7 Bit6 Control Function Type N/A R R R R 0 Device ID 1 Name DevID 7 DevID 6 DevID 5 DevID 4 9ZXL1232E 0hE8 9ZXL1252E 0hF8 9ZXL0832E 0hE6 9ZXL0852E 0hF6 9ZXL0853E 9ZXL0632E 0hE4 9ZXL0652E 0hF4 Table 28. Byte 7: Byte Count Register Byte 7 Bit7 Bit6 Bit5 Control Function Type 0 Bit4 Bit3 Writing to this register configures how many bytes will be read back on a block read. Reserved Reserved Reserved RW RW RW RW Default value is 8. 1 Name Default RW 0 0 ©2020 Renesas Electronics Corporation 0 BC4 BC3 BC2 BC1 BC0 0 1 0 0 0 25 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Package Outline Drawings The package outline drawings are appended at the end of this document and are accessible from the link below. The package information is the most current data available. 9ZXL06x2E: www.idt.com/document/psc/ndndg40-package-outline-50-x-50-mm-bodyepad-350mm-sq-040-mm-pitch-qfn 9ZXL08xxE: www.idt.com/document/psc/48-vfqfpn-package-outline-drawing-60-x-60-x-090-mm-body-epad-42-x-42-mm-040mm-pitch-ndg48p2 9ZXL12x2E: www.idt.com/document/psc/64-vfqfpn-package-outline-drawing-90-x-90-x-09-mm-body-05mm-pitch-epad-615-x-615-mm-nlg64p2 Marking Diagrams 9ZXL06x2E ▪ Lines 1 and 2: truncated part number ▪ Line 3: “YYWW” is the last two digits of the year and the work week the part was assembled. ▪ Line 4: “COO” denotes country of origin. ▪ Line 5: “LOT” denotes the lot number. ©2020 Renesas Electronics Corporation 26 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet 9ZXL08xxE ▪ Lines 1 and 2: truncated part number ▪ Line 3: “YYWW” is the last two digits of the year and the work week the part was assembled. ▪ Line 4: “COO” denotes country of origin. ▪ Line 5: “LOT” denotes the lot number. 3 9ZXL12x2E ▪ Lines 1 and 2: truncated part number ▪ Line 3: “LOT” denotes the lot number. ▪ Line 4: “COO” denotes country of origin; “YYWW” is the last two digits of the year and the work week the part was assembled. ©2020 Renesas Electronics Corporation 27 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Ordering Information Table 29. Ordering Information Number of Output Clock Outputs Impedance 33Ω 6 85Ω 33Ω 8 85Ω 85Ω 33Ω 12 85Ω Orderable Part Number Temperature Range Package -40° to +85°C 5 × 5 × 0.4 mm 40-VFQFPN Part Number Suffix and Shipping Method 9ZXL0632EKILF 9ZXL0632EKILFT 9ZXL0652EKILF 9ZXL0652EKILFT 9ZXL0832EKILF 9ZXL0832EKILFT 9ZXL0852EKILF 9ZXL0852EKILFT None = Trays 6 × 6 × 0.4 mm 48-VFQFPN “T” = Tape and Reel, Pin 1 Orientation: EIA-481C (see Table 30 for more details) -40° to +85°C 9ZXL0853EKILF 9ZXL0853EKILFT 9ZXL1232EKILF 9ZXL1232EKILFT 9ZXL1252EKILF 9 × 9 × 0.5 mm 64-VFQFPN -40° to +85°C 9ZXL1252EKILFT “E” is the device revision designator (will not correlate with the datasheet revision). “LF” denotes Pb-free configuration, RoHS compliant. Table 30. Pin 1 Orientation in Tape and Reel Packaging Part Number Suffix Pin 1 Orientation Illustration Correct Pin 1 ORIENTATION T CARRIER TAPE TOPSIDE (Round Sprocket Holes) Quadrant 1 (EIA-481-C) USER DIRECTION OF FEED ©2020 Renesas Electronics Corporation 28 August 25, 2020 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet Revision History Revision Date Description of Change August 25, 2020 Updated PCIe Gen5 CC, DB2000Q, and QPI/UPI specifications in Key Specifications section on front page. May 21, 2020 Initial release. ©2020 Renesas Electronics Corporation 29 August 25, 2020 IMPORTANT NOTICE AND DISCLAIMER RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) Corporate Headquarters Contact Information TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/ Trademarks Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. © 2020 Renesas Electronics Corporation. All rights reserved. 48-VFQFPN Package Outline Drawing 6.0 x 6.0 x 0.90 mm Body, Epad 4.2 x 4.2 mm, 0.40mm Pitch NDG48P2, PSC-4212-02, Rev 03, Page 1 © Renesas Electronics Corporation 48-VFQFPN Package Outline Drawing 6.0 x 6.0 x 0.90 mm Body, Epad 4.2 x 4.2 mm, 0.40mm Pitch NDG48P2, PSC-4212-02, Rev 03, Page 2 Package Revision History © Renesas Electronics Corporation Description Date Created Rev No. July 24, 2018 Rev 02 New Format Change QFN to VFQFPN, Recalculate Land Pattern Feb 25, 2020 Rev 03 Tolerance Format Change 64-VFQFPN, Package Outline Drawing 9.0 x 9.0 x 0.9 mm Body, 0.5mm Pitch, Epad 6.15 x 6.15 mm NLG64P2, PSC-4147-02, Rev 01, Page 1 64-VFQFPN, Package Outline Drawing 9.0 x 9.0 x 0.9 mm Body, 0.5mm Pitch, Epad 6.15 x 6.15 mm NLG64P2, PSC-4147-02, Rev 01, Page 2 Package Revision History Description Date Created Rev No. Feb 21, 2018 Rev 01 New Format, Change QFN to VFQFPN, Added P2 Nov 3, 2015 Rev 00 Initial Release
9ZXL0632EKILF 价格&库存

很抱歉,暂时无法提供与“9ZXL0632EKILF”相匹配的价格&库存,您可以联系我们找货

免费人工找货
9ZXL0632EKILF
  •  国内价格
  • 10+24.43835
  • 20+23.94725
  • 100+23.46628
  • 200+22.99544

库存:490

9ZXL0632EKILF
  •  国内价格
  • 490+23.82473

库存:490

9ZXL0632EKILF
  •  国内价格
  • 2+24.93957
  • 10+24.43835
  • 20+23.94725
  • 100+23.46628
  • 200+22.99544

库存:490