9ZXL06x2E/9ZXL08xxE/
6 to 12-Output Buffers for PCIe
9ZXL12x2E
Gen1–5 and UPI with SMBus Write
Datasheet
Protect
Description
Features
The 9ZXL revision E family of Zero-Delay/Fanout Buffers (ZDB,
FOB) with SMBus Write Protect are 2nd-generation enhanced
performance buffers for PCIe and CPU applications. The devices
have hardware SMBUS write protection to prevent accidental
writes. The family meets all published QPI/UPI, DB2000Q and
PCIe Gen1–5 jitter specifications. Devices range from 6 to 12
outputs, with each output having an OE# pin to support the PCIe
CLKREQ# function for low power states. All devices meet
DB2000Q, DB1200ZL and DB800ZL jitter and skew requirements.
▪ SMBus Write Protect pin prevents SMBus against accidental
writes
▪ 6–12 Low-power HCSL (LP-HCSL) outputs
▪ Integrated terminations eliminate up to 4 resistors per output
pair
▪ Dedicated OE# pins support PCIe CLKREQ# function
▪ Up to 9 selectable SMBus addresses (9ZXL12xx, 9ZXL0853)
▪ Selectable PLL bandwidths minimizes jitter peaking in
cascaded PLL topologies
PCIe Clocking Architectures
▪ Hardware/SMBus control of ZDB and FOB modes allow
change without power cycle
▪ Common Clocked (CC)
▪ Independent Reference (IR) with and without spread spectrum
▪
▪
▪
▪
▪
▪
(SRIS, SRNS)
Key Specifications
▪ Fanout Buffer Mode additive phase jitter:
•
•
•
•
PCIe Gen5 CC, UPI > 20Gb/s < 24fs RMS
DB2000Q additive jitter < 39fs RMS
QPI/UPI 11.4GB/s < 40fs RMS
IF-UPI additive jitter < 70fs RMS
▪ ZDB Mode phase jitter:
• PCIe Gen5 CC, UPI > 20Gb/s < 22fs RMS
• QPI/UPI 11.4GB/s < 120fs RMS
• IF-UPI additive jitter < 130fs RMS
▪ Cycle-to-cycle jitter < 50ps
▪ Output-to-output skew < 50ps
Spread spectrum compatible
1–400MHz FOB operation (all devices)
100MHz and 133.33MHz ZDB mode (9ZXL12xx, 9ZXL08xx)
100MHz ZDB mode (9ZXL06xx)
-40°C to +85°C operating temperature range
Packages: See Ordering Information for more details
Typical Applications
▪
▪
▪
▪
▪
Servers/High-performance Computing
nVME Storage
Networking
Accelerators
Industrial Control
Block Diagram
VDDR
VDDA
VDD
VDDIO
9ZXL12xx only
FBOUT_NC#
FBOUT_NC
9ZXL12x2
9ZXL08x2
9ZXL08x3
only
9ZXL12x2
9ZXL08x3
only
PLL
DIF_IN#
DIFn#
DIF_IN
^100M_133M#
vSADR1_tri
vSADR0_tri
SMBCLK
SMBDAT
vSMB_WRTLOCK
DIFn
SMBus
Engine
12, 8, or 6
outputs
Factory
Configuration
DIF0#
^vHIBW_BYPM-LOBW#
^CKPWRGD_PD#
DIF0
Control Logic
vOE[n:0]#
Resistors are integrated on 9ZXLxx5x
devices and external on 9ZXLxx3x devices
GNDA
©2020 Renesas Electronics Corporation
1
GND
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Contents
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
PCIe Clocking Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Key Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
9ZXL06x2E Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
9ZXL08x2E Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
9ZXL0853E Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
9ZXL12x2E Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Test Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
General SMBus Serial Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
How to Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
How to Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Package Outline Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Marking Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9ZXL06x2E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9ZXL08xxE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
9ZXL12x2E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
©2020 Renesas Electronics Corporation
2
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Pin Assignments
9ZXL06x2E Pin Assignment
VDD
vOE4#
DIF4
DIF4#
VDD
DIF5
DIF5#
vOE5#
VDD
VDDA
Figure 1. Pin Assignment for 5 × 5 mm 40-VFQFPN Package – Top View
40 39 38 37 36 35 34 33 32 31
vSMB_WRTLOCK 1
30 NC
^HIBW_BYPM_LOBW# 2
29 VDD
^CKPWRGD_PD# 3
28 vOE3#
9ZXL0632
9ZXL0652
EPAD is pin 41
Connect to GND
GNDR 4
VDDR 5
DIF_IN 6
DIF_IN# 7
27 DIF3#
26 DIF3
25 VDD
24 DIF2#
SMBDAT 8
23 DIF2
SMBCLK 9
22 vOE2#
FBOUT_NC# 10
21 VDD
VDD
vOE1#
DIF1#
DIF1
VDD
DIF0#
DIF0
vOE0#
VDD
FBOUT_NC
11 12 13 14 15 16 17 18 19 20
5 x 5 mm, 0.40mm pitch 40-VFQFPN
Pins with ^ prefix have internal 120kohm pull-up
Pins with v prefix have internal 120kohm pull-down
©2020 Renesas Electronics Corporation
3
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
9ZXL08x2E Pin Assignment
vOE6#
VDD
DIF7
DIF7#
vOE7#
VDD
NC
VDDA
NC
vSMB_WRTLOCK
^100M_133M#
^HIBW_BYPM_LOBW#
Figure 2. Pin Assignment for 6 × 6 mm 48-VFQFPN Package – Top View
48 47 46 45 44 43 42 41 40 39 38 37
^CKPWRGD_PD# 1
36 DIF6#
GND 2
35 DIF6
VDDR 3
34 VDD
DIF_IN 4
33 DIF5#
9ZXL0832
9ZXL0852
EPAD is pin 49
Connect to GND
DIF_IN# 5
SMBDAT 6
SMBCLK 7
FBOUT_NC# 8
32 DIF5
31 vOE5#
30 vOE4#
29 DIF4#
FBOUT_NC 9
28 DIF4
VDD 10
27 VDD
vOE0# 11
26 DIF3#
NC 12
25 DIF3
vOE3#
vOE2#
DIF2#
DIF2
NC
VDD
vOE1#
DIF1#
DIF1
VDD
DIF0#
DIF0
13 14 15 16 17 18 19 20 21 22 23 24
6 x 6 mm, 0.4mm pitch 48-VFQFPN
Pins with ^ prefix have internal 120kohm pull-up
Pins with v prefix have internal 120kohm pull-down
©2020 Renesas Electronics Corporation
4
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
9ZXL0853E Pin Assignment
vOE6#
VDD
DIF7
DIF7#
vOE7#
VDD
NC
VDDA
NC
vSMB_WRTLOCK
^100M_133M#
^HIBW_BYPM_LOBW#
Figure 3. Pin Assignment for 6 × 6 mm 48-VFQFPN Package – Top View
48 47 46 45 44 43 42 41 40 39 38 37
^CKPWRGD_PD# 1
36 DIF6#
VDDR 2
35 DIF6
DIF_IN 3
34 VDD
DIF_IN# 4
33 DIF5#
vSADR0_tri 5
32 DIF5
9ZXL0853
EPAD is pin 49
Connect to GND
SMBDAT 6
SMBCLK 7
vSADR1_tri 8
31 vOE5#
30 vOE4#
29 DIF4#
FBOUT_NC# 9
28 DIF4
FBOUT_NC 10
27 VDD
VDD 11
26 DIF3#
vOE0# 12
25 DIF3
vOE3#
vOE2#
DIF2#
DIF2
NC
VDD
vOE1#
DIF1#
DIF1
VDD
DIF0#
DIF0
13 14 15 16 17 18 19 20 21 22 23 24
6 x 6 mm, 0.4mm pitch 48-VFQFPN
Pins with ^ prefix have internal 120kohm pull-up
Pins with v prefix have internal 120kohm pull-down
©2020 Renesas Electronics Corporation
5
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
9ZXL12x2E Pin Assignment
VDDIO
DIF8
DIF8#
vOE8#
vOE9#
DIF9
DIF9#
VDDIO
VDD
GND
DIF10
DIF10#
vOE10#
vOE11#
DIF11
DIF11#
Figure 4. Pin Assignment for 9 × 9 mm 64-VFQFPN Package – Top View
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
VDDA 1
48 GND
GNDA 2
47 DIF7#
vSMB_WRTLOCK 3
46 DIF7
^100M_133M# 4
45 vOE7#
^HIBW_BYPM_LOBW# 5
44 vOE6#
^CKPWRGD_PD# 6
43 DIF6#
GNDR 7
42 DIF6
9ZXL1232
9ZXL1252
Connect EPAD to ground
VDDR 8
DIF_IN 9
DIF_IN# 10
41 GND
40 VDD
39 DIF5#
vSADR0_tri 11
38 DIF5
SMBDAT 12
37 vOE5#
SMBCLK 13
36 vOE4#
vSADR1_tri 14
35 DIF4#
FBOUT_NC# 15
34 DIF4
FBOUT_NC 16
33 GND
VDDIO
DIF3#
DIF3
vOE3#
vOE2#
DIF2#
DIF2
VDDIO
VDD
GND
DIF1#
DIF1
vOE1#
vOE0#
DIF0#
DIF0
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
9 x 9 mm, 0.5mm pitch 64-VFQFPN
Pins with ^ prefix have internal 120kohm pull-up
Pins with v prefix have internal 120kohm pull-down
©2020 Renesas Electronics Corporation
6
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Pin Descriptions
Table 1. Pin Descriptions
9ZXL12x2
Pin No.
9ZXL08x2
Pin No.
9ZXL0853
Pin No.
9ZXL06x2
Pin No.
4
47
47
—
Input notifies device to sample latched inputs and start up on
first high assertion. Low enters Power Down Mode,
subsequent high assertions exit Power Down Mode. This pin
has internal pull-up resistor.
6
1
1
3
Tri-level input to select High BW, Bypass or Low BW Mode.
^HIBW_BYPM_LO Latched
This pin has an internal pull-up resistor. See PLL Operating
BW#
In
Mode table for details.
5
48
48
2
DIF_IN
Input
HCSL true input.
9
4
3
6
DIF_IN#
Input
HCSL complementary input.
10
5
4
7
DIF0
Output
Differential true clock output.
17
13
13
14
DIF0#
Output
Differential complementary clock output.
18
14
14
15
DIF1
Output
Differential true clock output.
21
16
16
17
DIF1#
Output
Differential complementary clock output.
22
17
17
18
DIF10
Output
Differential true clock output.
59
—
—
—
DIF10#
Output
Differential complementary clock output.
60
—
—
—
DIF11
Output
Differential true clock output.
63
—
—
—
DIF11#
Output
Differential complementary clock output.
64
—
—
—
DIF2
Output
Differential true clock output.
26
21
21
23
DIF2#
Output
Differential complementary clock output.
27
22
22
24
DIF3
Output
Differential true clock output.
30
25
25
26
DIF3#
Output
Differential complementary clock output.
31
26
26
27
DIF4
Output
Differential true clock output.
34
28
28
33
DIF4#
Output
Differential complementary clock output.
35
29
29
34
DIF5
Output
Differential true clock output.
38
32
32
36
DIF5#
Output
Differential complementary clock output.
39
33
33
37
DIF6
Output
Differential true clock output.
42
35
35
—
DIF6#
Output
Differential complementary clock output.
43
36
36
—
DIF7
Output
Differential true clock output.
46
39
39
—
DIF7#
Output
Differential complementary clock output.
47
40
40
—
DIF8
Output
Differential true clock output.
50
—
—
—
DIF8#
Output
Differential complementary clock output.
51
—
—
—
DIF9
Output
Differential true clock output.
54
—
—
—
DIF9#
Output
Differential complementary clock output.
55
—
—
—
Name
^100M_133M#
^CKPWRGD_PD#
Type
Description
3.3V Input to select operating frequency. This pin has an
Latched
internal pull-up resistor. See Frequency Selection (PLL
In
Mode) table for definition.
Input
©2020 Renesas Electronics Corporation
7
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Table 1. Pin Descriptions (Cont.)
Name
EPAD
FBOUT_NC
FBOUT_NC#
9ZXL12x2
Pin No.
9ZXL08x2
Pin No.
9ZXL0853
Pin No.
9ZXL06x2
Pin No.
Connect EPAD to ground.
65
49
49
41
Output
True half of differential feedback output. This pin should
NOT be connected to anything outside the chip. It exists to
provide delay path matching to get 0 propagation delay.
16
9
10
11
Output
Complementary half of differential feedback output. This pin
should NOT be connected to anything outside the chip. It
exists to provide delay path matching to get 0 propagation
delay.
15
8
9
10
Type
GND
Description
GND
GND
Ground pin.
23
49
49
41
GND
GND
Ground pin.
33
49
49
41
GND
GND
Ground pin.
41
49
49
—
GND
GND
Ground pin.
48
49
49
—
GND
GND
Ground pin.
58
—
—
—
GNDA
GND
Ground pin for the PLL core.
2
49
49
41
GNDR
GND
Analog ground pin for the differential input (receiver).
7
2
49
4
12,20,43,45
20,43,45
30
NC
—
No connect.
SMBCLK
Input
Clock pin of SMBUS circuitry.
13
7
7
9
SMBDAT
I/O
Data pin of SMBUS circuitry.
12
6
6
8
VDD
Power
Power supply, nominally 3.3V.
24
VDD
Power
Power supply, nominally 3.3V.
40
—
—
—
VDD
Power
Power supply, nominally 3.3V.
57
—
—
—
VDDA
Power
Power supply for PLL core.
1
44
44
40
VDDIO
Power
Power supply for differential outputs.
25
—
—
—
VDDIO
Power
Power supply for differential outputs.
32
—
—
—
VDDIO
Power
Power supply for differential outputs.
49
—
—
—
VDDIO
Power
Power supply for differential outputs.
56
—
—
—
VDDR
Power
Power supply for differential input clock (receiver). This VDD
should be treated as an analog power rail and filtered
appropriately. Nominally 3.3V.
8
3
2
5
vOE0#
Input
Active low input for enabling output 0. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
19
11
12
13
vOE1#
Input
Active low input for enabling output 1. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
20
18
18
19
©2020 Renesas Electronics Corporation
8
12,16,20,
10,15,19,27, 11,15,19,27,
21,25,29,
34,38,42
34,38,42
31,35,39
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Table 1. Pin Descriptions (Cont.)
Name
vOE10#
vOE11#
vOE2#
vOE3#
vOE4#
vOE5#
vOE6#
vOE7#
vOE8#
vOE9#
vSADR0_tri
vSADR1_tri
vSMB_WRTLOCK
9ZXL12x2
Pin No.
9ZXL08x2
Pin No.
9ZXL0853
Pin No.
9ZXL06x2
Pin No.
Input
Active low input for enabling output 10. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
61
—
—
—
Input
Active low input for enabling output 11. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
62
—
—
—
Input
Active low input for enabling output 2. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
28
23
23
22
Input
Active low input for enabling output 3. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
29
24
24
28
Input
Active low input for enabling output 4. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
36
30
30
32
Input
Active low input for enabling output 5. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
37
31
31
38
Input
Active low input for enabling output 6. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
44
37
37
—
Input
Active low input for enabling output 7. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
45
41
41
—
Input
Active low input for enabling output 8. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
52
—
—
—
Input
Active low input for enabling output 9. This pin has an
internal pull-down.
1 = disable output, 0 = enable output.
53
—
—
—
Input
SMBus address bit. This is a tri-level input that works in
conjunction with other SADR pins, if present, to decode
SMBus Addresses. It has an internal pull-down resistor. See
the SMBus Addressing table.
11
—
5
—
Input
SMBus address bit. This is a tri-level input that works in
conjunction with other SADR pins, if present, to decode
SMBus Addresses. It has an internal pull-down resistor. See
the SMBus Addressing table.
14
—
8
—
Input
This pin prevents SMBus writes when asserted. SMBus
reads are not affected. This pin has an internal pull-down.
0 = SMBus writes allows, 1 = SMBus writes blocked.
3
46
46
1
Type
Description
©2020 Renesas Electronics Corporation
9
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Absolute Maximum Ratings
Stresses above the ratings listed below can cause permanent damage to the 9ZXL06x2E/9ZXL08xxE/9ZXL12x2E. These ratings, which
are standard values for Renesas commercially rated parts, are stress ratings only. Functional operation of the device at these or any
other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum
rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended
operating temperature range.
Table 2. Absolute Maximum Ratings
1
2
3
Parameter
Symbol
Conditions
Supply Voltage
VDDx
Input Low Voltage
VIL
Input High Voltage
VIH
Except for SMBus interface.
Input High Voltage
VIHSMB
SMBus clock and data pins.
Storage Temperature
Ts
Junction Temperature
Tj
Input ESD Protection
ESD prot
Minimum
Typical
Maximum
Units
Notes
3.9
V
1,2
V
1
VDD + 0.5
V
1,3
3.9
V
1
150
°C
1
125
°C
1
V
1
GND - 0.5
-65
Human Body Model.
2500
Guaranteed by design and characterization, not 100% tested in production.
Operation under these conditions is neither implied nor guaranteed.
Not to exceed 3.9V.
Thermal Characteristics
Table 3. Thermal Characteristics
Parameter
9ZXL12 Thermal
Resistance
9ZXL08 Thermal
Resistance
Symbol
Conditions
Package
Typical Values
Units
Notes
θJC
Junction to case.
14
°C/W
1
θJb
Junction to base.
1
°C/W
1
θJA0
Junction to air, still air.
28
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
21
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
19
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
18
°C/W
1
θJC
Junction to case.
19
°C/W
1
θJb
Junction to base.
0
°C/W
1
θJA0
Junction to air, still air.
30
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
23
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
20
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
19
°C/W
1
©2020 Renesas Electronics Corporation
NLG64
NDG48
10
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Table 3. Thermal Characteristics (Cont.)
Parameter
Symbol
9ZXL06 Thermal
Resistance
1
Conditions
Package
Typical Values
Units
Notes
θJC
Junction to case.
32
°C/W
1
θJb
Junction to base.
2
°C/W
1
θJA0
Junction to air, still air.
44
°C/W
1
θJA1
Junction to air, 1 m/s air flow.
37
°C/W
1
θJA3
Junction to air, 3 m/s air flow.
33
°C/W
1
θJA5
Junction to air, 5 m/s air flow.
31
°C/W
1
NDG40
EPAD soldered to ground.
Electrical Characteristics
TA = TAMB. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Table 4. SMBus Parameters
Parameter
Symbol
SMBus Input Low Voltage
VILSMB
SMBus Input High Voltage
VIHSMB
SMBus Output Low Voltage
VOLSMB
At IPULLUP.
SMBus Sink Current
IPULLUP
At VOL.
Nominal Bus Voltage
VDDSMB
SCLK/SDATA Rise Time
tRSMB
SCLK/SDATA Fall Time
SMBus Operating Frequency
1
2
3
4
5
Conditions
Minimum
2.1
Typical
Maximum
Units
0.8
V
VDDSMB
V
0.4
V
4
Notes
mA
2.7
3.6
V
1
(Max VIL - 0.15V) to (Min VIH + 0.15V).
1000
ns
1
tFSMB
(Min VIH + 0.15V) to (Max V IL - 0.15V).
300
ns
1
fSMB
SMBus operating frequency.
400
kHz
5
Guaranteed by design and characterization, not 100% tested in production.
Control input must be monotonic from 20% to 80% of input swing.
Time from deassertion until outputs are > 200mV.
DIF_IN input.
The differential input clock must be running for the SMBus to be active.
Table 5. DIF_IN Clock Input Parameters
Parameter
Input Crossover Voltage – DIF_IN
1
2
Symbol
Conditions
Minimum Typical Maximum
VCROSS Crossover voltage.
150
Input Swing – DIF_IN
VSWING
Differential value.
300
Input Slew Rate – DIF_IN
dv/dt
Measured differentially.
0.4
Input Leakage Current
IIN
VIN = VDD , VIN = GND.
Input Duty Cycle
dtin
Input Jitter – Cycle to Cycle
JDIFIn
900
Units Notes
mV
1
mV
1
8
V/ns
1,2
-5
5
μA
Measurement from differential waveform.
45
55
%
1
Differential measurement.
0
125
ps
1
Guaranteed by design and characterization, not 100% tested in production.
Slew rate measured through ±75mV window centered around differential zero.
©2020 Renesas Electronics Corporation
11
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Table 6. Input/Supply/Common Parameters
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Symbol
Minimum
Typical
Maximum
Units
Supply Voltage
VDDx
Supply voltage for core and analog.
3.135
3.3
3.465
V
Output Supply Voltage
VDDIO
Supply voltage for DIF outputs, if present.
0.95
1.05
3.465
V
5
Ambient Operating
Temperature
TAMB
Extended Industrial range (TEXIND).
-40
25
105
°C
7
Industrial range (TIND).
-40
25
85
°C
Input High Voltage
VIH
Single-ended inputs, except SMBus, tri-level
inputs.
2
VDD + 0.3
V
Input Low Voltage
VIL
Single-ended inputs, except SMBus, tri-level
inputs.
GND - 0.3
0.8
V
Input High Voltage
VIH
Tri-level inputs.
2.2
VDD + 0.3
V
Input Mid Voltage
VIM
Tri-level inputs.
1.2
1.8
V
Input Low Voltage
VIL
Tri-level inputs.
GND - 0.3
0.8
V
IIN
Single-ended inputs, VIN = GND, V IN = VDD.
-5
5
μA
IINP
Single-ended inputs.
VIN = 0 V; inputs with internal pull-up resistors.
VIN = V DD; inputs with internal pull-down
resistors.
-50
50
μA
Fibyp
VDD = 3.3V, Bypass Mode.
1
400
MHz
Fipll
VDD = 3.3V, 100MHz PLL Mode.
98.5
100.00
102.5
MHz
Fipll
VDD = 3.3V, 133.33MHz PLL Mode.
132
133.33
135
MHz
ppm Error Contribution
ppm
ppm error contributed to input clock.
Pin Inductance
Lpin
Input Current
Input Frequency
CIN
Capacitance
CINDIF_IN
Conditions
7
nH
1
5
pF
1
DIF_IN differential clock inputs.
1.5
2.7
pF
1,4
6
pF
1
1.8
ms
1,2
33
kHz
5
10
clocks
1,2,3
49
300
μs
1,3
Clk Stabilization
TSTAB
From VDD power-up and after input clock
stabilization or deassertion of PD# to 1st clock.
Input SS Modulation
Frequency PCIe
fMODINPCIe
OE# Latency
3
ppm
1.5
Output pin capacitance.
2
0
6
Logic inputs, except DIF_IN.
COUT
1
VDD/2
Notes
1
Allowable frequency for PCIe applications
(Triangular modulation).
30
tLATOE#
DIF start after OE# assertion.
DIF stop after OE# deassertion.
4
Tdrive_PD#
tDRVPD
DIF output enable after PD# deassertion.
Tfall
tF
Fall time of control inputs.
5
ns
2
Trise
tR
Rise time of control inputs.
5
ns
2
Guaranteed by design and characterization, not 100% tested in production.
Control input must be monotonic from 20% to 80% of input swing.
Time from deassertion until outputs are > 200mV.
©2020 Renesas Electronics Corporation
12
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
4
5
6
7
DIF_IN input.
9ZXL12x2 only.
9ZXL12x2 and 9ZXL08x2 only.
Not all devices are available in this temperature range. See Ordering Information for details.
Table 7. Current Consumption – 9ZXL12
Parameter
Operating Supply
Current
Power Down
Current
1
Symbol
Typical
Maximum
Units
Notes
VDDA, PLL Mode at 100MHz.
38
46
mA
1
VDDA, Fanout Buffer Mode at 100MHz.
4
5
mA
1
All other VDD pins.
25
34
mA
IDDOIO
VDDIO for LP-HCSL outputs, if applicable.
83
107
mA
IDDAPD
VDDA, CKPWRGD_PD# = 0.
3
4
mA
IDDPD
All other VDD pins, CKPWRGD_PD# = 0.
1
2
mA
Typical
Maximum
Units
Notes
VDDA, PLL Mode at 100MHz.
37
45
mA
1
VDDA, Fanout Buffer Mode at 100MHz.
4
5
mA
1
All other VDD pins at 100MHz.
55
68
mA
IDDA
IDD
Conditions
Minimum
1
Includes VDDR.
Table 8. Current Consumption – 9ZXL08
Parameter
Symbol
Operating Supply
Current
IDDA
Power Down
Current
IDDAPD
VDDA, CKPWRGD_PD# = 0.
3
4
mA
IDDPD
All other VDD pins, CKPWRGD_PD# = 0.
1
2
mA
Typical
Maximum
Units
Notes
VDDA, PLL Mode at 100MHz.
37
45
mA
1
VDDA, Fanout Buffer Mode at 100MHz.
4
5
mA
1
All other VDD pins at 100MHz.
41
50
mA
1
IDD
Conditions
Minimum
1
Includes VDDR.
Table 9. Current Consumption – 9ZXL06
Parameter
Symbol
Operating Supply
Current
IDDA
Power Down
Current
IDDAPD
VDDA, CKPWRGD_PD# = 0.
3
4
mA
IDDPD
All other VDD pins, CKPWRGD_PD# = 0.
1
2
mA
1
IDD
Conditions
Minimum
1
Includes VDDR.
©2020 Renesas Electronics Corporation
13
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Table 10. Skew and Differential Jitter Parameters
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Symbol
Conditions
CLK_IN, DIF[x:0]
tSPO_PLL
Input-to-output skew in PLL Mode at 100MHz, nominal
temperature and voltage.
CLK_IN, DIF[x:0]
tPD_BYP
Input-to-output skew in Bypass Mode at 100MHz,
nominal temperature and voltage.
CLK_IN, DIF[x:0]
tDSPO_PLL
CLK_IN, DIF[x:0]
tDSPO_BYP
Minimum Typical Maximum Units
Notes
-100
-21.3
100
ps
1,2,4,5,7
2
2.6
3
ns
1,2,3,5,7
Input-to-output skew variation in PLL Mode at
100MHz, across voltage and temperature.
-50
0.0
50
ps
1,2,3,5,7
Input-to-output skew variation in Bypass Mode at
100MHz, across voltage and temperature,
TAMB = 0C to +70°C.
-250
250
ps
1,2,3,5,7
Input-to-output skew variation in Bypass mode at
100MHz, across voltage and temperature,
TAMB = -40°C to +85°C.
-350
350
ps
1,2,3,5,7
ps
1,2,3,5,7
(rms)
CLK_IN, DIF[x:0]
tDTE
Random differential tracking error between two 9ZX
devices in Hi BW Mode.
3
5
CLK_IN, DIF[x:0]
tDSSTE
Random differential spread spectrum tracking error
between two 9ZX devices in Hi BW Mode.
23
50
ps
1,2,3,5,7
DIF[x:0]
tSKEW_ALL
Output-to-output skew across all outputs, common to
PLL and Bypass Mode, at 100MHz.
50
ps
1,2,3,7
PLL Jitter Peaking
jpeak-hibw
LOBW#_BYPASS_HIBW = 1.
0
1.3
2.5
dB
6,7
PLL Jitter Peaking
jpeak-lobw
LOBW#_BYPASS_HIBW = 0.
0
1.3
2
dB
6,7
PLL Bandwidth
pll HIBW
LOBW#_BYPASS_HIBW = 1.
2
2.6
4
MHz
7,8
PLL Bandwidth
pllLOBW
LOBW#_BYPASS_HIBW = 0.
0.7
1.0
1.4
MHz
7,8
Duty Cycle
tDC
Measured differentially, PLL Mode.
45
50.3
55
%
1
Duty Cycle Distortion
tDCD
Measured differentially, Bypass Mode at 100MHz.
-1
0
1
%
1,9
Jitter, Cycle to Cycle
tjcyc-cyc
PLL Mode.
14
50
ps
1,10
Additive jitter in Bypass Mode.
0.1
5
ps
1,10
1
2
3
4
5
6
7
8
9
Measured into fixed 2pF load cap. Input-to-output skew is measured at the first output edge following the corresponding input.
Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.
All Bypass Mode input-to-output specs refer to the timing between an input edge and the specific output edge created by it.
This parameter is deterministic for a given device.
Measured with scope averaging on to find mean value.
Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.
Guaranteed by design and characterization, not 100% tested in production.
Measured at 3db down or half power point.
Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in Bypass Mode.
10
Measured from differential waveform.
©2020 Renesas Electronics Corporation
14
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Table 11. LP-HCSL Outputs
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Symbol
Slew Rate
dV/dt
Scope averaging on.
Slew Rate Matching
ΔdV/dt
Single-ended measurement.
Maximum Voltage
Vmax
Minimum Voltage
Vmin
Measurement on single-ended
signal using absolute value
(scope averaging off).
Crossing Voltage (abs)
2
5
6
7
8
2
Δ-Vcross
Specification
Limits
Units
Notes
2.9
4
1–4
V/ns
1,2,3
7.1
20
20
%
1,4,7
700
792
850
660–1150
-150
-35
150
-300
300
372
462
250–550
mV
1,5,7
15
50
140
mV
1,6,7
Scope averaging off.
7,8
mV
7,8
Guaranteed by design and characterization, not 100% tested in production.
Measured from differential waveform.
3 Slew
4
Minimum Typical Maximum
Vcross_abs Scope averaging off.
Crossing Voltage (var)
1
Conditions
rate is measured through the Vswing voltage range centered around differential 0 V. This results in a ±150mV window around differential 0V.
Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a ±75mV window centered on the average
cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use
for the edge rate calculations.
Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock
rising and Clock# falling).
The total variation of all Vcross measurements in any particular system. Note that this is a subset of Vcross_min/max (Vcross absolute) allowed.
The intent is to limit Vcross induced modulation by setting Δ-Vcross to be smaller than Vcross absolute.
At default SMBus settings.
Includes previously separate values of +300mV overshoot and -300mV of undershoot.
Table 12. PCIe Phase Jitter Parameters
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Symbol
Minimum Typical Maximum
Limits
Units
Notes
PCIe Gen 1 (2.5 GT/s)
2.6
6.8
86
ps (p-p)
1,2
PCIe Gen 2 Hi Band (5.0 GT/s)
0.09
0.16
3
ps (RMS)
1,2
PCIe Gen 2 Lo Band (5.0 GT/s)
0.08
0.12
3.1
ps (RMS)
1,2
tjphPCIeG3-CC
PCIe Gen 3 (8.0 GT/s)
0.05
0.07
1
ps (RMS)
1,2
tjphPCIeG4-CC
PCIe Gen 4 (16.0 GT/s)
0.05
0.07
0.5
ps (RMS)
1,2,3,4
tjphPCIeG5-CC
PCIe Gen 5 (32.0 GT/s)
0.018
0.022
0.15
ps (RMS) 1,2,3,5,7
tjphPCIeG1-SRIS PCIe Gen 1 (2.5 GT/s)
8.71
8.73
ps (RMS)
1,2,6
tjphPCIeG2-SRIS PCIe Gen 2 (5.0 GT/s)
0.81
0.83
ps (RMS)
1,2,6
tjphPCIeG3-SRIS PCIe Gen 3 (8.0 GT/s)
0.329
0.335
ps (RMS)
1,2,6
tjphPCIeG4-SRIS PCIe Gen 4 (16.0 GT/s)
0.222
0.235
ps (RMS)
1,2,6
tjphPCIeG5-SRIS PCIe Gen 5 (32.0 GT/s)
0.084
0.091
ps (RMS)
1,2,6
tjphPCIeG1-CC
PCIe Phase Jitter, Low
Bandwidth ZDB Mode
(Common Clocked
Architecture)
PCIe Phase Jitter, Low
Bandwidth ZDB Mode
(SRIS Architecture)
tjphPCIeG2-CC
©2020 Renesas Electronics Corporation
Conditions
15
N/A
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Table 12. PCIe Phase Jitter Parameters (Cont.)
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Symbol
Minimum Typical Maximum
Limits
Units
Notes
PCIe Gen 1 (2.5 GT/s)
5.4
6.9
86
ps (p-p)
1,2
PCIe Gen 2 Hi Band (5.0 GT/s)
0.19
0.25
3
ps (RMS)
1,2
PCIe Gen 2 Lo Band (5.0 GT/s)
0.09
0.13
3.1
ps (RMS)
1,2
tjphPCIeG3-CC
PCIe Gen 3 (8.0 GT/s)
0.10
0.13
1
ps (RMS)
1,2
tjphPCIeG4-CC
PCIe Gen 4 (16.0 GT/s)
0.10
0.13
0.5
ps (RMS)
1,2,3,4
tjphPCIeG5-CC
PCIe Gen 5 (32.0 GT/s)
0.032
0.042
0.15
ps (RMS) 1,2,3,5,7
8.61
8.63
ps (RMS)
1,2,6
ps (RMS)
1,2,6
ps (RMS)
1,2,6
tjphPCIeG1-CC
PCIe Phase Jitter, High
Bandwidth ZDB Mode
(Common Clocked
Architecture)
tjphPCIeG2-CC
Conditions
tjphPCIeG1-SRIS PCIe Gen 1 (2.5 GT/s)
PCIe Phase Jitter, High tjphPCIeG2-SRIS PCIe Gen 2 (5.0 GT/s)
Bandwidth ZDB Mode tjphPCIeG3-SRIS PCIe Gen 3 (8.0 GT/s)
(SRIS Architecture)
tjphPCIeG4-SRIS PCIe Gen 4 (16.0 GT/s)
0.88
0.96
0.354
0.375
0.271
0.305
ps (RMS)
1,2,6
tjphPCIeG5-SRIS PCIe Gen 5 (32.0 GT/s)
0.097
0.109
ps (RMS)
1,2,6
N/A
1 The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section
2
3
4
5
6
7
of the data sheet for the exact measurement setup. The worst case results for each data rate are summarized in this table. Equipment noise is
removed from all results.
Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate
of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for
RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding
the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency.
For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83. In the case
where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used.
SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC
content.
Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.
Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.
The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide
specification limits, hence the n/a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be
twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by √2. An
additional consideration is the value for which to divide by √2. The conservative approach is to divide the ref clock jitter limit, and the case can be
made for dividing the channel simulation values by √2, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A
"rule-of-thumb" SRIS limit would be either 0.5ps RMS/√2 = 0.35ps RMS if the clock chip is far from the clock input, or 0.7ps RMS/√2 = 0.5ps RMS
if the clock chip is near the clock input.
This specification also applied to UPI data rates > 20Gb/s.
©2020 Renesas Electronics Corporation
16
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Table 13. Additive PCIe Phase Jitter for Fanout Buffer Mode
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Symbol
tjphPCIeG1-CC
Conditions
Minimum Typical Maximum Limits
Notes
1.3
1.9
86
ps (p-p)
1,2
PCIe Gen2 Hi Band (5.0 GT/s)
0.089
0.126
3
ps (RMS)
1,2
PCIe Gen2 Lo Band (5.0 GT/s)
0.023
0.034
3.1
ps (RMS)
1,2
tjphPCIeG3-CC
PCIe Gen3 (8.0 GT/s)
0.044
0.062
1
ps (RMS)
1,2
tjphPCIeG4-CC
PCIe Gen4 (16.0 GT/s)
0.044
0.062
0.5
ps (RMS)
1,2,3,4
tjphPCIeG5-CC
PCIe Gen5 (32.0 GT/s)
0.017
0.024
0.15
ps (RMS) 1,2,3,5,8
0.127
0.181
ps (RMS)
1,2,6
Additive PCIe Phase Jitter, tjphPCIeG2-SRIS PCIe Gen2 (5.0 GT/s)
Fanout Buffer Mode7
tjphPCIeG3-SRIS PCIe Gen3 (8.0 GT/s)
(SRIS Architecture)
tjphPCIeG4-SRIS PCIe Gen4 (16.0 GT/s)
0.112
0.159
ps (RMS)
1,2,6
0.029
0.042
ps (RMS)
1,2,6
0.031
0.043
ps (RMS)
1,2,6
tjphPCIeG5-SRIS PCIe Gen5 (32.0 GT/s)
0.027
0.038
ps (RMS)
1,2,6
Additive PCIe Phase Jitter,
Fanout Buffer Mode7
(Common Clocked
Architecture)
tjphPCIeG2-CC
PCIe Gen1 (2.5 GT/s)
Units
tjphPCIeG1-SRIS PCIe Gen1 (2.5 GT/s)
N/A
1 The Refclk jitter is measured after applying the filter functions found in PCI Express Base Specification 5.0, Revision 1.0. See the Test Loads section
2
3
4
5
6
7
8
of the data sheet for the exact measurement setup. The total Ref Clk jitter limits for each data rate are listed for convenience. The worst case results
for each data rate are summarized in this table. Equipment noise is removed from all results.
Jitter measurements shall be made with a capture of at least 100,000 clock cycles captured by a real-time oscilloscope (RTO) with a sample rate
of 20 GS/s or greater. Broadband oscilloscope noise must be minimized in the measurement. The measured PP jitter is used (no extrapolation) for
RTO measurements. Alternately, jitter measurements may be used with a Phase Noise Analyzer (PNA) extending (flat) and integrating and folding
the frequency content up to an offset from the carrier frequency of at least 200MHz (at 300MHz absolute frequency) below the Nyquist frequency.
For PNA measurements for the 2.5 GT/s data rate, the RMS jitter is converted to peak-to-peak jitter using a multiplication factor of 8.83. In the case
where real-time oscilloscope and PNA measurements have both been done and produce different results, the RTO result must be used.
SSC spurs from the fundamental and harmonics are removed up to a cutoff frequency of 2 MHz taking care to minimize removal of any non-SSC
content.
Note that 0.7ps RMS is to be used in channel simulations to account for additional noise in a real system.
Note that 0.25ps RMS is to be used in channel simulations to account for additional noise in a real system.
The PCI Express Base Specification 5.0, Revision 1.0 provides the filters necessary to calculate SRIS jitter values, however, it does not provide
specification limits, hence the n/a in the Limit column. SRIS values are informative only. In general, a clock operating in an SRIS system must be
twice as good as a clock operating in a Common Clock system. For RMS values, twice as good is equivalent to dividing the CC value by √2. An
additional consideration is the value for which to divide by √2. The conservative approach is to divide the ref clock jitter limit, and the case can be
made for dividing the channel simulation values by √2, if the ref clock is close to the Tx clock input. An example for Gen4 is as follows. A
"rule-of-thumb" SRIS limit would be either 0.5ps RMS/√2 = 0.35ps RMS if the clock chip is far from the clock input, or 0.7ps RMS/√2 = 0.5ps RMS
if the clock chip is near the clock input.
Additive jitter for RMS values is calculated by solving for “b” where b = √(c2 - a2) and “a” is rms input jitter and “c” is rms output jitter.
This specification also applied to UPI data rates > 20Gb/s.
©2020 Renesas Electronics Corporation
17
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Table 14. Filtered Phase Jitter Parameters – QPI/UPI, IF-UPI and DB2000Q
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Phase Jitter,
ZDB Mode
Conditions
Minimum Typical Maximum
Specification
Limits
Units
Notes
QPI and UPI
(100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)
0.16
0.37
0.5
ps (RMS)
1,2
QPI and UPI
(100MHz, 8.0Gb/s, 12UI)
0.10
0.15
0.3
ps (RMS)
1,2
QPI and UPI
(100MHz, ≤11.4Gb/s, 12UI)
0.08
0.12
0.2
ps (RMS)
1,2
QPI and UPI
(100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)
0.03
0.05
QPI and UPI
(100MHz, 8.0Gb/s, 12UI)
0.03
0.05
QPI and UPI
(100MHz, ≤11.4Gb/s, 12UI)
0.02
0.04
IF-UPI, Lo-BW ZDB Mode
0.10
0.13
1
ps (RMS) 1,4,5
IF-UPI, Hi-BW ZDB Mode
0.17
0.20
1
ps (RMS) 1,4,5
IF-UPI, Fanout Mode
0.06
0.07
1
ps (RMS)
1,4
DB2000Q, Fanout Mode
28
39
80
fs (RMS)
1,4,5
Symbol
tjphQPI_UPI
tjphQPI_UPI
Additive
Phase Jitter,
Fanout Mode
tjphIF-UPI
tjphDB2000Q
1
2
3
ps (RMS) 1,2,3
N/A
ps (RMS) 1,2,3
ps (RMS) 1,2,3
Applies to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details.
Calculated from Intel-supplied clock jitter tool.
For RMS values, additive jitter is calculated by solving for “b” where b = √(c2 - a2), “a” is rms input jitter and “c” is rms total jitter.
4 Calculated from phase noise analyzer with Intel-specified brick-wall filter applied. This is an additive jitter specification regardless of buffer operating
5
mode.
The IF-UPI specification is an additive specification, regardless of the buffer operating mode. The enhanced 9ZXL devices meet this specification
in all operating modes.
Table 15. Phase Jitter Parameters – 12kHz to 20MHz
TAMB = over the specified operating range. Supply voltages per normal operation conditions; see Test Loads for loading conditions.
Parameter
Symbol
Conditions
12kHz–20MHz
Additive Phase Jitter,
Fanout Buffer Mode
tjph12k-20MFOB
Fanout Buffer Mode,
SSC OFF, 100MHz
1
2
3
Minimum
Typical
Maximum
Specification
Limits
98
125
N/A
Units
Notes
fs (RMS) 1,2,3
Applies to all differential outputs, guaranteed by design and characterization. See Test Loads for measurement setup details.
12kHz to 20MHz brick wall filter.
For RMS values, additive jitter is calculated by solving for “b” where b = √(c2 - a2), “a” is rms input jitter and “c” is rms total jitter.
©2020 Renesas Electronics Corporation
18
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Power Management
Table 16. Power Management
CKPWRGD_PD#
DIF_IN
SMBus EN bit
OE[x]# Pin
DIF[x]
PLL State (in ZDB Mode)
0
X
X
X
Low/Low
OFF
0
0
Low/Low
ON
0
1
Low/Low
ON
1
0
Running
ON
1
1
Low/Low
ON
1
Running
Table 17. Frequency Selection (PLL Mode)
100M_133M#
DIF_IN MHz
DIF[x]
1
100.00
DIF_IN
0
133.33
DIF_IN
Note: 9ZXL12xx and 9ZXL08xx only. 9ZXL06xx is 100MHz only.
Table 18. PLL Operating Mode
HiBW_BypM_LoBW#
Mode
PLL
Low
PLL Lo BW
Running
Mid
Bypass
Off
High
PLL Hi BW
Running
Note: See SMBus Byte 0, bits 7 and 6 for additional information.
©2020 Renesas Electronics Corporation
19
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Test Loads
Figure 5. Test Load for AC/DC Measurements
CL
CK+
CKIN+
Clock Source
L
CK+
Zo (differential)
DUT
CK-
Test
Points for High
Impedance
Probe
CKIN-
CK-
CL
Table 19. Parameters for AC/DC Measurements
Clock Source
Device Under Test (DUT)
Rs (Ω)
Differential Zo (Ω)
L (cm)
CL (pF)
SMA100B
9ZXLxx3x
27 External
85
25.4
2
SMA100B
9ZXLxx5x
Internal
85
25.4
2
Parameters Measured
AC/DC parameters
Figure 6. Test Load for Phase Jitter Measurements using Phase Noise Analyzer
PNA
Coax
Cables
L
CK+
CKIN+
Clock Source
CK+
Zo (differential)
DUT
CK-
CKIN-
Balun
0.1uF
CK-
50
SMA
Connectors
Table 20. Parameters for Phase Jitter Measurements using Phase Noise Analyzer
Clock Source
Device Under
Test (DUT)
Rs (Ω)
Differential Zo (Ω)
L (cm)
SMA100B
9ZXLxx3x
27 External
85
25.4
9FGV1006
9ZXLxx3x
27 External
85
25.4
SMA100B
9ZXLxx5x
Internal
85
25.4
9FGV1006
9ZXLxx5x
Internal
85
25.4
©2020 Renesas Electronics Corporation
20
CL (pF)
Notes
Parameters
Measured
Fanout Mode
N/A
ZDB Mode
Fanout Mode
PCIe, IF-UPI,
DB2000Q
ZDB Mode
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Figure 7. Test Load for Phase Jitter Measurements using Oscilloscope
Oscilloscope
(≥ 20GS/s)
L
CK+
CKIN+
Clock Source
CK+
Zo (differential)
DUT
CK-
CKIN-
Coax
Cables
0.1uF
CK-
SMA
Connectors
50
50
Table 21. Parameters for Phase Jitter Measurements using Oscilloscope
Clock Source
Device Under
Test (DUT)
Rs (Ω)
Differential Zo (Ω)
L (cm)
SMA100B
9ZXLxx3x
27 External
85
25.4
9FGV1006
9ZXLxx3x
27 External
85
25.4
SMA100B
9ZXLxx5x
Internal
85
25.4
9FGV1006
9ZXLxx5x
Internal
85
25.4
©2020 Renesas Electronics Corporation
21
CL (pF)
Notes
Parameters
Measured
Fanout Mode
N/A
ZDB Mode
Fanout Mode
QPI/UPI
ZDB Mode
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
General SMBus Serial Interface Information
How to Write
How to Read
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
▪
Controller (host) sends a start bit
Controller (host) sends the write address
Renesas clock will acknowledge
Controller (host) sends the beginning byte location = N
Renesas clock will acknowledge
Controller (host) sends the byte count = X
Renesas clock will acknowledge
Controller (host) starts sending Byte N through Byte N+X-1
Renesas clock will acknowledge each byte one at a time
Controller (host) sends a stop bit
Index Block Write Operation
Controller (Host)
T
Renesas (Slave/Receiver)
Controller (host) will send a start bit
Controller (host) sends the write address
Renesas clock will acknowledge
Controller (host) sends the beginning byte location = N
Renesas clock will acknowledge
Controller (host) will send a separate start bit
Controller (host) sends the read address
Renesas clock will acknowledge
Renesas clock will send the data byte count = X
Renesas clock sends Byte N+X-1
Renesas clock sends Byte 0 through Byte X (if X(H) was
written to Byte 8)
▪ Controller (host) will need to acknowledge each byte
▪ Controller (host) will send a not acknowledge bit
▪ Controller (host) will send a stop bit
starT bit
Slave Address
WR
WRite
ACK
Index Block Read Operation
Beginning Byte = N
Controller (Host)
ACK
T
Data Byte Count = X
ACK
WR
Beginning Byte N
starT bit
Slave Address
WRite
ACK
ACK
X Byte
O
O
O
Renesas
Beginning Byte = N
ACK
O
O
O
RT
RD
Byte N + X - 1
Repeat starT
Slave Address
ReaD
ACK
ACK
P
stoP bit
Data Byte Count=X
ACK
Beginning Byte N
O
O
O
X Byte
ACK
O
O
O
Byte N + X - 1
N
P
©2020 Renesas Electronics Corporation
22
Not acknowledge
stoP bit
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Table 22. SMBus Addressing
Pin
SMBus Address
SADR1_tri
SADR0_tri
9ZXL12x2
9ZXL0853
9ZXL08x2
9ZXL06x2
0
0
D8
D8
D8
0
M
DA
—
—
0
1
DE
—
—
M
0
C2
—
—
M
M
C4
—
—
M
1
C6
—
—
1
0
CA
—
—
1
M
CC
—
—
1
1
CE
—
—
Note: 9ZXL08x2 and 9ZXL06x2 do not have SMBus address select pins. Their address is D8.
Table 23. Byte 0: PLL Mode and Frequency Select Register
Byte 0
Bit7
Bit6
Bit5
Bit4
Bit3
Control
PLL Operating
PLL Operating
Function Mode Readback 1 Mode Readback 0
Type
R
R
0
00 = Low BW ZDB
Mode
01 = Bypass
(Fanout Buffer)
1
10 = Reserved
Name
Default
Bit2
Enable software PLL Operating
control of PLL BW
Mode 1
Bit1
Bit0
PLL Operating
Mode 0
Frequency
Select Readback
RW
RW
RW
R
HW Latch
00 = Low BW
ZDB Mode
01 = Bypass
(Fanout Buffer)
133MHz
11 = High BW
ZDB Mode
SMBus Control
10 = Reserved
11 = High BW
ZDB Mode
100MHz
PLL Rdbk[1]
PLL Rdbk[0]
PLL_SW_EN
PLL Mode[1]
PLL Mode[0]
100M_133M#
Latch
Latch
0
1
1
Latch
Reserved Reserved
0
0
Note: Setting bit 3 to '1' allows the user to override the latch value from pin 5 via use of bits 2 and 1. A warm system reset is required if the user
changes these bits. Bit 0 defaults to 1 on the 9ZXL06x2 devices.
©2020 Renesas Electronics Corporation
23
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Table 24. Byte 1: Output Control Register 1
Byte 1
Bit7
Bit6
Bit5
Bit4
Bit3
Control
Function
Output Enable
Type
RW
0
Low/Low
1
OE# Pin Control
Bit2
Bit1
Bit0
9ZXL12xx
Name
DIF7_en
DIF6_en
DIF5_en
DIF4_en
DIF3_en
DIF2_en
DIF1_en
DIF0_en
9ZXL12xx
Default
1
1
1
1
1
1
1
1
9ZXL08xx
Name
DIF5_en
DIF4_en
DIF3_en
DIF2_en
Reserved
DIF1_en
DIF0_en
Reserved
9ZXL08xx
Default
1
1
1
1
0
1
1
0
9ZXL06xx
Name
Reserved
DIF3_en
DIF2_en
Reserved
Reserved
DIF1_en
DIF0_en
Reserved
9ZXL06xx
Default
0
1
1
0
0
1
1
0
Bit4
Bit3
Bit2
Bit1
Bit0
Table 25. Byte 2: Output Control Register 2
Byte 2
Bit7
Bit6
Bit5
Control
Function
Output _enable
Type
RW
0
Low/Low
1
OE# Pin Control
9ZXL12xx
Name
Reserved
Reserved
Reserved
Reserved
DIF11_en
DIF10_en
DIF9_en
DIF8_en
9ZXL12xx
Default
0
0
0
0
1
1
1
1
9ZXL08xx
Name
Reserved
Reserved
Reserved
Reserved
Reserved
DIF7_en
Reserved
DIF6_en
9ZXL08xx
Default
0
0
0
0
0
1
0
1
9ZXL06xx
Name
Reserved
Reserved
Reserved
Reserved
Reserved
DIF5_en
DIF4_en
Reserved
9ZXL06xx
Default
0
0
0
0
0
1
1
0
Bytes 3 and 4 are Reserved
©2020 Renesas Electronics Corporation
24
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Table 26. Byte 5: Revision and Vendor ID Register
Byte 5
Bit7
Bit6
Control
Function
Type
Bit5
Bit4
Bit3
Bit2
Revision ID
R
R
R
R
R
R
R
E rev = 0010
1
Bit0
Vendor ID
R
0
Bit1
IDT/Renesas = 0001
Name
RID3
RID2
RID1
RID0
VID3
VID2
VID1
VID0
Default
0
1
0
0
0
0
0
1
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
R
R
R
R
DevID 3
DevID 2
DevID 1
DevID 0
Bit2
Bit1
Bit0
Table 27. Byte 6: Device ID Register
Byte 6
Bit7
Bit6
Control
Function
Type
N/A
R
R
R
R
0
Device ID
1
Name
DevID 7
DevID 6
DevID 5
DevID 4
9ZXL1232E
0hE8
9ZXL1252E
0hF8
9ZXL0832E
0hE6
9ZXL0852E
0hF6
9ZXL0853E
9ZXL0632E
0hE4
9ZXL0652E
0hF4
Table 28. Byte 7: Byte Count Register
Byte 7
Bit7
Bit6
Bit5
Control
Function
Type
0
Bit4
Bit3
Writing to this register configures how many bytes will be read back on a block read.
Reserved
Reserved
Reserved
RW
RW
RW
RW
Default value is 8.
1
Name
Default
RW
0
0
©2020 Renesas Electronics Corporation
0
BC4
BC3
BC2
BC1
BC0
0
1
0
0
0
25
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Package Outline Drawings
The package outline drawings are appended at the end of this document and are accessible from the link below. The package information
is the most current data available.
9ZXL06x2E:
www.idt.com/document/psc/ndndg40-package-outline-50-x-50-mm-bodyepad-350mm-sq-040-mm-pitch-qfn
9ZXL08xxE:
www.idt.com/document/psc/48-vfqfpn-package-outline-drawing-60-x-60-x-090-mm-body-epad-42-x-42-mm-040mm-pitch-ndg48p2
9ZXL12x2E:
www.idt.com/document/psc/64-vfqfpn-package-outline-drawing-90-x-90-x-09-mm-body-05mm-pitch-epad-615-x-615-mm-nlg64p2
Marking Diagrams
9ZXL06x2E
▪ Lines 1 and 2: truncated part number
▪ Line 3: “YYWW” is the last two digits of the year and the work week the part was
assembled.
▪ Line 4: “COO” denotes country of origin.
▪ Line 5: “LOT” denotes the lot number.
©2020 Renesas Electronics Corporation
26
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
9ZXL08xxE
▪ Lines 1 and 2: truncated part number
▪ Line 3: “YYWW” is the last two digits of the year and the work week the part was
assembled.
▪ Line 4: “COO” denotes country of origin.
▪ Line 5: “LOT” denotes the lot number.
3
9ZXL12x2E
▪ Lines 1 and 2: truncated part number
▪ Line 3: “LOT” denotes the lot number.
▪ Line 4: “COO” denotes country of origin; “YYWW” is the last two digits of the year and the
work week the part was assembled.
©2020 Renesas Electronics Corporation
27
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Ordering Information
Table 29. Ordering Information
Number of
Output
Clock Outputs Impedance
33Ω
6
85Ω
33Ω
8
85Ω
85Ω
33Ω
12
85Ω
Orderable Part
Number
Temperature
Range
Package
-40° to +85°C
5 × 5 × 0.4 mm
40-VFQFPN
Part Number Suffix and Shipping Method
9ZXL0632EKILF
9ZXL0632EKILFT
9ZXL0652EKILF
9ZXL0652EKILFT
9ZXL0832EKILF
9ZXL0832EKILFT
9ZXL0852EKILF
9ZXL0852EKILFT
None = Trays
6 × 6 × 0.4 mm
48-VFQFPN “T” = Tape and Reel, Pin 1 Orientation: EIA-481C
(see Table 30 for more details)
-40° to +85°C
9ZXL0853EKILF
9ZXL0853EKILFT
9ZXL1232EKILF
9ZXL1232EKILFT
9ZXL1252EKILF
9 × 9 × 0.5 mm
64-VFQFPN
-40° to +85°C
9ZXL1252EKILFT
“E” is the device revision designator (will not correlate with the datasheet revision).
“LF” denotes Pb-free configuration, RoHS compliant.
Table 30. Pin 1 Orientation in Tape and Reel Packaging
Part Number Suffix
Pin 1 Orientation
Illustration
Correct Pin 1 ORIENTATION
T
CARRIER TAPE TOPSIDE
(Round Sprocket Holes)
Quadrant 1 (EIA-481-C)
USER DIRECTION OF FEED
©2020 Renesas Electronics Corporation
28
August 25, 2020
9ZXL06x2E/9ZXL08xxE/9ZXL12x2E Datasheet
Revision History
Revision Date
Description of Change
August 25, 2020
Updated PCIe Gen5 CC, DB2000Q, and QPI/UPI specifications in Key Specifications section on front page.
May 21, 2020
Initial release.
©2020 Renesas Electronics Corporation
29
August 25, 2020
IMPORTANT NOTICE AND DISCLAIMER
RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.
(Rev.1.0 Mar 2020)
Corporate Headquarters
Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit:
www.renesas.com/contact/
Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.
© 2020 Renesas Electronics Corporation. All rights reserved.
48-VFQFPN Package Outline Drawing
6.0 x 6.0 x 0.90 mm Body, Epad 4.2 x 4.2 mm, 0.40mm Pitch
NDG48P2, PSC-4212-02, Rev 03, Page 1
© Renesas Electronics Corporation
48-VFQFPN Package Outline Drawing
6.0 x 6.0 x 0.90 mm Body, Epad 4.2 x 4.2 mm, 0.40mm Pitch
NDG48P2, PSC-4212-02, Rev 03, Page 2
Package Revision History
© Renesas Electronics Corporation
Description
Date Created
Rev No.
July 24, 2018
Rev 02 New Format Change QFN to VFQFPN, Recalculate Land Pattern
Feb 25, 2020
Rev 03 Tolerance Format Change
64-VFQFPN, Package Outline Drawing
9.0 x 9.0 x 0.9 mm Body, 0.5mm Pitch, Epad 6.15 x 6.15 mm
NLG64P2, PSC-4147-02, Rev 01, Page 1
64-VFQFPN, Package Outline Drawing
9.0 x 9.0 x 0.9 mm Body, 0.5mm Pitch, Epad 6.15 x 6.15 mm
NLG64P2, PSC-4147-02, Rev 01, Page 2
Package Revision History
Description
Date Created
Rev No.
Feb 21, 2018
Rev 01
New Format, Change QFN to VFQFPN, Added P2
Nov 3, 2015
Rev 00
Initial Release